Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89553
標題: 利用一維及二維模式模擬基改大油菜對小油菜之花粉飄散-以台中霧峰地區為例
Using 1D and 2D models to simulate the pollen-mediate gene flow (PMGF) between GM Brassica napus and Brassica rapa: a case study in Wufeng Districty, Taichung City
作者: Yuan-Chih Su
蘇圓智
關鍵字: oilseed rape;pollen flow;genetically modified;isolation distance;油菜;花粉流動;基因改造;隔離距離
引用: 姜金龍、邱發祥。2005。油菜。台灣農家要覽增修訂三版:農作篇一。 初版。台北:行政院農委會。 郭寶錚、沈翰祖。2008。基因改造與非基因改造作物共存。出自〝農 業生技產業應用研討會專輯〞,黃惠琳,謝明憲主編,pp. 35-40。臺南:行政院農業委員會臺南區農業改良場。 Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19: 716-723. Aslam-Yousut, and M. Bechyne. 1984. Morphology and cytology of hybrids between Brassica napus and B. campestris. Pakistan J. Agric. Res. 5: 11-17. Beckie, H. J. and L. M. Hall. 2008. Simple to complex: Modelling crop pollen-mediated gene flow. Plant Sci. 175:615−628. Beckie, H. J., S. I. Warwick, H. Nair and G. Séguin-Swartz. 2003. Gene flow in commercial fields of herbicide-resistant canola (Brassica napus). Ecol. Appl. 13: 1276−1294. Beekman, M. and F. L. W. Ratnieks. 2001. Long-range foraging by the honey-bee, Apis mellifera L. Funct. Ecol. 14: 490–496. Bing, D. J., R. K. Downey and G. F. W. Rakow. 1996. Hybridizations among Brassica napus, B. rapa and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis under open-pollination conditions in the field. Plant Breeding 115:470–473. Bock, A., K. Lheureux, M. Libeau-Dulos, N. Nilsagaard and E. Rodriguez-Cerezo. 2002. Scenarios for co-existence of GM, conventional and organic crops in European agriculture. in: Joint Research Centre and Institute for prospective studies report. European Commission. Breckling, B., H. Laue and H. Pehlke. 2011. Remote sensing as a data source to analyse regional implications of genetically modified plants in agriculture—oilseed rape (Brassica napus) in Northern Germany. Ecol. Indic. 11: 942–950. Breckling, B., H. Reuter, U. Middelhoff, M. Glemnitz, A. Wurbs, G. Schmidt, W. Schröder and W. Windhorst. 2011. Risk indication of genetically modified organisms (GMO): modelling environmental exposure and dispersal across different scales oilseed rape in northern Germany as an integrated case study. Ecol. Indic. 11: 936−941. Chèvre, A. M., F. Eber, A. Baranger and M. Rebard. 1997. Gene flow from transgenic crops. Nature 389: 924. Cresswell, J. E., T. W. Davies, M. A. Patrick, F. Russell, C. Pennel, M. Vicot and M. Lahoubi. 2004. Aerodynamics of wind pollination in a zoophilous flower, Brassica napus. Funct. Ecol. 18: 861−866. Devine, M. D. and J. L. Buth. 2001. Advantages of genetically modified canola: a Canadian perspective. in: 'Brighton Crop Protection Conference-Weeds', p. 367– 372. Farnham, Surrey, UK: British Crop Protection Council. Devos, Y., M. Demont, K. Dillen, D. Reheul, M. Kaiser and O. Sanvido. 2009. Coexistence of genetically modified (GM) and non-GM crops in the European Union. A review. Agron. Sustain. Dev. 29: 11−30. Efron, B. and R. Tibshirani. 1986. Bootstrap methods for standard errors confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1: 54-77. Eisikowitch, D. 1981. Some aspects of pollination of oil-seed rape (Brassica napus L.). J. Agric. Sci. 96: 321–326. Funk, T., G. Wenzel and G. Schwarz. 2006. Outcrossing frequencies and distribution of transgenic oilseed rape (Brassica napus L.) in the nearest neighbourhood. Eur. J. Agron. 24: 26–34. Glemnitz, M., A. Wurbs and R. Roth. 2011. Derivation of regional crop sequences as an indicator for potential GMO dispersal on large spatial scales. Ecol. Indic. 11: 964–973. Gruber, S., C. Pekrun and W. Claupein. 2005. Life cycle and potential gene flow of volunteer oilseed rape in different tillage systems. Weed Res. 45: 83–93. Gruère, G. P. 2009. International trade-related regulations of GM food: What policies for developing countries? [Online]. International Food Policy Research Institute. Web link to gopher archives (http://www.cbd.int/doc/external/mop-04/ifpri-pbs-policy-06-en.pdf) Hall, L., K. Topinka, J. Huffman, L. Davis and A. Good. 2000. Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Sci. 48: 688–694. Hansen, L. B., H. R. Siegismund and R. B. J?rgenson. 2001. Introgression between oilseed rape (Brassica napus L.) and its weedy relative B. rapa L. in a natural population. Genet. Resour. Crop Evol. 48:621–627. Hüsken, A. and A. Dietz-Pfeilstetter. 2007. Pollen-mediated intraspecific gene flow from herbicide resistant oilseed rape (Brassica napus L.). Transgenic Res. 16: 557–569. Ingram, J. 2000. Report on the separation distances required to ensure cross-pollination is below specified limits in non-seed crops of sugar beet maize and oilseed rape. London: MAFF Report RG0123. James, C. 2013. Global status of commercialized biotech/GM crop: 2013. ISAAA Brief No. 46. ISAAA, Itheca, NY. J?rgensen, R. B. and B. Andersen. 1994. Spontaneous hybridization between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae): a risk of growing genetically modified oilseed rape. Am. J. Bot. 1:1620–1626. Klein, E. K., C. Lavigne, H. Picault, M. Renard and P. -H. Gouyon. 2006. Pollen dispersal of oilseed rape: estimation of the dispersal function and effects of field dimensions. J. Appl. Ecol. 43: 141–151. Landbo, L., B. Andersen and R. B. J?rgensen. 1996. Natural hybridization between oilseed rape and a wild relative: hybrids among seeds from weedy B. campestris. Hereditas 125:89–91.   Leach, J. E., R. J. Darby, I. H. Williams, B. D. Fitt and C. J. Rawlinson. 1994. Factors affecting growth and yield of winter oilseed rape (Brassica napus) 1985–1989. J. Agric. Sci. 122: 405–413. Lu, C., F. Shen and K. Hu. 2001 Heterosis in interspecific hybrids between Brassica napus and B. rapa. SABRAO J. Genet. Breed. 33: 73-85. Lutman, P. J. W., S. E. Freeman and C. Pekrun. 2003. The long-term persistence of seeds of oilseed rape (Brassica napus) in arable fields. J. Agric. Sci. 141: 231–240. Lutman, P. J. W., R. Risiott and H. P. Ostermann. 1996. Investigations into alternative methods to predict the competitive effects of weeds on crop yields. Weed Sci. 44: 290–297. McCartney, H. A. and M. E. Lacey. 1991. Wind dispersal of pollen from crops of oilseed rape (Brassica napus L.). J. Aersol. Sci. 22: 467–477. Mesquida, J. and M. Renard. 1982. Étude de la dispersion du pollen par le vent et de l'importance de la pollinisation anémophile (Brassica napus L. var. oleifera Metzger). Apidologie 13: 353–366. Messeguer, J., G. Penas, J. Ballester, M. Bas, J. Serra, J. Salvia, M. Palaudelmas and E. Mele. 2006. Pollen-mediated gene flow in maize in real situations of coexistence. Plant Biotechnol. J. 4:633–645. Messéan, A., C. Sausse, J. Gasquez and H. Darmency. 2007. Occurrence of genetically modified oilseed rape seeds in the harvest of subsequent conventional oilseed rape over time. Eur. J. Agron. 27 (1): 115–122. Metz, P. L. J., E. Jacobsen and W. J. Stiekema. 1997. Aspects of the biosafety of transgenic oilseed rape (Brassica napus L.). Bot. Acta 46: 51–67. Middelhoff, U., H. Reuter and B. Breckling. 2011. GeneTraMP, a spatio-temporal model of the dispersal and persistence of transgenes in feral, volunteer and crop plants of oilseed rape and related species. Ecol. Indic. 11: 974–988. Pekrun, C., P. W. Lane and P. W. J. Lutman. 2005. Modelling seedbank dynamics of volunteer oilseed rape (Brassica napus). Agric. Syst. 84: 1–20. Phillips, P. W. B. and H. McNeill. 2000. A survey of national labeling policies for GM foods. Agbioforum. 3:219–224. Ramessar, K., T. Capell, R. M. Twyman, H. Quemada and P. Christou. 2008. Trace and traceability—a call for regulatory harmony. Nat. Biotechnol. 26: 975−978. Ramsay, G., C. E. Thomson, S. Neilson and G. R. Mackay. 1999. Honeybees as vectors of GM oilseed rape pollen. in 'Gene flow and agriculture: relevance for transgenic crops', eds. P. Lutman, p.209–214. Alton, UK: British Crop Protection Council. Ramsay, G., C. Thompson and G. Squire. 2003. Quantifying landscape-scale gene flow in oilseed rape. Defra Project RG0216 Final Report. London, UK: Department for Environment, Food and Rural Affairs. Reboud, X. 2003. Effect of a gap on gene flow between otherwise adjacent transgenic Brassica napus crops. Theor. Appl. Genet. 106: 1048−1058. Reuter, H., G. Menzel, G. Pehlke and B. Breckling. 2008. Hazard mitigation or mitigation hazard? Would genetically modified dwarfed oilseed rape (Brassica napus L.) increase feral survival? Environ. Sci. Pollut. Res. Int. 15: 529–535. Reuter, H., G. Schmidt, W. Schröder, U. Middelhoff, H. Pehlke and B. Breckling. 2011. Regional distribution of genetically modified organisms (GMO)—Up-scaling the dispersal and persistence potential of herbicide resistant oilseed rape (Brassisca napus). Ecol. Indic. 11: 989–999. Rieger, M. A., M. Lamond, C. Preston, S. B. Powles and R. T. Roush1. 2002. Pollen-mediated movement of herbicide resistance between commercial canola fields. Science 296: 2386−2388.   Scheffler, J. A., R. Parkinson and P. J. Dale. 1993. Frequency and distance of pollen dispersal from transgenic oilseed rape (Brassica napus). Transgen. Res. 2: 356–364. Scheffler, J. A., R. Parkinson and P. J. Dale. 1995. Evaluating the effectiveness of isolation distances for field plots of oilseed rape (Brassica napus) using a herbicide-resistance transgene as a selectable marker. Plant Breeding 114: 317–321. Schmidt, G. and W. Schröder. 2011. Regionalisation of climate variability used for modelling the dispersal of genetically modified oil seed rape in Northern Germany. Ecol. Indic. 11: 951–963. Smyth, S., G. G. Khachatourians and W. B. Phillips. 2002. Liabilities and economics of transgenic crops. Nat. Biotechnol. 20: 537–541. Snow, A. A. 2002. Transgenic crops – why gene flow matters. Nat. Biotechnol. 20: 542. Thomson, J. D. and B. A. Thomson. 1989. Dispersal of Erythronium grandiflorum pollen by bumblebees: implications for gene flow and reproductive success. Evolution 43: 657–661. 528-539. Timmons, A. M., Y. M. Charters and J. W. Crawford. 1996. Risks from transgenic crops. Nature 380: 487. Warwick, S. I., H. Beckie and E. Small. 1999. Transgenic crops: new weed problems for Canada? Phytoprotection 80:71–84. Am. J. Bot. 1:1620–1626. Warwick, S. I., M. J. Simard, A. Légère, H. J. Beckie, L. Braun, B. Zhu, P. Mason, G. Séguin-Swartz and C. N. Stewart. 2003. Hybridization between transgenic Brassica napus L.and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz. Theor. Appl. Genet. 107: 528–539   Weekes, R., C. Deppe, T. Allnutt1, C. Boffey, D. Morgan1, S. Morgan1, M. Bilton1, R. Daniels and C. Henry. 2005. Crop-to-crop gene flow using farm scale sites of oilseed rape (Brassica napus) in the UK. Transgenic Res. 14: 749−759. Whitehead, D.R. 1983. Wind pollination: some ecological and evolutionary perspectives. in: 'Pollination Biology', eds. L. Real, p. 97–108. Orlando, FL, USA: Academic Press. Wilkinson, M. J., L. J. Elliott and J. Allainguillaume. 2003. Hybridization between Brassica napus and B. rapa on a national scale in the United Kingdom. Science 302: 457− 459.
摘要: 
由於基因改造作物(genetically modified crop, GM crop)在全球種植面積持續的增加,衍生了許多相關議題,其中尤以GM作物的共存是當前各國所關切的重要議題之一。全球四大GM作物之一的油菜可以藉由花粉式基因流動(pollen mediated gene flow, PMGF)將其帶有的轉基因導入non-GM栽培種油菜或是近源種之作物,而台灣主要種植的為國外GM油菜之近源種小油菜,因此若引進國外之GM油菜時,台灣在地之小油菜可能會受其汙染。在GM油菜共存的研究中主要以隔離距離作為主要的共存措施,因此希望以不同環境下的田間試驗結果建構GM油菜最適當的隔離距離。
本研究於2013年在台灣霧峰地區進行三期作的田間試驗,試驗以國外引進之大油菜作為花粉貢獻親,以台灣在地之小油菜作為花粉接受親,並藉由兩者雜交後代葉片外形作為判斷雜交與否的依據。研究發現異交率在距離0.35 m處最高為8.52%,而在最遠的距離12.95 m處最高之異交率為0.81%,且異交率隨著距離的增加而遞減。探討風向對異交的影響之結果顯示,卡方獨立性測驗的結果為不顯著(P value>0.05),表示風向對異交並無顯著的影響。一維模式與二維模式中,配適結果及預測能力最佳的模式分別為花粉密度模式及IDF-2Dt模式,但在尾部的異交率仍有低估的問題。在模式推薦之最適隔離距離的結果中,使用花粉密度模式並在強制標示門檻值為0.9%時,所推薦之隔離距離為1.13 m,如使用IDF-2Dt模式同樣在強制標示門檻值為0.9%時,推薦之隔離距離則為1.65 m。本研究的結果將可提供台灣未來制定GM油菜共存政策的依據,並且提供未來大油菜與小油菜共存相關研究的方向。

The acreage of genetically modified (GM) crop increase continuously in the world. Therefore, numerious issues about the GM crop were derived. The issue of coexistence between the GM and non-GM crop was highly concerned in many countries. Oilseed rape, the top four GM crops in the word, may transfer the transgene to the non-GM oilseed rape or relative species by pollen mediate gene flow (PMGF). In Taiwan, the Brassica rapa L. a oilseed rape's relative species, is the main interseason crop for green manure and vegetable. Then, if GM oilseed rape cultivated in Taiwan, it may result in hybridization between oilseed rape and local B. rapa. In the research of coexistence between GM and non-GM oilseed rape, isolation distance was considered as the main coexistence measure. It was expected to develop the most appropriate isolation distance for the GM oilseed rape by the experiment results in different environments.
In this study, the experiments were conducted to collect the cross-pollination (CP) data at Wufeng area during three crop seasons. Pollen donor plant was the oilseed rape variety imported from the foreign country, and the local B. rapa variety was used as pollen recipient. The hybridization behaviour between oilseed rape and B. rapa is distinguished by the leaf shape of the hybrid offspring. At an isolation distance of 0.35 m, the highest CP rate is 8.52%, and the highest CP rate is 0.81% at the longest isolation distance of 12.95 m. The CP rate declined with the isolation distance increasing. The chi-square test for independence showed that there isn't significant relationship between wind direction and distribution of CP (P value>0.05). The fitted models in 1D and 2D with the best predictive ability are the pollen density model and the IDF-2Dt model respectively. Howevere, both models still underestimated the tail of CP rate. When the labeling threshold was set at 0.9%, the recommended isolation distance predicted by the pollen density model and IDF-2Dt model were 1.13 m and 1.65 m, respectively. There results can be the reference of drawing the coexistence specification for the GM oilseed rape and provide the research direction for the future work.
URI: http://hdl.handle.net/11455/89553
其他識別: U0005-3006201510203100
Rights: 同意授權瀏覽/列印電子全文服務,2018-07-06起公開。
Appears in Collections:農藝學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101031303-1.pdf8.92 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.