Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/90056
標題: | Characterization and functional identification of rice pollen-specific OsCPK and its potential downstream substrate 水稻花粉特有 OsCPK 與其潛力受質之特性分析與功能鑑定 |
作者: | 蔡曉倩 Shiao-Chien Tsai |
關鍵字: | 無;no | 引用: | 1.林忠威 (2007). 水稻結鈣激活酵素基因群之表現分布與功能性分析. 國立中興大學, 台中市. 2.詹益維 (2013). 評估 OsCPK26 抑制花粉萌發的機制與尋找水稻花粉中 CDPKs 的下游受質蛋白. 國立中興大學, 台中市. 3.陳婉潔 (2003). 水稻花粉結鈣激酶 OsCPK1 之基因表現、蛋白胞內分布位置與基因轉殖植物分析. 國立中興大學, 台中市. 4.歐天永 (2010). 水稻 OsCPK 及其交互作用蛋白 OIP30 於調控花粉發育、花粉萌發與花藥開裂之角色探討. 國立中興大學, 台中市. 5.Arakaki, N., Nagao, T., Niki, R., Toyofuku, A., Tanaka, H., Kuramoto, Y., Emoto,Y., Shibata, H., Magota, K., and Higuti, T. (2003). Possible role of cell surface H+ -ATP synthase in the extracellular ATP synthesis and proliferation of human umbilical vein endothelial cells. Molecular cancer research : MCR 1, 931-939. 6.Asai, S., Ichikawa, T., Nomura, H., Kobayashi, M., Kamiyoshihara, Y., Mori, H.,Kadota, Y., Zipfel, C., Jones, J.D., and Yoshioka, H. (2013). The variable domain of a plant calcium-dependent protein kinase (CDPK) confers subcellular localization and substrate recognition for NADPH oxidase. The Journal of biological chemistry 288, 14332-14340. 7.Asano, T., Tanaka, N., Yang, G., Hayashi, N., and Komatsu, S. (2005). Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant & cell physiology 46, 356-366. 8.Balla, T., Szentpetery, Z., and Kim, Y.J. (2009). Phosphoinositide signaling: new tools and insights. Physiology (Bethesda, Md.) 24, 231-244. 9.Bamburg, J.R. (1999). Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annual review of cell and developmental biology 15, 185-230. 10.Bibikova, T.N., Zhigilei, A., and Gilroy, S. (1997). Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta 203, 495-505. 11.Blom, N., Gammeltoft, S., and Brunak, S. (1999). Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of molecular biology 294, 1351-1362. 12.Chehab, E.W., Patharkar, O.R., and Cushman, J.C. (2007). Isolation and characterization of a novel v-SNARE family protein that interacts with a calcium-dependent protein kinase from the common ice plant,Mesembryanthemum crystallinum. Planta 225, 783-799. 13.Chehab, E.W., Patharkar, O.R., Hegeman, A.D., Taybi, T., and Cushman, J.C.(2004). Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium-dependent protein kinase from ice plant. Plant physiology 135, 1430-1446. 14.Chen, C.Y., Wong, E.I., Vidali, L., Estavillo, A., Hepler, P.K., Wu, H.M., and Cheung, A.Y. (2002). The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. The Plant cell 14,2175-2190. 15.Cheng, S.H., Willmann, M.R., Chen, H.C., and Sheen, J. (2002). Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant physiology 129, 469-485. 16.Chi, S.L., and Pizzo, S.V. (2006). Cell surface F1Fo ATP synthase: a new paradigm?Annals of medicine 38, 429-438. 17.Chivasa, S., Tome, D.F., Hamilton, J.M., and Slabas, A.R. (2011). Proteomic analysis of extracellular ATP-regulated proteins identifies ATP synthase beta-subunit as a novel plant cell death regulator. Molecular & cellular proteomics : MCP 10,M110.003905. 18.Chivasa, S., Ndimba, B.K., Simon, W.J., Lindsey, K., and Slabas, A.R. (2005).Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability. The Plant cell 17, 3019-3034. 19.Chivasa, S., Murphy, A.M., Hamilton, J.M., Lindsey, K., Carr, J.P., and Slabas,A.R. (2009). Extracellular ATP is a regulator of pathogen defence in plants. The Plant journal : for cell and molecular biology 60, 436-448. 20.Curran, A., Chang, I.F., Chang, C.L., Garg, S., Miguel, R.M., Barron, Y.D., Li, Y.,Romanowsky, S., Cushman, J.C., Gribskov, M., Harmon, A.C., and Harper, J.F. (2011). Calcium-dependent protein kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates. Frontiers in plant science 2, 36. 21.D'Angelo, G., Vicinanza, M., Di Campli, A., and De Matteis, M.A. (2008). The multiple roles of PtdIns(4)P -- not just the precursor of PtdIns(4,5)P2. Journal of cell science 121, 1955-1963. 22.Dammann, C., Ichida, A., Hong, B., Romanowsky, S.M., Hrabak, E.M., Harmon,A.C., Pickard, B.G., and Harper, J.F. (2003). Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant physiology 132, 1840-1848. 23.Geitmann, A., Snowman, B.N., Emons, A.M., and Franklin-Tong, V.E. (2000).Alterations in the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas. The Plant cell 12, 1239-1251. 24.Golovkin, M., and Reddy, A.S. (2003). A calmodulin-binding protein from Arabidopsis has an essential role in pollen germination. Proceedings of the National Academy of Sciences of the United States of America 100, 10558-10563. 25.Gu, Y., Fu, Y., Dowd, P., Li, S., Vernoud, V., Gilroy, S., and Yang, Z. (2005). A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. The Journal of cell biology 169, 127-138. 26.Hague, J., Dellaporta, S., Moreno, M., Longo, C., Nelson, K., and Kausch, A.(2012). Pollen Sterility—A Promising Approach to Gene Confinement and Breeding for Genetically Modified Bioenergy Crops. Agriculture 2,295-315. 27.Harmon, A.C., Gribskov, M., and Harper, J.F. (2000). CDPKs - a kinase for every Ca2+ signal? Trends in plant science 5, 154-159. 28.Harper, J.F., Breton, G., and Harmon, A. (2004). Decoding Ca(2+) signals through plant protein kinases. Annual review of plant biology 55, 263-288. 29.Harper, J.F., Sussman, M.R., Schaller, G.E., Putnam-Evans, C., Charbonneau, H.,and Harmon, A.C. (1991). A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science (New York, N.Y.) 252,951-954. 30.Hegeman, A.D., Rodriguez, M., Han, B.W., Uno, Y., Phillips, G.N., Jr., Hrabak,E.M., Cushman, J.C., Harper, J.F., Harmon, A.C., and Sussman, M.R.(2006). A phyloproteomic characterization of in vitro autophosphorylation in calcium-dependent protein kinases. Proteomics 6, 3649-3664. 31.Herrmann, M.M., Pinto, S., Kluth, J., Wienand, U., and Lorbiecke, R. (2006). The PTI1-like kinase ZmPti1a from maize (Zea mays L.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte. BMC plant biology 6, 22. 32.Higgs, H.N., and Pollard, T.D. (2001). Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annual review of biochemistry 70, 649-676. 33.Hojlund, K., Wrzesinski, K., Larsen, P.M., Fey, S.J., Roepstorff, P., Handberg, A.,Dela, F., Vinten, J., McCormack, J.G., Reynet, C., and Beck-Nielsen, H.(2003). Proteome analysis reveals phosphorylation of ATP synthase beta-subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes. The Journal of biological chemistry 278, 10436-10442. 34.Hrabak, E.M., Chan, C.W., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N.,Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R., Thomas, M.,Walker-Simmons, K., Zhu, J.K., and Harmon, A.C. (2003). The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant physiology 132, 666-680. 35.Huang, S., Blanchoin, L., Chaudhry, F., Franklin-Tong, V.E., and Staiger, C.J.(2004). A gelsolin-like protein from Papaver rhoeas pollen (PrABP80)stimulates calcium-regulated severing and depolymerization of actin filaments.The Journal of biological chemistry 279, 23364-23375. 36.Hwang, I., Sze, H., and Harper, J.F. (2000). A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 97, 6224-6229. 37.Ischebeck, T., Seiler, S., and Heilmann, I. (2010). At the poles across kingdoms:phosphoinositides and polar tip growth. Protoplasma 240, 13-31. 38.Ito, T., Nakata, M., Fukazawa, J., Ishida, S., and Takahashi, Y. (2010). Alteration of substrate specificity: the variable N-terminal domain of tobacco Ca(2+)-dependent protein kinase is important for substrate recognition. The Plant cell 22, 1592-1604. 39.Kane, L.A., Youngman, M.J., Jensen, R.E., and Van Eyk, J.E. (2010).Phosphorylation of the F1Fo ATP Synthase β Subunit: Functional and Structural Consequences Assessed in a Model System. Circulation Research 106, 504-513. 40.Kim, S.Y., Sivaguru, M., and Stacey, G. (2006). Extracellular ATP in plants.Visualization, localization, and analysis of physiological significance in growth and signaling. Plant physiology 142, 984-992. 41.Kost, B., Lemichez, E., Spielhofer, P., Hong, Y., Tolias, K., Carpenter, C., and Chua,N.H. (1999). Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth.The Journal of cell biology 145, 317-330. 42.Kowalski-Chauvel, A., Najib, S., Tikhonova, I.G., Huc, L., Lopez, F., Martinez,L.O., Cohen-Jonathan-Moyal, E., Ferrand, A., and Seva, C. (2012).Identification of the F1-ATPase at the cell surface of colonic epithelial cells: role in mediating cell proliferation. The Journal of biological chemistry 287,41458-41468. 43.Krichevsky, A., Kozlovsky, S.V., Tian, G.W., Chen, M.H., Zaltsman, A., and Citovsky, V. (2007). How pollen tubes grow. Developmental biology 303,405-420. 44.Lee, Y.J., Szumlanski, A., Nielsen, E., and Yang, Z. (2008). Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. The Journal of cell biology 181, 1155-1168. 45.Li, H., Lin, Y., Heath, R.M., Zhu, M.X., and Yang, Z. (1999). Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. The Plant cell 11, 1731-1742. 46.Li, W.Q., Zhang, X.Q., Xia, C., Deng, Y., and Ye, D. (2010). MALE GAMETOPHYTE DEFECTIVE 1, encoding the FAd subunit of mitochondrial F1F0-ATP synthase, is essential for pollen formation in Arabidopsis thaliana.Plant & cell physiology 51, 923-935. 47.Lin, Y., and Yang, Z. (1997). Inhibition of Pollen Tube Elongation by Microinjected Anti-Rop1Ps Antibodies Suggests a Crucial Role for Rho-Type GTPases in the Control of Tip Growth. The Plant cell 9, 1647-1659. 48.Liu, Y., and Bankaitis, V.A. (2010). Phosphoinositide phosphatases in cell biology and disease. Progress in lipid research 49, 201-217. 49.Lu, S.X., and Hrabak, E.M. (2002). An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant physiology 128, 1008-1021. 50.Ma, Z., Cao, M., Liu, Y., He, Y., Wang, Y., Yang, C., Wang, W., Du, Y., Zhou, M.,and Gao, F. (2010).Mitochondrial F1Fo-ATP synthase translocates to cell surface in hepatocytes and has high activity in tumor-like acidic and hypoxic environment. Acta biochimica et biophysica Sinica 42, 530-537. 51.Malho, R., Liu, Q., Monteiro, D., Rato, C., Camacho, L., and Dinis, A. (2006).Signalling pathways in pollen germination and tube growth. Protoplasma 228,21-30. 52.Martin, M.L., and Busconi, L. (2000). Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. The Plant journal : for cell and molecular biology 24, 429-435. 53.Matsui, T., Omasa, K., and Horie, T. (1999). Mechanism of Anther Dehiscence in Rice (Oryza sativa L.). Annals of Botany 84, 501-506. 54.Moser, T.L., Kenan, D.J., Ashley, T.A., Roy, J.A., Goodman, M.D., Misra, U.K.,Cheek, D.J., and Pizzo, S.V. (2001). Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proceedings of the National Academy of Sciences of the United States of America 98,6656-6661. 55.Myers, C., Romanowsky, S.M., Barron, Y.D., Garg, S., Azuse, C.L., Curran, A.,Davis, R.M., Hatton, J., Harmon, A.C., and Harper, J.F. (2009).Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. The Plant journal : for cell and molecular biology 59, 528-539. 56.North, R.A. (2002). Molecular physiology of P2X receptors. Physiological reviews 82,1013-1067. 57.North, R.A., and Surprenant, A. (2000). Pharmacology of cloned P2X receptors.Annual review of pharmacology and toxicology 40, 563-580. 58.Patharkar, O.R., and Cushman, J.C. (2000). A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. The Plant journal : for cell and molecular biology 24, 679-691. 59.Patharkar, O.R., and Cushman, J.C. (2006). A novel coiled-coil protein co-localizes and interacts with a calcium-dependent protein kinase in the common ice plant during low-humidity stress. Planta 225, 57-73. 60.Pierson, E.S., Miller, D.D., Callaham, D.A., Shipley, A.M., Rivers, B.A., Cresti, M.,and Hepler, P.K. (1994). Pollen tube growth is coupled to the extracellular ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. The Plant cell 6, 1815-1828. 61Preuss, M.L., Schmitz, A.J., Thole, J.M., Bonner, H.K., Otegui, M.S., and Nielsen, E. (2006). A role for the RabA4b effector protein PI-4Kbeta1 in polarized of root hair cells in Arabidopsis thaliana. The Journal of cell biology172, 991-998. 62.Rathore, K.S., Cork, R.J., and Robinson, K.R. (1991). A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes. Developmental biology 148, 612-619. 63.Rieder, B., and Neuhaus, H.E. (2011). Identification of an Arabidopsis plasma membrane-located ATP transporter important for anther development. The Plant cell 23, 1932-1944. 64.Rodriguez Milla, M.A., Uno, Y., Chang, I.F., Townsend, J., Maher, E.A., Quilici, D., Cushman, J.C. (2006). A novel yeast two-hybrid approach to identify CDPK substrates: characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein. FEBS letters 580, 904-911. 65.Rutschmann, F., Stalder, U., Piotrowski, M., Oecking, C., and Schaller, A. (2002). LeCPK1, a calcium-dependent protein kinase from tomato. Plasma membrane targeting and biochemical characterization. Plant physiology 129, 156-168. 66.Saarikangas, J., Zhao, H., and Lappalainen, P. (2010). Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiological reviews 90, 259-289. 67.Sousa,E.,Kost,B.,andMalho,R.(2008).Arabidopsis phosphatidylinositol-4-monophosphate 5-kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling. The Plant cell 20, 3050-3064. 68.Steer, M.W., and Steer, J.M. (1989). Pollen tube tip growth. New Phytologist 111, 30323-358. 69.Steinebrunner, I., Wu, J., Sun, Y., Corbett, A., and Roux, S.J. (2003). Disruption of apyrases inhibits pollen germination in Arabidopsis. Plant physiology 131, 1638-1647. 70.Sun, J., Zhang, C., Zhang, X., Deng, S., Zhao, R., Shen, X., and Chen, S. (2012). Extracellular ATP signaling and homeostasis in plant cells. Plant signaling & behavior 7, 566-569. 71.Tanaka, K., Gilroy, S., Jones, A.M., and Stacey, G. (2010). Extracellular ATP signaling in plants. Trends in cell biology 20, 601-608. 72.Vermeer, J.E., Thole, J.M., Goedhart, J., Nielsen, E., Munnik, T., and Gadella, T.W., Jr. (2009). Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. The Plant journal : for cell and molecular biology 57, 356-372. 73.Vicinanza, M., D'Angelo, G., Di Campli, A., and De Matteis, M.A. (2008). Function and dysfunction of the PI system in membrane trafficking. The EMBO journal 27, 2457-2470. 74.Wang, T., Chen, Z., Wang, X., Shyy, J.Y., and Zhu, Y. (2006). Cholesterol loading increases the translocation of ATP synthase beta chain into membrane caveolae in vascular endothelial cells. Biochimica et biophysica acta 1761, 1182-1190. 75.Wei, L.Q., Xu, W.Y., Deng, Z.Y., Su, Z., Xue, Y., and Wang, T. (2010). Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC genomics 11, 338. 76.Witte, C.P., Keinath, N., Dubiella, U., Demouliere, R., Seal, A., and Romeis, T. (2010). Tobacco calcium-dependent protein kinases are differentially phosphorylated in vivo as part of a kinase cascade that regulates stress response. The Journal of biological chemistry 285, 9740-9748. 77.Wu, J., Steinebrunner, I., Sun, Y., Butterfield, T., Torres, J., Arnold, D., Gonzalez, A., Jacob, F., Reichler, S., and Roux, S.J. (2007). Apyrases (nucleoside triphosphate-diphosphohydrolases) play a key role in growth control in Arabidopsis. Plant physiology 144, 961-975. 78.Wu, Y., Yan, J., Zhang, R., Qu, X., Ren, S., Chen, N., and Huang, S. (2010). Arabidopsis FIMBRIN5, an actin bundling factor, is required for pollen germination and pollen tube growth. The Plant cell 22, 3745-3763. 79.Yalovsky, S., Rodr Guez-Concepcion, M., and Gruissem, W. (1999). Lipid modifications of proteins - slipping in and out of membranes. Trends in plant science 4, 439-445. 80.Yoon, G.M., Dowd, P.E., Gilroy, S., and McCubbin, A.G. (2006). Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, 31 including regulating polarity. The Plant cell 18, 867-878. 81.Yoshida, M., Muneyuki, E., and Hisabori, T. (2001). ATP synthase--a marvelous rotary engine of the cell. Nature reviews. Molecular cell biology 2, 669-677. 82.Zheng, Z.L., and Yang, Z. (2000). The Rop GTPase: an emerging signaling switch in plants. Plant molecular biology 44, 1-9. | 摘要: | 水稻中有二十九個 CDPKs (calcium dependent protein kinase) 基因成員,其中七個專一表現於花粉。先前實驗室發現將 OsCPK26 大量表現於水稻花粉,會產生雄不稔性狀,另外,若大量表現於百合花花粉,則會強烈抑制花粉萌發,萌發率僅 11.5%,但 OsCPK26(G2A) 卻均無上述現象。為了找出 OsCPK26 抑制花粉萌發的關鍵性胺基酸或蛋白質結構,利用暫時性大量表現 OsCPK26-ECFP 融合蛋白於百合花花粉,發現附膜是 OsCPK26 抑制花粉萌發的必要非充分條件。於 domain swapping 和 C-terminal serial-deletion 實驗中,發現OsCPK26 僅需蛋白 N 端的 7 個胺基酸便可附膜,且至少需其 1-59 a.a.片段,才具有抑制能力,最後透過 point mutation 和 gain-of-function 策略,證實 46-58 a.a.間的 α-helix 為抑制花粉萌發的重要結構。 儘管鈣離子訊號在花粉萌發及延長上扮演重要的角色,但目前只找到少數花粉專一的 CDPKs 之下游受質蛋白。為了尋找下游受質蛋白,本實驗利用 pull-down親和力純化受質蛋白,並以 LC-MS/MS 鑑定其身分,獲得 OsCPK29 之候選受質蛋白,於眾多可能的蛋白中,選擇粒線體的 ATP synthase β-subunit 做進一步研究,將之命名為 ATPSB1。雖然 ATPSB1 普遍存在於水稻各組織中,但 ATPSB1 的相對轉錄量與蛋白表現量,皆於花粉中最高。本實驗發現 ATPSB1 基因靜默水稻會產 生花粉發育不全和花藥無法開裂之性狀,最後導致稔實極低 (約 1%),另外,暫時性表現 ATPSB1-EYFP 融合蛋白於百合花花粉,可知其分布於粒線體中,令人驚訝的是,會附膜的 OsCPK29 和 ATPSB1 共表現時,出現 ATPSB1 從細胞質轉移到細胞膜的現象,暗示這兩個蛋白質間可能有交互作用。進一步將 ATPSB1 與 α-subunit(ATPSA1) 共表現,則發現 ATPSA1 與 ATPSB1 行為相似,均與 OsCPK29 結合於細胞膜,但其他同樣會附膜的 OsCPK21 與 OsCPK26 則均無上述現象。這些結果 說明 ATPSB1 可能於花粉發育或萌發上扮演重要角色,且可能OsCPK29 之下游受質蛋白,未來可更進一步調查 ATPSB1 於細胞膜上之生化特性與生理角色。 In rice, CDPK (calcium dependent protein kinase) genes are constituted by twenty nine members with seven of them expressed predominantly in pollen. Previous studies revealed that overexpression of the pollen-predominant OsCPK26, but not its non-membrane bound G2A form, caused male-sterility in rice and strongly inhibited the germination rate of lily pollen to be less than 11.5%. We characterized the protein motifs and amino acid residues in OsCPK26 critical for the inhibition effect. By tracing the transiently overexpressed OsCPK26-ECFP fusion protein in lily pollen, we found that membrane-binding is a prerequisite but is not sufficient for the inhibition effect. The domain-swapping and C-terminal serial deletion constructs revealed that even the N-terminal 7-a.a. fragment is enough for the membrane-binding of OsCPK26. However,the minimal length for the inhibition effect of OsCPK26 require at least its 1-59 a.a.fragment. Through point mutation and gain-of function strategies, an α-helix reside between 46-58 a.a. region was demonstrated to be critical. Although calcium signaling is known to play critical roles in pollen germination and tip growth, only a few proteins had been identified as substrates downstream to pollen-predominant CDPKs so far. Using affinity pull-down, candidate substrate proteins bound by OsCPK29 were identified by LC-MS/MS. A mitochondrial ATP synthase β-subunit, named as ATPSB1, was chosen for further study. Although ATPSB1 is expressed ubiquitously, relatively high transcript and protein level were detected in the mature pollen grains than all other tissues. Silence expression of ATPSB1 disrupted pollen development and anther dehiscence, finally resulted in an extremely low fertility rate (~1%). Transient expression of EYFP-fused ATPSB1 in lily pollen revealed its location within mitochondria. Surprisingly, co-expression of the membrane-bound OsCPK29 recruited ATPSB1 onto the plasma membrane, suggest a strong interaction between these two proteins. Moreover, the α-subunit of ATP synthase (ATPSA1) was also co-distributed with the beta subunit and OsCPK29. None of the other membrane-bound OsCPKs, including OsCPK21 and OsCPK26, possess the affinity with ATP synthase. These results suggest that the ATPSB1 play important roles in pollen development/germination and ATPSB1 may be a native downstream substrate for OsCPK29 in pollen. The functional relevance of ATP synthase on the plasma membrane require further investigations. |
URI: | http://hdl.handle.net/11455/90056 | Rights: | 同意授權瀏覽/列印電子全文服務,2018-05-11起公開。 |
Appears in Collections: | 生物科技學研究所 |
Files in This Item:
File | Size | Format | Existing users please Login |
---|---|---|---|
nchu-103-7101041029-1.pdf | 3.19 MB | Adobe PDF | This file is only available in the university internal network |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.