Please use this identifier to cite or link to this item:
標題: 過表現刺角瓜Cm1基因對菸草非生物逆境 耐性之影響
Effects of overexpressing a Cucumis metuliferus Cm1 gene on abiotic stress tolerance in tobacco
作者: Yi-Huang Lin
關鍵字: proteinase inhibitor;Cucumis metuliferus;Nicotiana benthamiana;drought stress;salt stress;蛋白酶抑制子;刺角瓜;圓葉菸草;乾旱逆境;鹽害逆境
引用: 朱德民。1990。植物與環境逆境。國立編譯館。pp13-187。 林育宗。2012。刺角瓜抗木瓜輪點病基因之選殖與功能分析。國立中興大學農藝 學系博士論文。台中。 葉昕祐、韋煙灶。2008。雲林縣口湖地區土壤鹽化現象的研究。地理研究。(48), pp1-24。 詹富智、王曉俐。2004。植物基因轉殖與分子檢測技術。教育部顧問室植物生物技術教學資源中心出版。台中。308pp。 Agarwal, P.K., P. Agarwal, M.K. Reddy, and S.K. Sopory. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25: 1263-1274. Almansouri, M., J. M. Kinet, and S. Lutts. 2001. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231: 243-254. Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant soil 39 : 205-207. Bewley, J. D. 1997. Seed germination and dormancy. Plant Cell 9: 1055. Bevan, M. 1984. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 12: 8711-8721. Botella, M. A., Y. Xu, T. N. Prabha, Y. Zhao, M. L. Narasimhan, K. A. Wilson, S. S. Nielsen, R. A. Bressan, and P. M. Hasegawa. 1996. Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate. Plant Physiol. 112: 1201-1210. Bray, E. A., J. Bailey-Serres, and E. Weretilnyk. 2000. Responses to abiotic stresses. Biochemistry and molecular biology of plants. 1158-1203. Campalans, A., R. Messeguer, A. Goday, and M. Pages. 1999. Plant responses to drought, from ABA signal transduction events to the action of the induced proteins. Plant Physiol. Biochem. 37: 327-340. Caverzan, A., G. Passaia, S. B. Rosa, C. W. Ribeiro, F. Lazzarotto, and M. Margis-Pinheiro. 2012. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 35: 1011-1019. Chen, Z. Y., R. L. Brown, J. S. Russin, A. R. Lax, and T. E. Cleveland. 1999. A corn trypsin inhibitor with antifungal activity inhibits Aspergillus flavus α-amylase. Phytopathology 89: 902-907. Downing, W. L., F. Mauxion, M. O. Fauvarque, M. P. Reviron, D. Vienne, N. Vartanian, and J. Giraudat. 1992. A Brassica napus transcript encoding a protein related to the Kunitz protease inhibitor family accumulates upon water stress in leaves, not in seeds. Plant J. 2: 685-693. Dunse, K. M., J. A. Stevens, F. T. Lay, Y. M. Gaspar, R. L. Heath, and M. A. Anderson. 2010. Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proc. Natl. Acad. Sci. USA 107: 15011-15015. Elmayan, T., and H. Vaucheret. 1996. Expression of single copies of a strongly expressed 35S transgene can be silenced post‐transcriptionally. Plant J. 9: 787-797. Flowers, T. J., and A. R. Yeo. 1995. Breeding for salinity esistance in crop plants: where next? Aust. J. Plant Physiol. 22 : 875-884. Frederick, J. R., C. R. Camp, and P. J. Bauer. 2001. Drought-stress effects on branch and mainstem seed yield and yield components of determinate soybean. Crop Sci. 41 : 759-763. Fulton, T. M., J. Chunwongse, and S. D. Tanksley. 1995. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207-209. Gaddour, K., J. Vicente-Carbajosa, P. Lara, I. Isabel-Lamoneda, I. Diaz, and P. Carbonero. 2001. A constitutive cystatin-encoding gene from barley (Icy) responds differentially to abiotic stimuli. Plant Mol.Biol. 45: 599-608. Goodin, M. M., D. Zaitlin, R. A. Naidu, and S. A. Lommel, 2008. Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol. Plant-Microbe Interact. 21: 1015-1026. Gutierrez-Campos, R., J. A. Torres-Acosta, L. J. Saucedo-Arias, and M. A. Gomez-Lim. 1999. The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nat. Biotechnol. 17:1223-1226. Handa, S., A. K. Handa, P. M. Hasegawa, and R. A. Bressan. 1986. Proline accumulation and the adaptation of cultured plant cells to water stress. Plant Physiol. 80: 938-945. Heath, R. L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189-198. Hobbs, S. L., P. Kpodar, and C. M. DeLong. 1990. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol. Biol. 15: 851-864. Hoque, A., E. Okuma, N. A. Banu, Y. Nakamura, Y. Shimoishi, and Y. Murata. 2007. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J. Plant Physiol. 164: 553-561. Huang, C., G. Hu, F. Li, Y. Li, J. Wu, and X. Zhou. 2013. NbPHAN, a MYB transcriptional factor, regulates leaf development and affects drought tolerance in Nicotiana benthamiana. Physiol. Plant. 149: 297-309. Huang, Y., B. Xiao, and L. Xiong. 2007. Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice. Planta 226: 73-85. Lorberth, R., C. Dammann, M. Ebneth, S. Amati, and J. J. Sanchez‐Serrano. 1992. Promoter elements involved in environmental and developmental control of potato proteinase inhibitor II expression. Plant J. 2: 477-486. Koiwa, H., R. A. Bressan, and P. M. Hasegawa. 1997. Regulation of protease inhibitors and plant defense. Trends in Plant Sci. 2: 379-384. Mahajan, S., and N. Tuteja. 2005. Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444: 139-158. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance.Trends in Plant Sci. 7: 405-410. Mosolov, V. V., and T. A. Valueva. 2005. Proteinase inhibitors and their function in plants: a review. Appl. Biochem. Microbiol. 41: 227-246. Mukhopadhyay, A., S. Vij, and A. K. Tyagi. 2004. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc. Natl. Acad. Sci. U S A 101: 6309-6314. Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15: 473-497. Murray, E. E., J. Lotzer, and M. Eberle. 1989. Codon usage in plant genes. Nucleic Acids Res. 17: 477-498. Napoli, C., C. Lemieux, and R. Jorgensen. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279-289. Oh, S. J., S. I. Song, Y. S. Kim, H. J. Jang, S. Y. Kim, M. Kim, Y. K. Kim, B. H. Nahm, and J. K. Kim. 2005. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 138: 341-351. Oldach, K. H., D. Becker, and H. Lorz. 2001. Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Mol. Plant-Microbe Interact. 14: 832-838. Parry, M. A., P. J. Andralojc, S. Khan, P. J. LEA, and A. J. Keys. 2002. Rubisco activity: effects of drought stress. Ann. Bot. 89: 833-839. Pitzschke, A., and H. Hirt. 2010. New insights into an old story: Agrobacterium‐induced tumour formation in plants by plant transformation. EMBO J. 29: 1021-1032. Ryan, C. A. 1973. Proteolytic enzymes and their inhibitors in plants. Annu. Rev. Plant Physiol. 24: 173-196. Santos, C. V. 2004. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. 103: 93-99. Shinozaki, K., and K. Yamaguchi-Shinozaki. 1997. Gene expression and signal transduction in water-stress response. Plant Physiol. 115 : 327-334. Sin, S. F., E. C. Yeung, and M. L. Chye. 2006. Downregulation of Solanum americanum genes encoding proteinase inhibitor II causes defective seed development. Plant J. 45: 58-70. Sin, S. F., and M. L. Chye. 2004. Expression of proteinase inhibitor II proteins during floral development in Solanum americanum. Planta 219: 1010-1022. Solomon, M., B. Belenghi, M. Delledonne, E. Menachem, and A. Levine. 1999. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. The Plant Cell Online 11: 431-444. Srinivasan, T., K. R. R. Kumar, and P. B. Kirti. 2009. Constitutive expression of a trypsin protease inhibitor confers multiple stress tolerance in transgenic tobacco. Plant Cell Physiol. 50:541-553. Sugawara, H., K. Shibuya, T. Yoshioka, T. Hashiba, and S. Satoh. 2002. Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers? J. Exp. Bot. 53: 407-413. Tezara, W., V. J. Mitchell, S. D. Driscoll, and D. W. Lawlor. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401: 914-917. Tiwari, R. S., G. A. Picchioni, R. L. Steiner, D. C. Jones, S. E. Hughs, and J. Zhang. 2013. Genetic variation in salt tolerance at the seedling stage in an interspecific backcross inbred line population of cultivated tetraploid cotton. Euphytica 194 : 1-11. Valueva, T. A., and V. V. Mosolov. 2004. Role of inhibitors of proteolytic enzymes in plant defense against phytopathogenic microorganisms. Biochem.-Moscow 69 :1305-1309. Vendruscolo, E. C. G., I. Schuster, M. Pileggi, C. A. Scapim, H. B. C. Molinari, C. J. Marur, and L. G. E. Vieira. 2007. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J. Plant Physiol. 164 : 1367-1376. Wang, W., B. Vinocur, and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218 : 1-14. Watanabe, S., K. Kojima, Y. Ide, and S. Sasaki. 2000. Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tissue Organ Cult. 63: 199-206. Wintermans, J. F., and A. de Mots. 1965. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochim. Biophys. Acta. 109: 448-453. Xu, Z. F., W. L. Teng, and M. L. Chye. 2004. Inhibition of endogenous trypsin-and chymotrypsin-like activities in transgenic lettuce expressing heterogeneous proteinase inhibitor SaPIN2a. Planta 218 : 623-629. Yang, Q., Z. Z. Chen, X. F. Zhou, H. B. Yin, X. Li, X. F. Xin, X. H. Hong, J. K. Zhu, and Z. Gong. 2009. Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol. Plant 2: 22-31. Yokoi, S., R. A. Bressan, and P. M. Hasegawa. 2002. Salt stress tolerance of plants. JIRCAS Working Report 23: 25-33. Yordanov, I., V. Velikova, and T. Tsonev. 2000. Plant responses to drought, acclimation, and stress tolerance, Photosynthetica 38 : 171-186. Zeng, L., and M. C. Shannon. 2000. Salinity effects on seedling growth and yield components of rice. Crop Sci. 40: 996-1003. Zhang, X., S. Liu, and T. Takano. 2008. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol. Boil. 68 : 131-143. Zhu, J. K. 2001. Plant salt tolerance. Trends in Plant Sci. 6 : 66-71.
非生物逆境如乾旱及鹽害等皆會影響植物生長及生理反應,嚴重時會導致植株生長受阻、葉片萎凋與黃化等現象,植物有許多對抗非生物逆境的機制包括脯胺酸累積與逆境相關蛋白的表現等,先前的研究發現蛋白抑制子(proteinase inhibitor)參與植物耐逆境途徑,能減少逆境相關蛋白的降解以提升耐性。本試驗從刺角瓜(Cucumis metuliferus)中選殖出編碼Serine蛋白酶抑制子Cm1基因,利用農桿菌轉殖技術轉至圓葉菸草(Nicotiana benthamiana)中,研究在鹽害及乾旱逆境下Cm1對圓葉菸草的影響。以聚合酶連鎖反應檢測Cm1的轉殖株,進一步用南方墨點法分析T2及T3世代,篩選出轉殖株同質體,分別得到帶有兩重複Cm1基因的轉殖品系Y1-13及帶有單一重複的轉殖品系Y17-12。進一步用北方墨點法確認轉殖株中Cm1基因表現情形,並藉由西方墨點法檢測轉殖株中Cm1蛋白的表現。在鹽害及乾旱逆境下,觀察轉殖株的種子發芽率及生理反應,結果顯示Cm1過表現能提升種子於鹽害及乾旱逆境下的發芽率,但Cm1對於植株處理鹽害及甲基茉莉酸後並無提升葉圓片對逆境的耐性。另一方面發現轉殖株葉圓片處理乾旱逆境後葉綠素會明顯下降,而Cm1轉殖品系Y1-13相較於其他品系有較高的葉綠素,顯示Cm1對於植株在乾旱逆境下能抑制葉圓片葉綠素的降解。

Abiotic stresses such as drought and salt stresses affect plant growth and physiological responses , including growth inhibition, leaves wilting, and yellowing. There are many mechanisms of plants to abiotic stresses such as the accumulation of proline and other related proteins. Previous studies have shown that the proteinase inhibitor may take part in the response to abiotic stresses by reducing degradation of stress -related proteins to improve stress-tolerence. In this study, a gene, Cm1, coding Serine protease inhibitor was isolated from Cucumis metuliferus. To investigate the effect of overexpression Cm1 gene on abiotic stresses in Nicotiana benthamiana by Agrobacterium-mediated transformation. Cm1 was detected from transgenic plants by using polymerase chain reaction. Two independent Cm1 homogeneous lines were obtained including Y17-12 ( one copy of Cm1 gene) and Y1-13 (two copies of Cm1 gene). The expression of Cm1 gene was verified by Northern blot analysis. The expression of Cm1 protein in transgenic line was detected by western blot analysis. Further more, Cm1 increased seed germination under salt and drought-stresses , but did not affect the tolerance of adult transgenic plants under salt and MJ treatments. On the other hand, the chlorophyll content of leaf discs decreased significantly under drought stress, while a Cm1 transgenic line, Y1-13, has higher chlorophyll comparing to the test lines. This indicated that Cm1 might retard chlorophyll degredation in plants under drought stress.
其他識別: U0005-1007201420530100
Rights: 同意授權瀏覽/列印電子全文服務,2017-07-15起公開。
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7100031102-1.pdf2.33 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.