Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89548
標題: 設施內山葵氣霧耕生產之研究
Aeroponic production of Wasabia japonica Matsum in artificial lighting facility
作者: Yi-Hsuan Lin
林宜萱
關鍵字: Wasabi;facilitate culture;aeroponic;sinigrin;allyl isothiocyanate;山葵;設施栽培;氣霧耕;黑芥子素;異硫氰酸烯丙酯
引用: 王昭月、曾夢蛟。2010。利用葉綠素螢光與有效授粉估測甜椒之耐熱性。台灣農業研究。59: 237-248。 王貴美、羅朝村。1993。山葵黑心病之發生與防治。豐年半月刊。4: 36-39。 林喻東。2001。對阿里山國有林班地種植山葵的意見調查與分析。林業研究季刊。23: 73-80。 姚銘輝、陳守泓、漆匡時。2007。利用葉綠素螢光估算作物葉片之光合作用。台灣農業研究。56: 224-236。 張峻嘉。1999。《嘉義縣志‧卷六‧農業志》。嘉義縣政府。pp. 737-738。 胡敏夫。2006。山葵。台灣農家要覽農作篇(二)。行政院農業委員會。pp. 287-294。 胡敏夫、王昭月、劉慧瑛。1992。臺灣主要山葵栽培品種(系)間品質之評價。中華農藝研究。41: 35-42。 高德錚。2012。台灣發展植物工廠之契機。台中區農業改良場一零一年專題討論專集。pp. 119-122。 高德錚。2013。蔬菜植物工廠發展現況。臺中區農業改良場特刊。122: 195-202。 楊志維、黃文達、楊棋明。2012。水稻葉片葉綠素生合成與降解途徑之研究。桃園區農業改良場研究彙報。71: 17-34。 廖君達。2010。植物芥子油炸彈的引爆與拆解。臺中區農業改良場特刊。105: 225-230。 陳世銘、方煒、羅筱鳳、曹幸之、張耀乾、廖國基、顏炳郎、蔡兆胤。2011。台灣植物工廠現況與發展策略之分析。農業機械學刊。20: 95-106。 劉敏莉。2011。葉綠素螢光在作物耐熱性篩選之應用。高雄區農業改良場研究彙報。21: 1-15。 羅朝村、王貴美。2000。台灣山葵地上部之真菌病害種類與發生調查。植物病理學會刊。9: 17-22。 農委會農糧署。2014。山葵103年度栽培面積。http://agr.afa.gov.tw/afa/afa_frame.jsp Abea, K., S. Kido, T. Maeda, D. Kami, H. Matsuura, H. Shimura, and T. Suzuki. 2015. Glucosinolate profiles in Cardamine fauriei and effect of light quality on glucosinolate concentration. Sci. Hortic. 189: 12-16. Bones, A. M. and J. T, Rossiter. 1996. The myrosinase-glucosinolate system, its organization and biochemistry. Physl. Plant. 97: 194-208. Ciska, E., B. Martyniak-Przybyszewska, and H. Kozlowska. 2000. Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J. Agric. Food Chem. 48: 2862-2867. Depree, J. A., T. M. Howard, and G. P. Savage. 1999. Flavour and pharmaceutical properties of the volatile sulphur compounds of Wasabi (Wasabia japonica). Food Res. Int. 5: 329-337. Douglas, J. A. and J. M. Follett. 1992. Initial research on the production of water-grown wasabi in the Waikato. Proceed. Agron. Soc. of N. Z. 22: 57-60. Farran, I. and A. M. Mingo-Castel. 2006. Potato minituber production using aeroponics: effect of plant density and harvesting intervals. Am. J. Potato Res. 83: 47-53. Bailey, S., R. G. Walters, S. Jansson, and P. Horton. 2001. Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213: 794-801. Bolhar-Nordenkampf, H. R. and G. Oquist. 1993. Chlorophyll fluorescence as a tool in photosynthesis research. pp.193-206. In: Hall, D. O., J. M. O. Scurlock, H. R. Bolhar-Nordenkampf, R. C. Leegood, and S. P. Long. (ed.) Photosynthesis and production in a changing environment. Springer Netherlands. Han, S. H., Y. Sakuraba, H. J. Koh, and N. C. Paek. 2012. Leaf variegation in the rice zebra2 mutant is caused by photoperiodic accumulation of tetra-cis-lycopene and singlet oxygen. Mol. Cells 33: 87-97. Hara, M., K. Mochizuki, S. Kaneko, T. Iitama, T. Ina, H. Etoh, and T. Kuboi. 2003. Changes in pungent components of two Wasabia japonica Matusum cultivars during the cultivation period. Food Sci. Technol. Res. 9: 288-291. Hayden, A. L. 2006. Aeroponic and hydroponic systems for medicinal herb, rhizome, and root crops. HortScience 41: 536-538. Hoagland, D. R. and D. I. Arnon. 1950. The water-culture method for growing plants without soil. Calif. Agr. Expt. Sta. Circ. 347:1-32. Jana, S. and M. Choudhuri. 1981. Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat. Bot. 12: 345-354. Kestwal, R. M., J. C. Lin, D. B. Kestwal, and B. H. Chiang. 2011. Glucosinolates fortification of cruciferous sprouts by sulphur supplementation during cultivation to enhance anti-cancer activity. Food Chem. 126: 1164-1171. Kim, S. J., T. Matsuo, M. Watanabe, H. Tong, and Y. Watanabe. 2002. Effect of nitrogen and sulphur application on the glucosinolate content in vegetable turnip rape (Brassica rapa L.). Soil Sci. Plant Nutr. 48: 43-49. Kopsell, D. A. and C. E. Sams. 2013. Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. J. Amer. Soc. Hort. Sci. 138: 31-37. Koroleva, O. A., A. Davies, R. Deeken, M. R. Thorpe, A. D. Tomos, and R. Hedrich. 2000. Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol. 124: 599-608. Koroleva, O. A., T. M. Gibson, R. Cramer , and C. Stain. 2010. Glucosinolate-accumulating S-cells in Arabidopsis leaves and flower stalks undergo programmed cell death at early stages of differentiation. Plant J. 64: 456-469. Kozai, T. 2007. Propagation, grafting and transplant production in closed system with artificial lighting for commercialization in Japan. Propag. Ornam. Plants. 7: 145-159. Kozai, T. 2013. Resource use efficiency of closed plant production system with artificial light: concept, estimation and application to plant factory. Proc. Jpn. Acad. Ser B. Phys. Biol. Sci. 89: 447-461. Maxwell, K. and G. N. Johnson. 2000. Chlorophyll fluorescence - a practical guide. J. Exp. Bot. 51: 659-668. Martínez-Ballesta, M. D. C., D. A. Moreno, and M. Carvajal. 2013. The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int. J. Mol. Sci. 14: 11607-11625. Martin, R. J. and B. Deo. 2000. Preliminary assessment of the performance of soil‐grown wasabi (Wasabia japonica (Miq.) Matsum.) in New Zealand conditions. New. Zeal. J. Crop. Hort. 28: 45-51. Márton, M. R., A. Krumbein, S. Platz, M. Schreiner, S. Rohn, A. Rehmers, V. Lavric, V. Mersch-Sundermann, and E. Lamy. 2013. Determination of bioactive, free isothiocyanates from a glucosinolate-containing phytotherapeutic agent: A pilot study with in vitro models and human intervention. Fitoterapia 85: 25-34. Palermo, M., R. Paradiso, S. D. Pascale, and V. Fogliano. 2011. Hydroponic cultivation improves the nutritional quality of soybean and its products. J. Agric. Food Chem. 60: 250-255. Pereira, F. M. V., E. Rosa, J. W. Fahey, K. K. Stephenson, R. Carvalho, and A. Aires. 2002. Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes. J. Agric. Food Chem. 50: 6239-6244. Ritter, E., B. Angulo, P.Riga, C. Herran, J. Relloso, and M. S. Jose. 2001. Comparison of hydroponic and aeroponic cultivation systems for the production of potato minitubers. Potato Res. 44: 127-135. Sharkey, T., T. Vogelmann, J. Ehleringer, and D. Sandquist. 2010. Photosynthesis: physiological and ecological consideration. pp. 243-269. In: Taiz, L. and E. Zeiger. (ed.) Plant Physiology. 5th ed. Sinauer Associates. Sultana, T., D. L. McNeil, N. G. Porter, and G. P. Savage. 2003a. Investigation of isothiocyanate yield from flowering and non-flowering tissues of wasabi grown in a flooded system. J. Food Comp. Anal. 16: 637-646. Sultana, T., N. G. Porter, G. P. Savage, and D. L. McNeil. 2003b. Comparison of isothiocyanate yield from wasabi rhizome tissues grown in soil or water. J. Agric. Food Chem. 51: 3586-3591. Sultana, T., G. P. Savage, D. L. McNeil, and N. G. Porter. 2002. Effects of fertilization on the ally isoyhiocyanate profile of above-ground tissuses of New Zealand-grown wasabi. J. Sci. Food Agric. 82: 1477-1482. Sultana, T., G. P. Savage, D. L. McNeil and N. G. Porter. 2003c. The yield of isothiocyanate in wasabi rhizomes stored at different temperatures. J. Food. Agric. Environ. 1: 39-45. Tsao, R., Q. Yu, I. Friesen, J. Potter, and M. Chiba. 2000. Factors affecting the dissolution and degradation of oriental mustard-derived sinigrin and allyl isothiocyanate in aqueous media. J. Agric. Food Chem. 48: 1898-1902. Vimolmangkang, S., W. Sitthithaworn, D. Vannavanich, S. Keattikunpairoj, and C. Chittasupho. 2010. Productivity and quality of volatile oil extracted from Mentha spicata and M. arvensis var. piperascens grown by a hydroponic system using the deep flow technique. J. Nat. Med. 64: 31-35. Warton, B., J. N. Matthiessen, and M. A. Shackleton. 2001. Glucosinolate content and isothiocyanate evolution-two measures of the biofumigation potential of plants. J. Agric. Food Chem. 49: 5244-5250. Winde, I. and U. Wittstock. 2011. Insect herbivore counter adaptations to the plant glucosinolate - myrosinase system. Phytochem. 72: 1566-1575. Wintermans, J. F. and A. De Mots. 1965. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim. Biophys. Acta. 109: 448-453. Yang, J., Z. Zhu, and J. Gerendás. 2009. Interactive effects of phosphorus supply and light intensity on glucosinolates in pakchoi (Brassica campestris L. ssp. chinensis var. communis). Plant Soil. 323: 323-333. Zhang, Y. 2010. Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol. Nutr. Food Res. 54: 1-16.
摘要: 
山葵(Wasabia japonica Matsum)為十字花科之多年生草本耐陰植物,對環境需求較特殊,因此大面積田間生產受限,無法供應市場需求導致價格偏高,高經濟價值的山葵極具潛力利用設施進行大量商業生產。本研究主要建立山葵於設施內栽培最適生長條件,使用台農一號山葵組培苗於不同光量下馴化,測定葉綠素與過氧化氫含量,並進行葉綠素螢光分析作為光合作用活性,尋找最適馴化光量,也進行光反應曲線獲得最適栽培之二氧化碳濃度與光量,並將山葵各部位分別收穫,分析葉片、葉柄、根莖、根部與側芽之產量,並分析山葵各部位黑芥子素與異硫氰酸烯丙酯之含量,評估設施內山葵生產的經濟效益。根據葉綠素、過氧化氫含量與葉綠素螢光分析支持幼苗馴化以光量400 μmol m-2 s-1以下較佳;另外根據光反應曲線,葉綠素螢光特性及生育地光環境,山葵可適合生長於二氧化碳濃度800 ppm,及光量228 ~ 400 μmol m-2 s-1的控制環境中。山葵在此生長環境下以氣霧耕栽培14個月,平均每個月單株可生產174 g鮮重葉片、420 g鮮重葉柄、105 g鮮重根、74 g鮮重根莖以及9 g鮮重側芽,其中葉片為每公克鮮重含0.37 g黑芥子素,葉柄為每公克鮮重含0.25 g黑芥子素,根部為每公克鮮重含0.23 g黑芥子素,根莖為每公克鮮重含1.71 g黑芥子素,側芽為每公克鮮重含0.95 g黑芥子素,14個月所測得的異硫氰酸烯丙酯以根莖每公斤鮮重含2174 mg最高,雖然山葵根莖為主要利用部位,但葉片與葉柄占全株約75% 鮮重,可考慮利用葉片葉柄,提升利用效率。

Wasabi (Wasabia japonica Matsum) is a perennial shade-tolerant plant of the Cruciferae, and difficult to grow because of its unique environmental requirements, which limit wasabi production in the world. The limited area suitable for wasabi production has resulted in inability to meet increasing market demand and prices rise steadily. High prices have stimulated research into other production systems and currently controlled environment provides the potential opportunities for high-value wasabi production on a commercial scale. In this study, plants were grown in fully controlled plant factory with aeroponic culture. The responses of photosynthesis, chlorophyll fluorescence, chlorophyll and H2O2 in leaf were investigated in a changing light and CO2 enviroment during vegetative stages. The plants of different growth stages were harvested monthly and divided into leaf, petiole, root, rhizome, and axillary bud. The yields of different plant parts, contents of sinigrin and allyl isothiocyanate in each part were measured. The results of chlorophyll fluorescence, chlorophyll and H2O2 concentration indicated that light intensity below 400 μmol m-2 s-1 was more suitable for the acclimatization of young wasabi plants. Light-carbon dioxide response curves, characteristic of chlorophyll fluorescence, and light intensity data of natural-grown habitat supported that wasabi plants grow normally under 250 to 400 μmol m-2 s-1 and 800 ppm CO2 condition. Wasabi plants grown under this controlled facility produced 174 g FW leaf, 420 g FW petiole, 105 g FW root, 74 g FW rhizome, and 9 g FW axillary bud in average per month during 14-month-old plant. The tissue concentration of sinigrin was found in leaf (0.37 mg g-1 FW), petiole (0.25 mg g-1 FW), root (0.23 mg g-1 FW), rhizome (1.71 mg g-1 FW), and axillary bud (0.95 mg g-1 FW). The highest tissue concentration of allyl isothiocyanate was found in the rhziomes, in average 2174 mg kg-1 (fresh weight basis). Although the rhizome is the most valuable part of plant, other parts such as the leaves and petioles, which have some of pungent taste, are also used.
URI: http://hdl.handle.net/11455/89548
其他識別: U0005-3007201515445700
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102031019-1.pdf3.7 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.