Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90029
標題: I. Expression, localization and function of anther-specific genes in Lilium longiflorum. II. Functional analysis of Arabidopsis arabinogalactan protein AGP 31 in pollen tube growth.
I. 鐵炮百合花藥專一基因之表現、定位和功能探討. II. 擬南芥阿拉伯半乳聚醣蛋白AGP31之功能性分析
作者: 劉明哲
Ming-Che Liu
關鍵字: 花藥專一性基因;鐵炮百合;小胞子;絨氈層;順式異戊烯轉移?;花粉管;阿拉伯半乳聚醣蛋白;RNA干擾;傳輸組織;受體類激?;Anther-specific gene;Lily (Lilium longiflorum);Microspore;Tapetum;cis-prenyltransferase;Pollen tube;AGP, Arabinogalactan protein;RNAi, RNA interference;Transmitting tissue, RLKs, Receptor-like kinases
引用: Chapter I. 李裕娟、楊純明。 (1995) 臺灣原生的百合。中華民國雜草學會簡訊。 2 (1): 1–4。 Aarts, M.G., Hodge, R., Kalantidis, K., Florack, D., Wilson, Z.A. and Mulligan, B.J. (1997) The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J. 12: 615–623. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63–78. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D. and Shinozaki, K. (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9: 1859–1868. Altschul, S.F., Madden, T.L., Scha?ffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402. Ambo, T., Noike, M., Kurokawa, H. and Koyama, T. (2008) Cloning and functional analysis of novel short-chain cis-prenyltransferases. Biochem. Biophys. Res. Commun. 375: 536–540. Ambo, T., Noike, M., Kurokawa, H. and Koyama, T. (2009) Cloning and functional analysis of cis-prenyltransferase from Thermobifida fusca. J. Biosci. Bioeng. 107: 620–622. Apfel, C.M., Takacs, B., Fountoulakis, M., Stieger, M. and Keck, W. (1999) Use of genomics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression, and characterization of the essential uppS gene. J. Bacteriol. 181: 483–492. Ariizumi1, T. and Toriyama K. (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu. Rev. Plant Biol. 62: 437–460. Asawatreratanakul, K., Zhang, Y.W., Wititsuwannakul, D., Wititsuwannakul, R., Takahashi, S., Rattanapittayaporn, A. and Koyama, T. (2003) Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis. A key factor participating in natural rubber biosynthesis. Eur. J. Biochem. 270: 4671–4680. Aya, K., Ueguchi-Tanaka, M., Kondo, M., Hamada, K., Yano, K., Nishimura, M. and Matsuoka, M. (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21: 1453–1472. Bajda, A., Konopka-Postupolska, D., Krzymowska, M., Hennig, J., Skorupinska-Tudek, K., Surmacz, L., W?jcik, J.,?Matysiak, Z.,?Chojnacki, T.,?Skorzynska-Polit, E., Drazkiewicz, M.,?Patrzylas, P.,?Tomaszewska, M.,?Kania, M.,?Swist, M.,?Danikiewicz, W.,?Piotrowska, W. and?Swiezewska, E. (2009) Role of polyisoprenoids in tobacco resistance against biotic stresses. Physiol. Plant. 135: 351–364. Bate, N. and Twell, D. (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol. Biol. 37: 859–869. Bizzarri, R., Cerbai, B., Signori, F., Solaro, R., Bergamini, E., Tamburini, I. and Chiellini, E. (2003) New perspectives for (S)-dolichol and (S)-nor dolichol synthesis and biological functions. Biogerontology 4: 353–363. Calvo, A.P., Nicol?s, C., Nicol?s, G. and Rodr?guez, D. (2004) Evidence of a cross-talk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds. Physiol. Plant. 120: 623–630. Calvo, A. P., Jim?nez, J. A., Nicol?s, C., Nicol?s, G. and Rodr?guez, D. (2003) Isolation and characterization of genes related with the breaking of beechnuts dormancy and putatively involved in ethylene signal perception and transduction. In: Nicol?s G, Bradford KJ, Come D, Pritchard H (eds) The Biology of Seeds: Recent Research Advances. CAB International, Wallingford. pp. 141–149. Canales, C., Bhatt, A.M., Scott, R. and Dickinson, H. (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr. Biol. 12: 1718–1727. Cecchetti, V., Altamura, M.M., Falasca, G., Costantino, P. and Cardarelli M. (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20: 1760–1774. Chang, F.,?Wang, Y.,?Wang, S. and?Ma, H. (2012) Molecular control of microsporogenesis in Arabidopsis. Curr. Opin. Plant Biol. 14: 66–73.? Chen, R.D., Zimmermann, E., Xu, S.X., Liu, G.S. and Smith, A.G. (2006) Characterization of an anther- and tapetum specific gene and its highly specific promoter isolated from tomato. Plant Cell Rep. 25: 231–240. Chen, W.W., Yu, X.H., Zhang, K.S., Shi, J.X., Oliveira, S.D. and Schreiber, L., Shanklin, J. and?Zhang, D. (2011) Male Sterile2 encodes a plastid localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol. 157: 842–853 Cheng, Y., Dai, X. and Zhao, Y. (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes and Dev. 20: 1790–1799. Chojnacki, T. and Dallner, G. (1988) The biological role of dolichol. Biochem. J. 251: 1–9. Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–43. Cunillera, N., Arro?, M., Fore?s, O., Manzano, D. and Ferrer, A. (2000) Characterization of dehydrodolichyl diphosphate synthase of Arabidopsis thaliana, a key enzyme in dolichol biosynthesis. FEBS Lett. 477: 170–174. de Azevedo Souza, C., Kim, S.S., Koch, S., Kienow, L., Schneider, K. and McKim, S.M., Haughn, G.W., Kombrink, E. and Douglas, C.J. (2009) A novel fatty acyl-CoA synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell 21: 507–525. De Grauwe, L., Vriezen, W.H., Bertrand, S., Phillips, A., Vidal, A.M., Hedden, P. and Van Der Straeten, D. (2007) Reciprocal influence of ethylene and gibberellins on response-gene expression in Arabidopsis thaliana. Planta 226: 485–498. Despr?s, C.,?Chubak, C.,?Rochon, A.,?Clark, R.,?Bethune, T.,?Desveaux, D. and?Fobert, P.R. (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15: 2181–2191. De Storme, N. and?Geelen, D. (2014) The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell Environ. 37: 1–18. Dobritsa, A.A., Lei, Z., Nishikawa, S., Urbanczyk-Wochniak, E., Huhman, D.V. and Preuss D (2010) LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant Physiol. 153: 937–955. Dobritsa, A.A., Shrestha, J., Morant, M., Pinot, F., Matsuno, M. and Swanson, R. (2009) CYP704B1 is a long-chain fatty acid omega-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol. 151: 574–89. Goda, H., Sawa, S., Asami, T., Fujioka, S., Shimada, Y. and Yoshida, S. (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. 134: 1555–1573. Grabinska, K. and Palamarczyk, G. (2002) Dolichol biosynthesis in the yeast Saccharomyces cerevisiae: an insight into the regulatory role of farnesyl diphosphate synthase. FEMS Yeast Res. 2: 259–265. Grienenberger, E., Besseau, S., Geoffroy, P., Debayle, D., Heintz, D., Lapierre, C., Pollet, B., Heitz, T. and Legrand, M. (2009) A BAHD acyltransferase is expressed in the tapetum of Arabidopsis anthers and is involved in the synthesis of hydroxycinnamoyl spermidines. Plant J. 58: 246–259. Herrmann, M.M., Pinto, S., Kluth, J., Wienand, U. and Lorbiecke, R. (2006) The PTI1-like kinase ZmPti1a from maize (Zea mays L.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte. BMC Plant Biol. 6: 22. Higo, K., Ugawa, Y., Iwamoto, M. and Korenaga, T. (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27: 297–300. Holmes-Davis, R., Tanaka, C.K., Vensel, W.H., Hurkman, W.J. and McCormick, S. (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5: 4864–84. Honys, D. and Twell, D. (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 5: R85.1–R85.13. Hsieh, K. and Huang, A.H. (2007) Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell 19: 582–596. Hsu, Y.F., Tzeng, J.D., Liu, M.C., Yei, F.L., Chung, M.C. and Wang, C.S. (2008) Identification of anther-specific/predominant genes regulated by gibberellin during development of lily anthers. J. Plant Physiol. 165: 553–563. Hsu, Y.F., Wang C.S. and Raja R. (2007) Gene expression pattern at desiccation in the anther of Lilium longiflorum. Planta 226: 311–322. Huang, M.D., Wei, F.J., Wu, C.C., Hsing, Y.I. and Huang, A.H. (2009) Analyses of advanced rice anther transcriptomes reveal global tapetum secretory functions and potential proteins for lipid exine formation. Plant Physiol. 149: 694–707. Ishiguro, S., Nishimori, Y., Yamada, M., Saito, H., Suzuki, T., Nakagawa, T., Miyake, H.,?Okada, K. and?Nakamura, K. (2010) The Arabidopsis FLAKY POLLEN1 gene encodes a 3-hydroxy-3-methylglutaryl-coenzyme A synthase required for development of tapetum-specific organelles and fertility of pollen grains. Plant Cell Physiol. 51: 896–911. Ishitani, M., Liu, J., Halfter, U., Kim, C.S., Shi, W. and Zhu, J.K. (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12: 1667–1677. Ito, T. and Shinozaki, K. (2002) The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant Cell Physiol. 43: 1285–1292. Ito, T., Wellmer, F., Yu, H., Das, P., Ito, N., Alves-Ferreira, M., Riechmann, J.L. and Meyerowitz, E.M. (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430: 356–360. Ito, T.,?Ng, K.H.,?Lim, T.S.,?Yu, H. and?Meyerowitz, E.M. (2007) The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. Plant Cell 19: 3516–29. Kaneko, M., Itoh, H., Inukai, Y., Sakamoto, T., Ueguchi-Tanaka, M., Ashikari, M. and Matsuoka, M. (2003) Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J. 35: 104–115. Kao, F.I., Cheng, Y.Y., Chow, T.Y., Chen, H.W., Liu, S.M., Cheng, C.H. and Chung, M.C. (2006) An integrated map of Oryza sativa L. chromosome 5. Theor. Appl. Genet. 112: 891–902. Kapoor, S., Kobayashi, A. and Takatsuji, H. (2002) Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia. Plant Cell 14: 2353–2367. Kato, J., Fujisaki, S., Nakajima, K., Nishimura, Y., Sato, M. and Nakano, A. (1999) The Escherichia coli homologue of yeast RER2, a key enzyme of dolichol synthesis, is essential for carrier lipid formation in bacterial cell wall synthesis. J. Bacteriol. 181: 2733–2738. Kaur, D., Brennan, P.J. and Crick, D.C. (2004) Decaprenyl diphosphate synthesis in Mycobacterium tuberculosis. J. Bacteriol. 186: 7564–7570. Kharel, Y. and Koyama, T. (2003) Molecular analysis of cis-prenyl chain elongating enzymes. Nat. Prod. Rep. 20: 111–118. Kharel, Y., Takahashi, S., Yamashita, S. and Koyama, T. (2006) Manipulation of prenyl chain length determination mechanism of cis-prenyltransferases. FEBS J. 273: 647–657. Kim, S.S., Grienenberger, E., Lallemand, B., Colpitts, C.C., Kim, S.Y. and de Azevedo Souza, C. (2010) LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyla-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana. Plant Cell 22: 4045–4066 Kim, S.Y., Chung, H.J. and Thomas, T.L. (1997) Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J. 11: 1237–1251. Kobayashi, T., Kobayashi, E., Sato, S., Hotta, Y., Miyajima, N., Tanaka, A. and Tabata, S. (1994) Characterization of cDNAs induced in meiotic prophase in lily microsporocytes. DNA Res. 1: 15–26. Koornneef, M. and van der Veen, J.H. (1980) Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L) Heynh. Theor. Appl. Genet. 58: 257–263. Kurokawa, T., Ogura, K. and Seto, S. (1971) Formation of polyprenyl phosphates by a cell-free enzyme of Micrococcus lysodeikticus. Biochem. Biophys. Res. Commun. 45: 251–257. Kyte, J. and Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132. Lee, S., Jung, K.H., An, G., and Chung, Y.Y. (2004). Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system. Plant Mol. Biol. 54: 755–765. Li, N., Zhang, D.S., Liu, H.S., Yin, C.S., Li, X.X., Liang, W.Q., Yuan, Z.,?Xu, B.,?Chu, H.W.,?Wang, J.,?Wen, T.Q.,?Huang, H.,?Luo, D.,?Ma, H. and?Zhang, D.B. (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18: 2999–3014. Lin, Z.F., Zhong, S. and Grierson, D. (2009) Recent advances in ethylene research. J. Exp. Bot. 60: 3311–3336. Liu, L. and?Fan, X.D. (2013) Tapetum: regulation and role in sporopollenin biosynthesis in Arabidopsis. 83: 165–75.? Liu, M.C., Yang, C.S., Yeh, F. L., Wei, C.H., Jane, W.N., Chung, M.C., and Wang, C.S. (2014) A novel lily anther-specific gene encodes adhesin-like proteins associated with exine formation during anther development. J. Exp. Bot. 65: 2023–2037. Liu, M.C., Wang, B.J., Huang, J.K. and Wang, C.S. (2011) Expression, localization and function of a cis-prenyltransferase in the tapetum and microspores of lily anthers. Plant Cell Physiol. 52: 1487–1500. Liu, Y.G. and Whittier, R.F. (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25: 674–681. Llop-Tous, I., Barry, C.S., Grierson, D. (2000) Regulation of ethylene biosynthesis in response to pollination in tomato flowers. Plant Physiol. 123: 971–978. Lohr, M.,?Schwender, J., and?Polle, J.E. (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci. 185–186: 9–22. Ma, H. (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu. Rev. Plant Biol. 56: 393–434. Maliga, P., Klessig, D.F., Cashmore, A.R., Gruissem, W. and Varner, J.E. (1995) In methods in plant molecular biology: A laboratory course manual. pp. 357–359. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Mandaokar, A. and Browse, J. (2009) MYB108 Acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol. 149: 851–862. Mandaokar, A., Thines, B., Shin, B., Lange, B.M., Choi, G., Koo, Y.J., Choi, Y.D. and Browse, J. (2006) Transcriptional regulators of stamen development in Arabidopsis by transcriptional profiling. Plant J. l46: 984–1008. McCormick, S. (1993) Male gametophyte development. Plant Cell 5: 1265–1275. McNeil, K.J. and A.G. Smith. (2010) A glycine-rich protein that facilitates exine formation during tomato pollen development. Planta 231: 793–808. Mena, M., Cejudo, F.J., Isabel-Lamoneda, I. and Carbonero, P. (2002) A role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in barley aleurone. Plant Physiol. 130: 111–119. Millar, A.A. and Gubler, F. (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17: 705–721. Morant, M., J?rgensen, K., Schaller, H., Pinot, F., M?ller, B.L., Werck-Reichhart, D. and Bak, S. ( 2007 ) CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen . Plant Cell 19: 1473–1487. Morita, A., Umemura, T., Kuroyanagi, M., Futsuhara, Y., Perata, P. and Yamaguchi, J. (1998) Functional dissection of a sugar-repressed alpha-amylase gene (Ramy1A) promoter in rice embryos. FEBS Lett. 423: 81–85. Nambara, E., Akazawa, T. and McCourt, P. (1991) Effects of the gibberellin biosynthetic inhibitor uniconazole on mutants of Arabidopsis. Plant Physiol. 97: 736–738. Nicol?s, C., Nicol?s, G. and Rodr?guez D. (1996) Antagonistic effects of abscisic acid and gibberellic acid on the breaking of dormancy of Fagus sylvatica seeds. Physiol. Plant 96: 244–250. Nicol?s, C., Rodr?guez, D., Poulsen, F., Eriksen, E.N. and Nicol?s, G. (1997) The expression of an abscisic acid responsive glycine-rich protein coincides with the level of seed dormancy in Fagus sylvatica. Plant Cell Physiol. 38: 1303–1310 Ogawa, M., Hanada, A., Yamauchi, Y., Kuwahara, A., Kamiya, Y. and Yamaguchi, S. (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15: 1591–1604. Oh, S.K., Han, K.H., Ryu, S.B. and Kang, H. (2000) Molecular cloning, expression, and functional analysis of a cis-prenyltransferase from Arabidopsis thaliana. Implications in rubber biosynthesis. J. Biol. Chem. 275: 18482–18488. Piffanelli, P., Ross, J.H.E. and Murphy, D.J. (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex. Plant Reprod. 11: 65–80. Pina, C., Pinto, F., Feijo, J.A. and Becker, J.D. (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol. 138: 744–56. Plackett, A.R.,?Thomas. S.G.,?Wilson. Z.A. and?Hedden, P. (2012) Gibberellin control of stamen development: a fertile field. Trends Plant Sci. 16: 568–578. Podell, S. and Gribskov, M. (2004) Predicting N-terminal myristoylation sites in plant proteins. BMC Genomics 5: 37. Quilichini, T.D.,?Grienenberger, E. and Douglas, C.J. (2014) The biosynthesis, composition and assembly of the outer pollen wall: A tough case to crack. Phytochemistry. pii: S0031-9422(14)00193–00199. Reznickova, S.A. and Willemse, M.T. (1980) Formation of pollen in the anther of Lilium. II. The function of surrounding tissues in the formation of pollen and pollen wall. Acta. Bot. Neerl. 29: 141-156. Rogers, H.J., Bate, N., Combe, J., Sullivan, J., Sweetman, J., Swan, C.,?Lonsdale, D.M. and?Twell, D. (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol. Biol. 45: 577–585. Rubinelli, P., Hu, Y. and Ma, H. (1998) Identification, sequence analysis and expression studies of novel anther-specific genes of Arabidopsis thaliana. Plant Mol. Biol. 37: 607–619. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) In molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Samuelson, J., Banerjee, S., Magnelli, P., Cui, J., Kelleher, D.J., Gilmore, R. and Robbins, P.W. (2005) The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases. Proc. Natl. Acad. Sci. USA 102: 1548–1553. Sato, M., Sato, K., Nishigawa, S.I., Hirata, A., Kato, J.I. and Nakano, A. (1999) The yeast RER2 gene, identified by endoplasmic reticulum protein localization mutations, encodes cis-prenyltransferase, a key enzyme in dolichol synthesis. Mol. Cell. Biol. 19: 471–483. Sawhney, V.K. and Nave, E.B. (1986) Enzymatic changes in postmeiotic anther development in Petunia hybrida. II. histochemical localization of esterase, peroxidase, malate- and alcohol dehydrogenase. J. Plant Physiol. 125: 467–473. Schiefthaler, U., Balasubramanian, S., Sieber, P., Chevalier, D., Wisman, E. and Schneitz, K. (1999) Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 96: 11664–11669. Schilmiller, A.L., Schauvinhold, I., Larson, M., Xu, R., Charbonneau, A.L., Schmidt, A., Wilkerson, C.,?Last, R.L. and Pichersky, E. (2009) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc. Natl. Acad. Sci. USA 106: 10865–10870. Schulbach, M.C., Brennan, P.J. and Crick, D.C. (2000) Identification of a short (C15) chain Z-isoprenyl diphosphate synthase and a homologous long (C50) chain isoprenyl diphosphate synthase in Mycobacterium tuberculosis. J. Biol. Chem. 275: 22876–22881. Scott, R.J., Spielman, M. and Dickinsonb, H.G. (2004) Stamen structure and function. Plant Cell 16: 46-60. Shi, Y., Zhao, S. and Yao, J. (2009) Premature tapetum degeneration: a major cause of abortive pollen development in photoperiod sensitive genic male sterility in rice. J. Integr. Plant Biol. 51: 774–781. Shimizu, N., Koyama, T. and Ogura, K. (1998) Molecular cloning, expression, and purification of undecaprenyl diphosphate synthase. No sequence similarity between E- and Z-prenyl diphosphate synthases. J. Biol. Chem. 273: 19476–19481. Song, S.,?Qi, T.,?Huang, H. and?Xie, D. (2013) Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis. Mol. Plant 6: 1065–1073. Sorensen, A.M., Krober, S., Unte, U.S., Huijser, P., Dekker, K. and Saedler, H. (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J. 33: 413–423. Steffens, B., Wang, J. and Sauter, M. (2006) Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta 223: 604–612. Suen, D.F., Wu, S.S., Chang, H.C., Dhugg, K.S. and Huang, A.H. (2003) Cell-wall reactive proteins in the coat and wall of maize pollen: potential role in pollen tube growth on the stigma and through the style. J. Biol. Chem. 278: 43672–43681. Sutoh, K. and Yamauchi, D. (2003) Two cis-acting elements necessary and sufficient for gibberellin-upregulated proteinase expression in rice seeds. Plant J. 34: 635–645. Surmacz, L. and?Swiezewska, E. (2011) Polyisoprenoids - Secondary metabolites or physiologically important superlipids? Biochem. Biophys. Res. Commun. 407: 627–632. Takahashi, S. and Koyama, T. (2006) Structure and function of cisprenyl chain elongating enzymes. Chem. Rec. 6: 194–205. Tang , X., Gomes, A., Bhatia, A., Woodson, W.R. (1994) Pistil-specific and ethylene-regulated expression of 1-aminocyclopropane-1-carboxylate oxidase genes in Petunia flowers. Plant Cell 6: 1227–1239. Teng, K.H. and?Liang, P.H. (2012) Structures, mechanisms and inhibitors of undecaprenyl diphosphate synthase: a cis-prenyltransferase for bacterial peptidoglycan biosynthesis. Bioorg. Chem. 43: 51–57. Terzaghi, W.B. and Cashmore, A.R. (1995) Light-regulated transcription. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 445–474. Trusov, Y and Botella, J.R. (2006) Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple [Ananas comosus (L.) Merr.]. J. Exp. Bot. 57: 3953–3960. Tsuchiya, T., Toriyama, K., Ejiri, S., and Hinata, K. (1994). Molecular characterization of rice genes specially expressed in the anther tapetum. Plant Mol. Biol. 26: 1737–1746. Tzeng, J.D., Hsu, S.W., Chung, M.C., Yeh, F.L., Yang, C.Y., Liu, M.C., Hsu, Y.F. and?Wang, C.S. (2009) Expression and regulation of two novel anther-specific genes in Lilium longiflorum. J. Plant Physiol. 166: 417–427. Urao, T., Yamaguchi-Shinozaki, K., Urao, S. and Shinozaki, K. (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5: 1529–1539. Van Den Heuvel, K.J., Van Lipzig, R.H., Barendse, G.W. and Wullems, G.J. (2002) Regulation of expression of two novel flower-specific genes from tomato (Solanum lycopersicum) by gibberellin. J. Exp. Bot. 53: 51–59. Vizcay-Barrena, G. and Wilson, Z.A. ( 2006) Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J. Exp. Bot. 57: 2709–2717. Wang, C.S., Walling, L.L., Eckard, K.J. and Lord, E.M. (1992) Immunological characterization of a tapetal protein in developing anthers of Lilium longiflorum. Plant Physiol. 99: 822–829. Wang ,Y. and Kumar, P.P. (2007) Characterization of two ethylene receptors PhERS1 and PhETR2 from petunia: PhETR2 regulates timing of anther dehiscence. J. Exp. Bot. 58: 533–544. Wilson, Z.A., and Zhang D.B. (2009) From Arabidopsis to rice: pathways in pollen development. J. Exp. Bot. 60: 1479–1492. Wititsuwannakul, D., Rattanapittayaporn, A. and Wititsuwannakul, R. (2003) Rubber biosynthesis by a Hevea latex bottom fraction membrane. J. Appl. Polym. Sci. 87: 90–96. Xing, S.,?Salinas, M. and?Huijser, P. (2011) New players unveiled in early?anther?development. Plant Signal. Behav. 6: 934–938. Yamaguchi, T., Lee, D.Y., Miyao, A., Hirochika, H., An, G., Hirano, H.Y. (2006) Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell 18: 15–28. Yanagisawa, S. and Schmidt, R.J. (1999) Diversity and similarity among recognition sequences of Dof transcription factors. Plant J. 17: 209–214. Yang, C., Vizcay-Barrena, G., Conner, K. and Wilson, Z.A. (2007) MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19: 3530–3548. Yang, S.F. and Hoffmann, N.E. (1984) Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35: 155–189. Yang, S.L., Xie, L.F., Mao, H.Z., Puah, C.S., Yang, W.C., Jiang, L., Sundaresan, V. and Ye D. (2003) TAPETUM DETERMINANT1 is required for cell specialization in the Arabidopsis anther. Plant Cell 15: 2792–2804. Yang, W.C., Ye, D., Xu, J. and Sundaresan, V. (1999) The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes and Dev. 13: 2108–2117. Yu, D., Chen, C. and Chen, Z. (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13: 1527–1540. Zhang, D.,?Luo, X. and?Zhu, L. (2011) Cytological analysis and genetic control of rice anther development. J. Genet. Genomics 38: 379-390. Zhang, D.S., Liang W.Q., Yuan, Z., Li, N., Shi, J., Wang, J., Liu, Y.M., Yu, W.J. and Zhang D.B. (2008) Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol. Plant 1: 599–610. Zhang, H., Ohyama, K., Boudet, J., Chen, Z., Yang, J., Zhang, M., Muranaka, T., Maurel, C., Zhu, J.K. and Gong, Z. (2008) Dolichol biosynthesis and its effects on the unfolded protein response and abiotic stress resistance in Arabidopsis. Plant Cell 20: 1879–1898. Zhang, W., Sun, Y.L., Timofejeva, L., Chen, C., Grossniklaus, U. and Ma, H. (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM (DYT1) encoding a putative bHLH transcription factor. Development 133: 3085–3095. Zhang, Z.L., Xie, Z., Zou, X., Casaretto, J., Ho, T.H. and Shen, Q.J. (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol. 134: 1500–1513 Zhao, D.Z., Wang, G.F., Speal, B. and Ma, H. (2002) The EXCESS MICROSPOROCYTES 1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes and Dev. 16: 2021–2031. Chapter II. Batoko, H., Zheng, H.Q., Hawes, C. and Moore, I. (2000) A rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell 12: 2201–2018. Cheung, A. Y., May, B., Kawataf, E.E., Gu, Q. and Wu, H.M. (1993) Characterization of cDNAs for stylar transmitting tissue specific proline-rich proteins in tobacco. Plant J. 3: 151–160. Cheung, A. Y., Wang, H., and Wu, H.M. (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82: 383–393. Cheung, A. Y. and Wu, H.M. (2001) Pollen tube guidance-right on target. Science 293: 1441–1442. Cheung, A.Y., Boavida, L.C., Aggarwal, M., Wu, H.M. and Feijo, J.A. (2010) The pollen tube journey in the pistil and imaging the In Vivo process by two-photon microscopy. J. Exp. Bot. 61: 1907–1915.? Cheung, A.Y. and Wu, H.M. (2011) THESEUS 1, FERONIA and relatives: a family of cell wall-sensing receptor kinases? Curr. Opin. Plant Biol.?14: 632–641.? Crawford, B.C.W., Ditta, G., and Yanofsky, M.F. (2007) The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana. Curr. Biol. 17: 1101–1108 Gong, S.Y., Huang, G.Q., Sun, X., Li, P., Zhao, L.L. and Zhang, D.J. (2012) GhAGP31, a cotton non-classical arabinogalactan protein, is involved in response to cold stress during early seedling development. Plant Biol.14: 447–457. Dresselhaus,T. and?Franklin-Tong, N. (2013) Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol. Plant 6: 1018–1036. Hamamura, Y.,?Nagahara, S. and?Higashiyama, T. (2012) Double fertilization on the move. Curr. Opin. Plant Biol. 15: 70–77. Higashiyama, T., Kuroiwa, H. and Kuroiwa, T. (2003) Pollen-tube guidance: beacons from the female gametophyte. Curr. Opin. Plant Biol. 6: 36–41. Hijazi, M., Durand, J., Pichereaux, C., PontF., Jamet, E. and Albenne, C. (2012) Characterization of the Arabinogalactan Protein 31 (AGP31) of Arabidopsis thaliana. J. Biol. Chem. 287: 9623–9632. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). Gus fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907. Kessler, S.A. and?Grossniklaus, U. (2011) She's the boss: signaling in pollen tube reception. Curr. Opin. Plant Biol. 14: 622–627. Liu, C.M., and Meinke, D.W. (1998). The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle control during seed development. Plant J. 16: 21–31. Miyazaki S., Murata T., Sakurai-Ozato N., Kubo M., Demura T., Fukuda H. and Hasebe, M. (2009) ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors to coordinated fertilization. Curr. Biol.19: 1327–1331. Mori, T., Kuroiwa, H., Higashiyama, T., and Kuroiwa, T. (2006). GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat. Cell Biol. 8: 64–71. Ohad, N. and Yalovsky, S. (2010) Utilizing bimolecular fluorescence complementation (BiFC) to assay protein-protein interaction in plants. Methods Mol. Biol. 655: 347–358. Okuda, S., Tsutsui, H., Shiina, K., Sprunck, S., Takeuchi, H., Yui, R., Kasahara, R.D.,?Hamamura, Y.,?Mizukami, A.,?Susaki, D.,?Kawano, N.,?Sakakibara, T.,?Namiki, S.,?Itoh, K., Otsuka, K,,?Matsuzaki, M., Nozaki, H.,?Kuroiwa, T.,?Nakano, A.,?Kanaoka, M.M.,?Dresselhaus, T.,?Sasaki, N. and ?Higashiyama, T. (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458: 357–362. Palanivelu, R. and?Tsukamoto, T. (2012) Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization. Wiley Interdiscip. Rev. Dev. Biol. 1: 96-113. Preuss, D., Rhee, S.Y. and Davis, R.W. (1994) Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264: 1458–1460. Shiu, S.H. and Bleecker, A.B. (2001) Plant receptor-like kinase gene family: diversity, function and signaling. Sciences STKE 113: re22. Shiu, S.H. and Bleecker, A.B. (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 132: 530–543. Tao, L.Z., Cheung, A.Y. and Wu, H.M. (2002) Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell 14: 2745–2760. Yoo, S.D., Cho, Y.H. and Sheen, J. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc. 2: 1565–1572.
摘要: 
I. ?用抑制扣除雜合法(suppression subtractive hybridization) 從鐵炮百合(Lilium longiflorum) 花藥的小孢子發育期cDNA 集合庫選殖出幾個花藥專一性基因LLA89、LLA142和LLA66。利用5′-與3′-RACE-PCR延伸而得到LLA89、LLA142和LLA66 cDNA全長序列。LLA89 cDNA 含有一段303 bp 可編譯框架(open reading frame),可轉譯出100 個胺基酸的酸性蛋白質,其分子量為10.2 kDa。LLA142 cDNA 含有一段171 bp可編譯框架可轉譯出56 個胺基酸的鹼性蛋白質,其分子量為5.7 kDa。LLA66 cDNA可轉譯出308個胺基酸的酸性蛋白質,其分子量為35.7 kDa。LLA89 蛋白質N 端有一段疏水性的訊息胜?(signal peptide) 序列,而LLA142和LLA66則無。序列比對後顯示LLA89 即是已知的百合LIM4; LLA142是嶄新的未知蛋白質,而LLA66蛋白質與許多物種之cis-prenyltransferase有高達30-41%相同度,然而和單子葉植物cis-prenyltransferase之演化不同。根據決定已知cis-prenyltransferase長度的關鍵標記的胺基酸,LLA66被認為可合成長鏈聚戊烯產物 (long-chain polyprenyl products)。利用北方墨漬法分析,得知LLA89 、LLA142 和LLA66具花藥專一性。利用digoxigenin-labeled riboprobe進行原位雜合(in situ hybridization) 的實驗證實三者的mRNA在花藥壁的絨氈層中呈現強烈的訊號。LLA89 基因會受外加的激勃素(gibberellin) 誘導而表現,LLA142和LLA66 則不會,然而三者皆會受內生性激勃素的誘導而產生。利用激勃素抑制劑uniconazol和乙烯抑制劑2,5-norbornaddien處理,顯示LLA66基因受內生的激勃素誘導而表現,但是不受乙烯的調控。利用TAIL-PCR找到LLA66基因啟動子調控區域。在小孢子生長時期,花藥中prenyltransferase的活性與絨氈層的生長與分解是互相協同的。將LLA66可編譯框架構築到表現載體pYES2/CT並轉殖到酵母菌Saccharomyces cerevisiae表達外源蛋白,再使用Ni2+–nitrilotriacetic acid–agarose純化。體外(in vitro)酵素活性分析顯示LLA66可催化合成聚戊烯基雙磷酸酯 (polyprenyl diphosphates)。酵素反應最適的Mg2+濃度為0.2 mM;反應最適的pH值和溫度分別為7.0和50°C。酵素和受質(substrate)之親和性為km= 5.7 ?M。我們推測百合花藥絨氈層cis-prenyltransferase可能參與dolichols和polyprenols compounds的合成,以協助小孢子壁的形成。II. 此研究工作主要探討花粉管在雌蕊中生長過程中,阿拉伯半乳聚醣蛋白(AGP31)基因的功能。我們建構RNAi載體並成功轉殖到野生型(WT)阿拉伯芥中。RNAi突變株聚呈現較小且深綠色的表現型,並且果莢短小。正反交試驗(reciprocal cross)中,當利用野生型之花粉授粉RNAi突變株之雌蕊,其果莢短小;而相反的利用RNAi突變株之花粉授粉野生型之雌蕊,其果莢長度與控制組相當,此結果證實RNAi突變株造成雌蕊缺陷而導致果莢短小以及種子數目較少。透過Blue Dot assay發現在RNAi突變株雌蕊中,花粉管進入胚株的數目較少於在野生型中。此外,利用苯胺藍(aniline blue)染色已授粉之雌蕊結果發現,在RNAi突變株雌蕊中,花粉管進入雌蕊的數量較少且生長速度也較慢。這些結果顯示RNAi突變體會影響花粉管在雌蕊中的生長,推測AGP31蛋白在雌蕊傳輸組織(transmitting tissue)中扮演控制花粉生長的角色。BiFC assay證實AGP31蛋白自己可結合形成二聚體(dimer)且表現在細胞壁。分別利用BiFC assay和pull-down assay證實AGP31蛋白可與花粉管專一表現的receptor-like kinase (RLK) 5 和ANXUR2 (RLK12)相互結合。綜合以上之結果,在雌蕊傳輸組織表現的AGP31蛋白,透過與花粉管之接收器(receptor-like kinase)相互結合來控制花粉管的生長。

I. A number of stage-specific genes have been isolated from a suppression subtractive cDNA library constructed from developing anthers of L. longiflorum. 5′- and 3′-RACE-PCR were used to obtain the full length cDNA sequences. The LLA89 cDNA encodes an acidic polypeptide of 100 amino acids with a calculated molecular mass of 10.2 kDa. The LLA142 cDNA encodes a basic polypeptide of 56 amino acids with a calculated molecular mass of 5.7 kDa. The LLA66 cDNA encodes a polypeptide of 308 amino acids with a calculated molecular mass of 35.7 kDa. The LLA89 protein had a strong hydrophobic region at the N-terminus, indicating the presence of a signal peptide whereas the LLA142 and LLA66 do not have. Sequence alignment revealed that the LLA89 protein is identical to a reported LIM4 (Lily messages Induced at Meiosis) protein with unknown function, while the LLA142 protein is a novel protein. Sequence alignment revealed that the LLA66 protein shares 30-41% identity with cis-prenyltransferases of various broad-spectrum species and is phylogenetically distinct from other monocot cis-prenyltransferases. Based on critical regulatory domains in cis-prenyltransferase, LLA66 was concluded to catalyze the production of long-chain polyprenyl products. RNA blot analysis indicated that the transcripts of LLA89, LLA142 and LLA66 were anther-specific and differentially detected in the anther wall and in the microspore of developing anthers. In situ hybridization with digoxigenin-labeled riboprobes for the three genes revealed strong signals localized to the tapetal layer of the anther wall. The LLA89 gene could be exogenously induced by gibberellin (GA) while the LLA142 and LLA66 genes could not. However, these three genes are induced by endogenous GA. Furthermore, GA inhibitor analysis indicated that the LLA66 gene is endogenously induced by GA, but its induction is independent of ethylene regulation. Thermal asymmetric interlaced (TAIL)-PCR was employed to obtain the 5'-regulatory region of LLA66. The cis-prenyltransferase gene, LLA66, was the first prenyltransferase to be identified in the tapetum and microspores. The enzyme activity of prenyltransferases in various stages of microspore development correlated with tapetal growth and disintegration. The coding region of LLA66 constructed in pYES2/CT vector was introduced into Saccharomyces cerevisiae, and the His-tagged LLA66 protein was affinity-purified using Ni2+-nitrilotriacetic acid-agarose. In vitro enzymatic assay revealed that the enzyme catalyzed the formation of polyprenyl diphosphates. A drastic increase of enzyme activity was detected with the addition of Mg2+ ion up to 0.2 mM. A further addition of Mg2 + ion inhibited the enzyme activity. The optimum pH value and temperature of the enzyme were found to be pH 7.0 and 50 °C, respectively. The enzyme exhibited an affinity for isopentenyl diphosphate (IPP), with a Km value of 5.7 μM. The involvement of cis-prenyltransferase in the anther in the synthesis of dolichols and polyprenols is discussed. II. For this work, we mainly investigated the function of arabinogalactan protein AGP31 gene from Arabidopsis during pollen tubes growth in the transmitting tissue. Using RNAi-mediated gene silencing strategy to generate AGP31 knock-down mutants. The phenotype of RNAi mutants with AGP31 transcript reduced to almost knock-out level was small and dark green and the length of siliques in RNAi mutant was shorter than in wild type (WT) plants. Reciprocal crossed with WT using a severe RNAi knock-down line as a female parent resulted in shorter siliques and lower seeds relative to WT, but not when used as the male parent. These results indicates that RNAi caused the defect in female part. Visualization of pollen growth in the pistil by 'blue dot assay' after limited pollination by WT pollen showed that fewer pollen tubes reached the ovules in the pistils of the RNAi line compared with WT. In addition, time series of pollen tube growth stained with aniline blue showed fewer pollen tubes and their growth was slower in the pistil of the RNAi mutant compared with WT. Taken together, these results are consistent with AGP31 protein playing an important role in regulating pollen tube growth. Bimolecular fluorescence complementation (BiFC) assays showed AGP31 can interact by itself and showed AGP31 is cell wall localization. Furthermore, using BiFC and pull-down assays, we also showed that AGP31 interacts with two pollen-specific FERONIA-related receptor-like kinases (RLKs), RLK5 and ANXUR2 (RLK12). The transmitting tissue of pistils provides the passage for pollen tube growth, AGP31 may be a guider during pollen tube growing through transmitting tissue.
URI: http://hdl.handle.net/11455/90029
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-31起公開。
Appears in Collections:生物科技學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7095041022-1.pdf9.35 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.