Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89549
標題: 丹參AtHSP101轉殖系之鑑定與特性分析
The identification and characterization of ectopically expressed AtHSP101-Salvia miltiorrhiza
作者: Dun-Hui Hsu
許惇惠
關鍵字: Salvia miltiorrhiza;Heat stress;Heat shock protein;Agrobacterium tumefaciens transgenic;丹參;熱逆境;熱休克蛋白質;農桿菌轉殖
引用: 中島萬三、福島忠勝。1934。漢藥丹參成分研究。藥學雜誌54:844。 杜冠華。2003。丹參研究進展。第二屆中日韓血瘀症及活血化瘀研究學術大會。pp.22-30。中國醫學科學院,北京,中國。 李欣、薛治浦、朱文學。2011。丹参不同部位總酚酸和總黄酮含量分析及其抗氧化活性研究。食品科學32:108-111。河南科技大學,河南,中國。 李東、吳先軍、陳新。2011。熱脅迫下丹參轉錄組cDNA-AFLP分析。藥材與資源42:2083-2091。四川農業大學,四川,中國。 宋經元、羅紅梅、李春芳、孫超、徐江、陳士林。2013。丹參藥用模式植物研究探討。藥學學報48:1099-1106。中國醫學科學院,北京,中國。 林俊清。2000。新編生藥學 (第I集)(第五版)。富山出版社。pp.189。 杭亮、王俊儒、楊東風、舒志明、梁宗鎖。2008。紫花丹參與白花丹參不同部位有效成分的分布特徵。西北農林科技大學學報36:217-222。陝西,中國。 邱淑媛。2011。丹參在食品上之加工與利用。2011台灣丹參產業發展研討會專刊。pp. 99-112。花蓮區農業改良場,花蓮,台灣。 洪孟渝。2011。大量表現阿拉伯芥及水稻HSP101基因進行丹參耐熱植株篩選。碩士論文。朝陽科技大學應用化學系研究所,台中,台灣。 梁宗鎖、楊東風、楊宗岐、韓芯蓮、劉曉蕾。2013。不同土壤水分對丹參葉片總酚酸類成分及相關酶活性的影響。浙江理工大學學報30:573-578。浙江,中國。 張同吳。2009。東部地區中草藥產業發展之現況與展望。2009國際中草藥產業發展研討會專刊。pp. 89-110。花蓮區農業改良場,花蓮,台灣。 張同吳。2011a。花蓮地區丹參產業發展與機能性產品研發。農政與農情229:88-90。花蓮區農業改良場,花蓮,台灣。 張同吳。2011b。臺灣丹參優良農業操作體系之建立。台灣丹參產業發展研討會。pp. 51-63。花蓮區花蓮改良場,花蓮,台灣。 陳威臣、李秋儀、詹効松、曹進義 、夏奇鈮。2010。金屬離子與誘引劑處理對丹參毛狀根生長與丹參酮累積之影響。台灣農業研究59:49-60。農業試驗所,台中,台灣。 陳葦玲、郭孚燿、陳榮五。2009。利用細胞膜熱穩定性技術篩選高耐熱性葉用蘿蔔。臺中區農業改良場研究彙報102:15-29。台中區農業改良場,台中,台灣。 陳葦玲。2012。作物耐熱性篩選指標之建立。台中區農業改良場一○一年專題討論專集。pp:217-220。台中,台灣。 黃良得。2010。國產丹參的發展現況及潛力。臺大農業推廣通訊83:1-4。國立台灣大學,台北,台灣。 曾志正、佘金和、陳怡菁、侯雅琴。2007。丹參之簡介與栽培管理。 。苗栗區農業專訊38:11-13。苗栗區農業改良場,苗栗,台灣。 曾英傑、林玨羽、張同吳、宣大平、黃 鵬。2011。丹參萃取物之藥理與生理活性之研究。台灣丹參產業發展研討會。pp.87-98。花蓮區農業改良場,花蓮,台灣。 解玉麗。2010。丹參新品系的評價與花藥培養技術的研究。碩士論文。山東農業大學。山東,中國。 蔡奇助、曾東海、王強生。2002。基因工程與作物品種改良。亞熱帶農作物產業之研究發展研討會專刊。pp. 166-182。高雄區農業改良場,高雄,台灣。 劉大會、郭蘭萍、黃璐琦、金航、吳麗華、曾燕、張霽、楊雁。2011。土壤水分含量對丹參幼苗生長及有效成分的影響。中國中藥雜誌36:321-325。雲南,中國。 Allakhverdiev, S. I., V. D. Kreslavski, V. V. Klimov, D. A. Los, R. Carpentier, and P. Mohanty. 2008. Heat stress: an overview of molecular responses in photosynthesis. Photosynth. Res. 98:541-950. Baniwal, S. K., K. Bharti, K. Y. Chan, M. Fauthx, A. Ganguli, S. Kotak, S. K. Mishra, L. Nover, M. Port, K. D. Scharf, J. Tripp, C. Weber, D. Zielinski, and P. Koskull-Doring. 2004. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J. Biosci. 29:471-487. Berry, S. Z. and M. Rafique-Uddin.1988. Effect of high temperature on fruit set in tomato cultivars and selected germplasm. HortScience 23:606-608. Benites, F. R. G. and C. A. B. P. Pinto. 2011. Genetic gains for heat tolerance in potato in three cycles of recurrent selection. Crop Breed. Appl. Biotechnol. 11:133-140. Blum, A. 1988. Plant breeding for stress environments. CRC Press Inc. Boca. Raton. Florida. pp. 223. Campbell, J. L., N. Y. Klueva, H. G. Zheng, J. Nieto-Sotelo, T. D. Ho, and H. T. Nguyen. 2001. Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum (L.) Moench) inducible by heat, dehydration, and ABA. Biochim. Biophys. Acta. 1517:270-277. Camejo, D., P. Rodriguez, M. A. Morales, J. M. Dell'Amico, A. Torrecillas, and J. J. Alarcon. 2005. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162:281-289. Cao, F., H. Cheng, S. Cheng, L. Li, F. Xu, W. Yu, and H. Yuan. 2012. Expression of selected Ginkgo biloba heat shock protein genes after cold treatment could beinduced by other abiotic stress. Int. J. Mol. Sci. 13:5768-5788. Carmo-Silva, A. E. and M. E. Salvucci. 2012. The temperature response of CO2 assimilation, photochemical activities and Rubisco activation in Camelina sativa, a potential bioenergy crop with limited capacity for acclimation to heat stress. Planta 236:1433-1445. Chan, L. K., S. S. Koay, P. L. Boey, and A. Bhatt. 2010. Effects of abiotic stress on biomass and anthocyanin production in cell cultures of Melastoma malabathricum. Biol. Res. 43:127-135. Chauhan, H., N. Khurana, A. Nijhavan, J. P. Khurana, and P. Khurana. 2012. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ. 35:1912-1931. Chen, W. Z. 1984. Pharmacology of Salvia miltiorrhiza. Acta. Pharm. Sinica. 19:876-880. Chen, W.,F. Tang, B. Xie, S. Chen, H. Huang, P. Liu. 2012. Amelioration of atherosclerosis by tanshinone IIA in hyperlipidemic rabbits through attenuation of oxidative stress. Eur. J. Pharmacol. 674:359-364. Chen, J. Y., L. H. He, Y. M. Jiang, Y. Wang, D. C. Joyce, Z. L. Ji, and W. J. Lu. 2008. Role of phenylalanine ammonia-lyase in heat pretreatment-induced chilling tolerance in banana fruit. Physiol. Plant 132: 318-328. Cheng, Z., L. Su, J. Moore, K. Zhou, M. Luther, J. J. Yin, and L. L. Yu. 2006. Effects of postharvest treatment and heat stress on availability of wheat antioxidants. J. Agric. Food Chem. 54:5623-5629. Cheng, T. O. 2007. Cardiovascular effects of danshen. Int. J. Cardiol. 121:9-22. Cheng, H. T., X. L. Li, X. R. Li, Y. H. Li, L. J. Wang, and M. Xue. 2012. Simultaneous quantification of selected compounds from Salvia herbs by HPLC method and their application. Food Chem. 130: 1031-1035. Chiu, S. C., S. Y. Huang, S. P. Chen, C. C. Su, T. L. Chiu, and C. Y. Pang. 2013. Tanshinone IIA inhibits human prostate cancer cells growth by induction of endoplasmic reticulum stress in vitro and in vivo. Prostate Cancer Prostatic. Dis. 16:315-322. Cho, E. K. and Y. J. Choi. 2009. A nuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance on plants. Biotechnol. Lett. 31:597-606. Close, D. C.and C. McArthor. 2002. Rethinking the role of many plant phenolics-protection against photodamage not herbivores?. Oikos. 99:166-172. Cooney, C. M. 2012. Managing the risks extreme weather: IPCC special report.(CLIMATE CHANGE) (Intergovern mental Panel on Climate Change ) Environ. Health Perspect. 120: A58. De Ronde, J.A.D., W. A. Cress, G. H. J. Kruger, R. J. Strasser, and J. V. Staden. 2004. Photosynthetic response of transgenic soybean plants containing an Arabidopsis P5CR gene, during heat and drought stress. J. Plant Physiol. 61:1211-1244. Diaz-Vivancos, P., M. Faize, G. Barba-Espin, L. Faize, C. Petri, J. A. Hernandez, and L. Burgos. 2013. Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnol. J. 11: 976-985. Dixon, R. A. and N.L. Paiva. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085-1097. Ebrahim, M. K., O. Zingsheim, M. N. El-Shourbagy, P. H. Moore,and E. Komor. 1998. Growth and sugar storage in sugarcane grown at temperature below and above optimum. J. Plant Physiol. 153:593-602. Foolad, M. R. 2005. Breeding for abiotic stress tolerances in tomato. In: Ashraf, M., Harris, P.J.C. (Eds.), Abiotic stresses: plant resistance through breeding and molecular approaches. The Haworth Press Inc. pp. 613-684. Frova, C. and M. Sari-Gorla. 1994. Quantitative trait loci (QTLs) for pollen thermotolerance detected in maize. Mol. Gen. Genomics 245:424-430. Gallie, D. R., D. Fortner, J. Peng, and D. Puthoff. 2002. ATP-dependent hexameric assembly of the heat shock protein Hsp101 involves multiple interaction domains and a functional C-proximal nucleotide-binding domain. J. Biol. Chem. 277:39617-39626. Gao, L. N., Y. L. Cui, Q. S. Wang, and S. X. Wang. 2013. Amelioration of Danhong injection on the lipopolysaccharide-stimulated systemic acute inflammatory reaction via multi-target strategy. J. Ethnopharmacol 149:772-782. Gu, M., F. Ouyang and Z. Su. 2004. Comparison of high-speed counter-current chromatography and high-performance liquid chromatography on fingerprinting of Chinese traditional medicine. J. Chromatogr. A. 1002:139-144. Guilioni, L., J. Wery, and J. Lecoeur, 2003. High temperature and water deficit may reduce seed number in field pea purely by decreasing plant growth rate. Funct. Plant Biol. 30:1151-1164. Hedhly, A., J. I. Hormaza, and M. Herrero. 2005. The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach. Plant Biol. 7:476-483. Hong, S. W. and E. Vierling. 2000. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc. Nat. Acad. Sci. USA. 97:4392-4397. Hong, B., C. Ma, Y. Yang, T. Wang, K. Yamaguchi-Shinozaki, and J. Gao. 2009. Overexpression of AtDREB1A in chrysanthemum enhances tolerance to heat stress. Plant Mol. Biol. 70: 231-240. Hozain, M., H. Abdelmageed, J. Lee, M. Kang, M. Fokar, R. D. Allen, and A. S. Holaday. 2012. Expression of AtSAP5 in cotton up-regulates putative stress-responsive genes and improves the tolerance to rapidly developing water deficit and moderate heat stress. J Plant Physiol. 69:1261-1270. Hu, X., R. Liu, Y. Li, W. Wang, F. Tai, R. Xue, and C. Li. 2010. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul. 60:225-235. Hu, C., S. Y. Lin, W. T. Chi, and Y. Y. Charng. 2012. Recent gene duplication and subfunctionalization produced a mitochondrial GrpE, the nucleotide exchange factor of Hsp70 complex, specialized in thermotolerance to chronic heat stress in Arabidopsis. Plant Physiol. 158:747-758. Hur, K. Y., H. J. Seo, E. S. Kang, S. H. Kim, S. Song, E. H. Kim, S. Lim, C. Choi , J. H. Heo, K. C. Hwang, C. W. Ahn, B. S. Cha, M, Jung and, H. C. Lee. 2008. Therapeutic effect of magnesium lithospermate B on neointimal formation after ballooninduced vascular injury. Eur. J. Pharmacol. 586: 226-233. Jeong, J. B. and S. H. Lee. 2013. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells. Biochem. Biophys. Res. Commun. 430:381-386. Jin, H. J., X. L. Xie, J. M. Ye, amd C. G. Li. 2013. TanshinoneIIA and cryptotanshinone protect against hypoxia-induced mitochondrial apoptosis in H9c2 cells. PLoS One. 8:e51720. Jin, X., P. Liu, F. Yang, Y. H. Zhang, and D. Miao. 2013. Rosmarinic acid ameliorates depressive-kike behaviors in a rat model of CUS and up-Regulates BDNF levels in the hippocampus and hippocampal-derived astrocytes. Neurochem. Res. 38:1828-1837. Katiyar-Agarwal, S., M. Agarwal, and A. Grover. 2003. Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol. Biol. 51:677-686. Kim, D. H., S. Kim, S. J. Jeon, K. H. Son, S. Lee, B.H. Yoon, J. H. Cheong, K. H. Ko, and J. H. Ryu. 2009. Tanshinone I enhances learning and memory, and ameliorates memory impairment in mice via the extracellular signal-regulated kinase signalling pathway. Brit. J. Pharmacol. 158: 1131-1142. Kim, G. N., J. S. Lee, J. H. Song, C. H. Oh, Y. I. Kwon, and H. D. Jang. 2010. Heat processing decreases Amadori products and increases total phenolic content and antioxidant activity of Korean red ginseng. J. Med. Food 13:1478-1784. Kim, D. H., Z. Y. Xu, and I. Hwang. 2013. AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling. Plant Cell Rep. 32:1953-1963. Kong, F., Y. Deng, G. Wang, J. Wang, X. Liang, and Q. Meng. 2013. LeCDJ1, a chloroplast DnaJ protein, facilitates heat tolerance in transgenic tomatoes. J. Integr. Plant Biol. (http://www.ncbi.nlm.nih.gov/pubmed/24148796) Larkindale, J., J. D. Hall, M. R. Knight, and E. Vierling. 2005. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138:882-897. Lee, Y. R., R. T. Nagao, and J. L. Key. 1994. A soybean 101-kD heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermotolerance. Plant Cell. 6:1889-1897. Lee, J. H., A. Hubel, and F. Schoffl. 1995. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J. 8:603-612. Lee, Y. W., D. H. Kim, S. J. Jeon, S. J. Park, J. M. Kim, J. M. Jung, H. E. Lee, S. G. Bae, H. K. Oh, K. H. Son, and J. H. Ryu. 2013. Neuroprotective effects of salvianolic acid B on an Aβ25-35 peptide-induced mouse model of Alzheimer's disease. Eur. J. Pharmacol. 704:70-77. Li, B., H. T. Liu, D. Y. Sun, and R. G. Zhou. 2004a. Ca2+ and calmodulin modulate DNA-binding activity of maize heat shock transcription factor in vitro. Plant Cell Physiol. 45:627-634. Li, M., C. Zhao, R. N. S. Wong, S. Goto, Z. Wang, and F. Liao. 2004b. Inhibition of shear-induced platelet aggregation in rat by tetramethylpyrazine and salvianolic acid B. Clin. Hemorheol. Microcirc. 31:97-103. Li, C., W. Jiang, H. Zhu, and J. Hou. 2012. Antifibrotic effects of protocatechuic aldehyde on experimental liver fibrosis. Pharm. Biol. 50:413-419. Li, Y., Y. Gong, L. Li, H. M. Abdolmaleky, and J. R. Zhou. 2013. Bioactive tanshinone I inhibits the growth of lung cancer in part via downregulation of Aurora A function. Mol. Carcinog. 52:535-543. Lin, Y. L., C. H. Wu, M. H. Luo, Y. J. Huang, C. N. Wang, M. S. Shiao, and Y. T. Huang. 2006. In vitro protective effects of salvianolic acid B on primary hepatocytes and hepatic stellate cells. J. Ethnopharmacol. 105:215-222. Liu, H. T., B. Li, Z. L. Shang, X. Z. Li, R. L. Mu, D. Y. Sun, and R. G. Zhou. 2003. Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol. 132:1186-1195. Liu, H. T., G. L. Li, H. Chang, D. Y. Sun, R. G. Zhou, and B. Li. 2007. Calmodulin‐binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ. 30:156-164. Lin T. Y., C. W. Lu, S. K. Huang, S. J. Wang. 2013. Tanshinone IIA, a constituent of Danshen, inhibits the release of glutamate in rat cerebrocortical nerve terminals. J. Ethnopharmacol.147:488-496. Lu, L., C. Li, D. Li, Y. Wang, C. Zhou, W. Shao, J. Peng. Y. You, X. Zhang, and X. Shen. 2013. Cryptotanshinone inhibits human glioma cell proliferation by suppressing STAT3 signaling. Mol. Cell Biochem. 381:273-282. Ma, P., J. Liu, C. Zhang, and Z. Liang. 2013. Regulation of water-soluble phenolic acid biosynthesis in Salvia miltiorrhiza Bunge. Appl. Biochem. Biotechnol. 170:1253-1262. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant 15:473-497. Mohammadi, V., M. R. Bihamta, and A. A. Zali. 2007. Evaluation of screening techniques for heat tolerance in wheat. Pak. J. Biol. Sci. 10:887-892. Montero-Barrientos, M., R. Hermosa, R. E. Cardoza, S. Gutierrez, C. Nicolas, and E. Monte. 2010. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J. Plant Physiol. 167:659-665. Moyer, R. A., K. E. Hummer, C. E. Finn, B. Frei, and R. E. Wrolstad. 2002. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agric. Food Chem. 50:519-525. Nieto-Sotelo, J., L. M. Martinez, G. Ponce, G. I. Cassab, A. Alagon, R. B. Meeley, J. M. Ribaut, and R. Yang. 2002. Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell 14:1621-1633. Oh, M. M., E. E. Carey, and C. B. Rajashekar. 2009. Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol. Biochem. 47:578-583. Ortiz, R., H. J. Braun, J. Crossa, J. H. Crouch, G. Davenport, and J. Dixon. 2008. Wheat genetic resources enhancement by the International Maize and Wheat Improvement Center (CIMMYT). Genet. Resour. Crop Evol. 55:1095-1140. Paliwal, R., M. S. Roder, U. Kumar, J. Sri-vastava, and A. K. Joshi. 2012. QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor. Appl. Genet. 125:561-575. Porter, J. R. 2005. Rising temperatures are likely to reduce crop yields. Nature 436:174. Queitsch, C., S. W. Hong, E. Vierling, and S. Lindquist. 2000. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479-492. Ramakrishna, A. and G. A. Ravishanker. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 6:1720-1731. Rickey, T. M. and W. R. Belknap. 1991. Comparison of the expression of several stress-responsive genes in potato tubers. Plant Mol. Biol. 16:1009-1018. Rivero, R. M., J. M. Ruiz, P. C. Garcia, L. R. Lopez-Lefebre, E. Sanchez, and L. Romero. 2001. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160:315-321. Sachray, L., D. Weiss, M. Reuveni, A. Nissim-Levi, and M. O. Shamir. 2002. Increased anthocyanin accumulation in aster flowers at elevated temperatures due to magnesium treatment. Physiol. Plant. 114:559-565. Saini, H. S., M. Sedgley, and D. Aspinall. 1983. Effect of heat-stress during floral development on pollen-tube growth and ovary anatomy in wheat (Triticum aestivum L.). Aust. J. Plant. Physiol. 10:137-144. Sato, S., M. M. Peet, and J. F. Thomas. 2002. Determining critical pre- and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. J. Exp. Bot. 53:1187-1195. Savchenko, G. E., E. A. Klyuchareva, L. M. Abrabchik, and E. V. Serdyuchenko. 2002. Effect of periodic heat shock on the membrane system of etioplasts. Russ. J. Plant Physiol. 49:349-359. Scott, J. W., R. B.Volin, H. H. Bryan, and S. M. Olson. 1986. Use of hybrids to develop heat tolerant tomato cultivars. Proc. Fla. State Hortic. 99: 311-315. Schirmer, E. C., S. Lindquist, and E. Vierling. 1994. An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell 6:1899-1909. Shah, N. and G. Paulsen. 2003. Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil 257:219-226. Smertenko, A., P. Draber, V. Viklicky, and Z. Opatrny. 1997. Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells. Plant Cell Environ. 20:1534-1542. Sotnikova R. L. Okruhlicova, J. Vlkovicova, J. Navarova, B. Gajdacova, L. Pivackova, S. Fialova, and P. Krenek. 2013. Rosmarinic acid administration attenuates diabetes-induced vascular dysfunction of the rat aorta. J Pharm. Pharmacol. 65:713-723. Song, L., W. S. Chow, L. Sun, C. Li, and C. Peng. 2010. Acclimation of photosystem II to high temperature in two Wedelia species from different geographical origins: implications for biological invasions upon global warming. J. Exp. Bot. 61:4087-4096. Teixeira, A., J. Eiras-Dias, S. D. Castellarin, and H. Geros. 2013. Berry phenolics of grapevine under challenging environments. Int. J. Mol. Sci. 14:18711-18739. Tung, Y. T., H. L. Chen, C. Y. Lee, Y. C. Chou, P. Y. Lee, H. C. Tsai, Y. L. Lin, and C. M. Chen. 2013. Active component of Danshen (Salvia miltiorrhiza Bunge), tanshinone I, attenuates lung tumorigenesis via inhibitions of VEGF, cyclin A, and cyclin B expressions. Evid. Based Complement Alternat. Med. 2013:319247. Vierling, E. 1991. The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mo1. Biol. 42:579-620. Vollenweider, P. and M. S. Gunthardt-Goerg. 2005. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ. Pollut. 137: 455-465. Walker, J. E., M. Saraste, M. J. Runswick, and N. J. Gay. 1982. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945-951. Wahid, A. and A. Ghazanfar. 2006. Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J. Plant. Physiol. 163:723-730. Wahid, A. 2007. Physiological implications of metabolites biosynthesis in net assimilation and heat stress tolerance of sugarcane sprouts. J. Plant Res. 120:219-228. Wahid, A., S. Gelani, M. Ashraf, and M. R. Foolad. Environ. 2007. Heat tolerance in plants: An overview. Exp. Bot. 61:199-223. Wang, S., W. Zang, Y. Yang, Q. Zhang, M. Zhao, Z. Gao, G. Li, Q. Meng, Q. Liu, and X. Zheng. 2013. Tanshinone IIA and Baicalin inhibiting the formation of benzo[a]pyrene and benzo[a]pyrene induced cytotoxicity: Correlation with scavenging free radical. Environ. Toxicol. Pharmacol. 36:403-410. Wang, X., K. F. Bastow, C. M. Sun, Y. L. Lin, H. J. Yu, M. J. Don, T. S. Wu, S. Nakamura, and K. H. Lee. 2004. Antitumor agents. 239. Isolation, structure elucidation, total synthesis, and anti-breast cancer activity of neotanshinlactone from Salvia miltiorrhiza. J. Med. Chem. 47:5816-5819. Weaich, K. and K. L. Briston. Cass, A. 1996. Modeling preemergent maize shoot growth: II. High temperature stress conditions. Agric. J. 88:398-403. Wu, Q., J. Lin, J. Z. Liu, X. Wang, W. Lim, M. Oh, J. Park, C. B. Rajashekar, S. A. Whitham, N. H. Cheng, K. D. Hirschi, and S. Park. 2012. Ectopic expression of Arabidopsis glutaredoxin AtGRXS17 enhances thermotolerance in tomato. Plant Biotechnol. J. 10: 945-955. Xu, L. L., Y. P. Deng, L. X. Feng, D. F. Li, X. Y. Chen, C. Ma, X. Liu, J. Yin, M. Yang, ; F. K.Teng, W. Y. Wu, S. H. Guan, B. H. Jiang, and D. Guo. 2011. Cardio-protection of salvianolic acid B through inhibition of apoptosis network. PLoS One. 6: e24036. Xu, J., C. Xue, D. Xue, J. Zhao, J. Gai, N. Guo, and H. Xing. 2013. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana. PLoS One. 8: e69810. Xu, M., F. L. Cao, N. Y. Li, Y. Q. Liu, Y. P. Li, and C. L. Lv. 2013. Tanshinone IIA reverses the malignant phenotype of SGC7901 gastric cancer cells. Asian Pac. J. Cancer Prev. 14:173-177. Yamakawa, H. and M. Hakata. 2010. Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant Cell Physiol. 51:795-809. Yeh, C. H., N. J. Kaplinsky, C. Hu, and Y. Y. Charng. 2012. Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci. 195:10-23. Zhang, W., M. Seki, and S. Furusaki. 1997. Effect of temperature and its shift on growth and anthocyanin production in suspension cultures of strawberry cells. Plant Sci. 127:207-214. Zhang, J. H., W. D. Huang, Y. P. Liu, and Q. H Pan. 2005. Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. J. Integr. Plant Biol. 47:959-970. Zhang, W., R. G. Zhou, Y. J. Gao, S. Z. Zheng, P. Xu, S. Q. Zhang, and D.Y. Sun. 2009. Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol.149:1773-1784. Zhou, D., Li Z, L. Zhang, and C. Zhan. 2012. Inhibitory effect of tanshinone IIA on TGF II-β1-induced cardiac fibrosis. J. Huazhong Univ. Sci. Technolog. Med. Sci. 32: 829-833. Zhao, G. R., H. M. Zhang, T. X. Ye, Z. J. Xiang, Y. J. Yuan, Z. X. Guo, and L. B. Zhao. 2008. Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food Chem. Toxicol. 46:73-81. Zhao, S. J., J. J. Zhang, L. Yang, Z. T. Wang, and Z. B. Hu. 2011. Determination and biosynthesis of multiple salvianolic acids in hairy roots of Salvia miltiorrhiza. Acta. Pharmaceutica. Sinica 46:1352-1356. Zinn, K. E., M. Tunc-Ozdemir, and J. F. Harper. 2010. Temperature stress and plants exualreproduction: uncovering the weakest links. J. Exp. Bot. o61:1959-1968. Zou, J., A. Liu, X. Chen, X. Zhou, G. Gao, W. Wang, and X. Zhang. 2009. Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J. Plant Physiol. 166:851-861.
摘要: 
丹參(Salvia miltiorrhiza Bunge)為唇形科(Lamiaxeae)之多年生草本藥用植物,其葉片含有豐富的酚酸類成分、而其根部含有酚酸類及二萜醌類具有抗發炎以及預防心血管疾病等功效。丹參適合生長於溫暖及光照充足的環境,生長適溫為18℃至28℃。由於全球均溫逐年提升,為了使丹參能在未來極端氣候下生長順利,且不影響其根部大小及成分,本研究室的洪孟渝學姊已於2011順利將阿拉伯芥熱休克蛋白質AtHSP101轉殖入丹參,且經由抗生素篩選出不同的AtHSP101轉殖丹參品系(AH轉殖系)。在本研究中,將繼續對AH進行轉殖株鑑定,並進行耐熱試驗及成份分析。首先,經由35S promoter及hpt II進行PCR鑑定,結果顯示AH16、AH19、AH37、AH38及AH52為轉殖系。由qRT-PCR分析AtHSP101 cDNA表現量,可以發現在25℃常溫下,AH轉殖系之AtHSP101皆大量表現,約為WT之200至450倍,其中以AH37及AH52表現量最高。根據前人研究,AtHSP101表現量高低與植物的耐熱性有正相關,本研究進行基礎性耐熱試驗,結果顯示AH瓶苗在45℃處理15 h下,比WT多1.4至6倍的存活率,明顯看出AtHSP101表現量和其存活率有相關性,AtHSP101確實提升丹參之耐熱性。雖然AH52具有高表現量,但存活率並沒有較AH37顯著提升,關於此點,未來可研究AtHSP101之蛋白質表現,進一步了解表現量與存活率的關聯性。另外,丹參的活性成分為植物二次代謝物,二次代謝物在受逆境刺激下,生合成量也有所改變。當丹參WT及AH轉殖系瓶苗以45℃處理8 h後,以HPLC分析地上部酚酸含量,結果發現WT及AH37在熱處理後,酚酸微量上升,雖無統計差異,但可做為未來熱逆境與丹參活性成分的研究參考。觀察AH及WT於溫室生長3個月之馴化株,其地上部茂盛、根系複雜、主根肥大,在外觀上無顯著差異。在活性成分方面,分析葉片之迷迭香酸、丹參酚酸B,根部之迷迭香酸、丹參酚酸B、隱丹參酮、丹參酮I及丹參酮IIA,除少數轉殖系因栽培管理影響導致顯著差異外,WT及AH在活性成分含量上無顯著差異。本研究成功獲得5個AH耐熱丹參轉殖系,且常溫生長下,外觀及活性成分不受影響,有助未來極端氣候下栽培台灣的丹參。

Salvia miltiorriza (Danshen), a well-known medicinal herb, belongs to Lamiaxeae. Leaves of S. miltiorriza contain abundant of phenolic acid compounds and the roots contain phenolic acid and diterpenoid quinones compounds. These activity compounds are anti-inflammatory, and can be used for the treatment of cardiovascular and other disease. S. miltiorriza grow well in moderate temperature(18-28℃) and shiny environment. But as we know, the greenhouse effect is getting severe day by day. In order to make S. miltiorriza grow better under the potential extreme climate in Taiwan, Hung (2011) has ectopically expressed Arabidopsis heat shock protein (AtHSP101) in S. miltiorriza, and a pool of AtHSP101 transgenic lines (AH lines) were generated by antibiotic screening. To understand better about these AH lines, we have performed molecular identification by PCR (35S promoter and hptII gene) and verified that AH16, AH19, AH37, AH38, AH52 are transgenic lines. We have also analyzed AtHSP101 cDNA expression in these transgenic lines by qRT-PCR, and they are all detected with high expression of AtHSP101, especially AH37 and AH52. Based on the previous study, the plant thermotolerance is closely correlated with AtHSP101 expression, so we performed thermotolerance test. After the test(45℃15 h), we realized that the AH lines are all more thermotolerant than WT. Compared to the WT, the survival rates are mostly higher in AH lines(7-30%), but not in AH52 (which need further study on its AtHSP101 protein expression). From previous studies, we know that most of active compounds in Danshen are secondary metabolites, which might be altered by stress. To understand if the ectopically-expressed AtHSP101 affects the content of these metabolites, the HPLC analysis was performed. The results show that the rosmarinic acid and salvianolic acid B contents in WT and AH37 are raised only slightly after moderate heat shock(45℃ 8 h), which are not significantly different from WT. For better understanding, we measured five active compounds (rosmarinic acid, salvianolic acid B, crytotanshinone, tanshinone I, and tanshinone IIA) in AH lines. Results showed that, almost all compounds in the AH lines were not affected by AtHSP101 insertion. As conclusion, totally 5 AH lines were obtained in this study, and all of them showed better thermotolerance and with unaffected contents of active compounds. These results could be helpful in improving the cultivation of S. miltiorriza in the future.
URI: http://hdl.handle.net/11455/89549
其他識別: U0005-2201201422052100
Rights: 同意授權瀏覽/列印電子全文服務,2017-01-28起公開。
Appears in Collections:農藝學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7100031105-1.pdf4.36 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.