Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90058
標題: Characterization and Functional Analysis of Genes in Regulating Flower Transition and Flower Senescence in Eustoma grandiflorum
洋桔梗中與開花時間及花朵老化相關基因之探討與功能性分析
作者: 李坤紘
Kun-Hung Li
關鍵字: 洋桔梗;開花時間;花器老化;簇生化;Eustoma grandiflorum;Flower Transition;Flower Senescence;rosette
引用: 第一章: 蔡智賢、郭銀港、鄭仔秀、李堂察 (1999) 洋桔梗花瓣老化過程中細微構造之變化。中國園藝 45:305-316。 李堂察、蔡智賢、呂明雄 (2005) 洋桔梗切花採後生理與處理。園產品採後處理技術之研究與應用研討會專刊。117:149-155。 王裕權、吳慶杉、林棟樑、張元聰、陳燿煌、王仕賢、黃光亮、沈再木 (2005) 採收成熟度及貯運技術對洋桔梗貯運後瓶插壽命之影響。台南區農業改良場研究彙報46: 33-44。 黃光亮 (2005) 台灣農家要覽-農作篇 (二):洋桔梗。行政院農業委員會。增修訂三版。699-704。 王裕權、張元聰、陳燿煌、王仕賢、吳慶杉 (2006) 洋桔梗育苗技術之研究。台南區農業改良場研究彙報 48: 47-59。 葉育哲、蔡月夏 (2010) 利用天然冷源作為洋桔梗育苗之研究。花蓮區農業改良場研究彙報28:9-20。 賴明信、蔡宛育、王妃蟬、吳岱融、李瑋崧 (2010) 企業化經營管理在農業之應用- 彰化縣北斗鎮花卉產銷班第1班個案研究。企業化經營管理在農業之應用研討會專刊。151:23-61。 張元聰、王裕權、陳燿煌、林棟樑、王仕賢 (2010) 洋桔梗育種之回顧與展望。台南區農業專訊 73:7-10。 王裕權、張元聰、楊藹華 (2011) 耐熱洋桔梗新品種育成。2011年花卉研究團隊成果發表會專刊。164:117-126。 蔡宛育、陳彥樺、許謙信、易美秀、魏芳明 (2011) 提高洋桔梗生育及切花品質。臺中區農業專訊。74:13-17。 陳彥樺、蔡宛育 (2012) 洋桔梗。臺中區農業改良場特刊。112:110-118。 行政院農業委員會農業統計資料查詢。http://agrstat.coa.gov.tw/sdweb/public/trade/tradereport.aspx Blankenship SM, Dole JM (2003) 1-Methylcyclopropene: a review. Postharvest Biol Technol 28:1-25. Fan X (1999) 1-Methylcyclopropene inhibits apple ripening. J Amer Soc Hort Sci 124:690–695. Farokhzad A, Khalighi A, Mostofi Y, Naderi R (2005) Role of ethanol in the vase life and ethylene production in cut Lisianthus (Eustoma grandiflorum Mariachii. cv. Blue) flowers. J Agric Soc Sci 4:309–312. Han SS, Miller JA (2003) Role of ethylene in postharvest quality of cut oriental lily 'Stargazer'. Plant Growth Regul 40:213–222. Hisamatsu T, Koshioka M, Mander LN (2004) Regulation of gibberellin biosynthesis and stem elongation by low temperature in Eustoma grandiflorum. J Hortic Sci Biotechnol 79:354–359. Hisamatsu T, Koshioka M, Oyama N, Mander LN (1999) The relationship between endogenous gibberellins and rosetting in Eustoma grandiflorum. J Jpn Soc Hortic Sci 68:527–533. Hisamatsu T, Koshioka M, Nishijima T, Mander LN (1998) Identification of endogenous gibberellins and their role in rosetted seedlings of Eustoma grandiflorum. J Jpn Soc Hortic Sci 67:866–871. Ichimura K, Shimamura M, Hisamatsu T (1998) Role of ethylene in senescence of cut Eustoma flowers. Postharvest Biol Technol 14:193-198. Jiang Y, Joyce DC, Macnish AJ (1999) Extension of the shelf life of banana fruit by 1-methylcyclopropene in combination with polyethylene bags. Postharvest Biol Technol 16:187-193. Ketsa S (1989) Vase life characteristics of inflorescences of dendrobium 'Pompadour'. Hort Sci 64:611–615. Mino M, Oka M, Tasaka Y, Iwabuchi M (2003) Thermoinduction of genes encoding the enzymes of gibberellin biosynthesis and a putative negative regulator of gibberellin signal transduction in Eustoma grandiflorum. Plant Cell Rep 22:159–165. Pun UK, Shimizu H, Tanase K, Ichimura K (2005) Effect of sucrose on ethylene biosynthesis in cut carnation flowers. Acta Hort 669:171–174. Sankat CK, Mujaffar S (1994) Water balance in cut anthurium flowers in storage and its effect on quality. Acta Hort 368:723–732. Sun TP (2010) Gibberellin Signal Transduction in Stem Elongation & Leaf Growth. In: Davies PJ, editor. Plant Hormones: Biosynthesis, Signal Transduction and Action! revised 3rd ed. Springer Dordrecht Heidelberg; London, New York 308–328. Witte YD, van Doorn WG (1991) The mode of action of bacteria in the vascular occlusion of cut rose flowers. Acta Hort 298:165–167. Yanagida M, Mino M, Iwabuchi M, Ogawa K (2004) Reduced glutathione is a novel regulator of vernalization-induced bolting in the rosette plant Eustoma grandiflorum. Plant Cell Physiol 45:129–137. 第二章: 陳星宇 (2000) 洋桔梗中與胚珠發育及花器形成相關 MADS box 基因之分子選 殖與特性分析,國立中興大學生物科技學研究所碩士論文。 劉友珍 (2005) 洋桔梗中E 功能性之 MADS box 基因的選殖與特性分析,國立 中興大學生物科技學研究所碩士論文。 邱怡芬 (2007) 文心蘭中調控開花時間相關基因之選殖與特性分析,國立中興大學生物科技學研究所碩士論文。 陳星宇 (2007) 洋桔梗中與胚珠發育及花器形成相關 MADS box 基因之分子選 殖與特性分析,國立中興大學生物科技學研究所博士論文。 侯程景 (2011) FT同源基因在開花與非開花植物中調控開花時間之功能性分析,國立中興大學生物科技學研究所博士論文。 莊天心 (2013) 洋桔梗中花器發育相關之MADS box中的A功能性基因之特性與功能性分析,國立中興大學生物科技學研究所碩士論文。 Angenent GC, Franken J, Busscher M, Dijken AV, Went JLV, Dons HJM, Tunen AJV (1995) A Novel Class of MADS Box Genes Is Involved in OvuleDevelopment in Petunia. Plant Cell 7:1569-1582. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056. Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SJ (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25:605–614. Albert VA, Oppenheimer DG, Lindqvist C (2002) Pleiotropy, redundancy and the evolution of flowers. Trends Plant Sci 7:297-301. Baurle I, Dean C. (2006) The timing of developmental transitions in plants. Cell 125:655-664. Benlloch R, Berbel A, Serrano-Mislata A, Madueno F (2007) Floral initiation and inflorescence architecture: a comparative view. Ann Bot 100:659–676. Blazquez MA, Green R, Nilsson O, Sussman MR, Weigel D (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10:791–800. Blazquez MA (2000) Flower development pathways. J Cell Sci 113:3547-3548. Blazquez MA, Soowal LN, Lee I, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124:3835-3844. Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743 Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology 14:1935-1940. Dornelas M, Dornelas O (2005) From leaf to flower: revisiting Goethe's concepts on the ‥metamorphosis‥ of plants. Braz. J Plant Physiol 17:335-343. Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603-2611. Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127:725-734. Fornara F, Parenicova L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, Altamura MM, Colombo L, Kater MM (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135:2207–2219. Hanzawa Y, Money T, Bradley D ( 2005 ) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci USA 102:7748 – 7753. Hames C, Ptchelkine D, Grimm C, Thevenon E, Moyroud E, Gerard F, Martiel JL, Benlloch R, Parcy F, Muller CW (2008) Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins. EMBO J 27:2628–2637. Hayama R, Agashe B, Luley E, King R, Coupland G (2007) A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell 19:2988–3000. Hayama R, Coupland G (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol 6:13-19. He Y, Michaels SD, Amasino RM (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302:1751–1754. Hisamatsu T, King R (2008) The nature of floral signals in Arabidopsis. II. Roles for FLOWERING LOCUS T (FT) and gibberellin. J Exp Bot 59:3821–3829. Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525-529. Hou CJ, Yang CH (2009) Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. Plant Cell Physiol 50:1544–1557. Igasaki T, Watanabe Y, Nishiguchi M, Kotoda N (2008) The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar. Plant Cell Physiol 49:291–300 Jaeger KE, Wigge PA (2007) FT protein acts as a long-range signal in Arabidopsis. Curr Biol 17:1050–1054. Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344-347. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison M, Weigel D ( 1999 ) Activation tagging of the floral inducer FT. Science 286:1962–1965. Kaufmann K, R Melzer, G Theissen (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347:183-198. Kim DH, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol 25:277–299. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962 Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–105. Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135:767–774 Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, John Paul Alvarez JP, Eshed Y (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci USA 15:6398–6403. Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. The Plant Cell 11:1007–1018. Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, Wang L, Yang HQ (2008) COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20:292-306. Liu C, Thong Z, Yu H (2009) Coming into bloom: the specification of floral meristems. Development 136:3379-3391. Liu X, Kim YJ, Mu‥ller R, Yumul RE. Liu C, Pan Y, Cao X, Goodrich J, Chen X (2011) AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins. Plant Cell 23:3654-3670. Mandel MA, Yanofsky MY (1995) A gene triggering flower formation in Arabidopsis. Nature 377:522– 524. Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956. Michaels SD, Yuehui H, Scortecci KC, Amasino RM (2003) Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci USA 100:10102–10107. Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–S130. Munster T, Pahnke J, Rosa AD, Kim JT, Martin W, Saedler H, Theissen G (1997) Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc Natl Acad Sci USA 94:2415-2420. Mutasa-Gottgens E, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 27:1-11. Nam J, Kaufmann K, Theissen G, Nei M (2005) A simple method for predicting the functional differentiation of duplicate genes and its application to MIKC-type MADS-box genes. Nucleic Acids Res 33:1-6. Nakano Y, Kawashima H, Kinoshita T, Yoshikawa H, Hisamatsu T (2011) Characterization of FLC, SOC1 and FT homologs in Eustoma grandiflorum: effects of vernalization and post-vernalization conditions on flowering and gene expression. Physiol Plant 141:383–393. Notaguchi M, Abe M, Kimura T, Daimon Y, Kobayashi T, Yamaguchi A, Tomita Y, Dohi K, Mori M, Araki T (2008) Longdistance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Physiol 49:1645-1658. Ohkawa K, Kano A, Kanematsu K, Korenaga M (1991) Effects of air temperature and time on rosette formation in seedlings of Eustoma grandiflorum (Raf.) Shinn. Sci Hortic 48:171–176 701. Ohkawa K, Korenaga M, Yoshizumi T (1993) Influence of temperature prior to seed ripening and at germination on rosette formation and bolting of Eustoma grandiflorum. Sci Hortic 53:225–230 704. Ohkawa K, Yoshizumi T, KorenagaM, Kanematsu K (1994) Reversal of heat-induced rosetting in Eustoma grandiflorum with low temperatures. Hortscience 29:165–166. Parcy F (2005) Flowering: a time for integration. Int. J Dev Biol 49:585-593. Pelaz S, Ditta G, Baumann E,Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200-203. Parkin J (1914) The evolution of the inflorescence. Linn J Bot 42:511–563. Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ (1998) A common mechanism controls the life cycle and architecture of plants. Development 125:1609–1615. Ratcliffe OJ, Bradley DJ, Coen ES (1999) Separation of shoot and floral identity in Arabidopsis. Development 126:1109–1120. Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378:1079-1101. Schultz EA, Haughn GW (1991) LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3:771-781. Searle I, He Y, Turck F, Vincent C, Fornara F, Krober S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20:898–912. Sheldon CC, Conn AB, Dennis ES, Peacock WJ (2002) Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell 14:2527–2537. Simpson GG, Dijkwel PP, Quesada V, Henderson ICD (2003) FY Is an RNA 3' end processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113:777–787. Siriwardana NS, Lamb RS (2012) A conserved domain in the N-terminus is important for LEAFY dimerization and function in Arabidopsis thaliana. Plant J 71:736–749. Sung S, He Y, Eshoo TW, Tamada Y, Johnson L, Nakahigashi K, Goto K, Jacobsen SE, Amasino RM (2006) Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nature Genetics 38:706–710. Sung S, Amasino RM (2004) Vernalization and epigenetics: how plants remember winter. Curr Opin Plant Biol 7:4-10. Takada S, Goto K (2003) TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15:2856–2865. Takahashi Y, Teshima KM, Yokoi S, Innan H, Shimamoto K (2009) Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci USA 106:4555–4560. Taoka K, Ohki I, Tsuji H, Kojima C, Shimamoto K (2013) Structure and function of florigen and the receptor complex. Trends Plant Sci. 18:287–294. Teeri TH, Uimari A, Kotilainen M, Laitinen R, Help H, Elomaa P, Albert VA (2006) Reproductive meristem fates in Gerbera. J Exp Bot 57:3445-3455. Teper-Bamnolker P, Samach A (2005) The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell 17:2661–2675. Theissen G (2001) Development of fl oral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85. Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409:469-471 Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115-149. Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol. 59:573-594 Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis . Cell 69:843-859. Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495-500. Weinhold A, Kallenbach M, Baldwin IT (2013) Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants. BMC Plant Biol 13:99. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059. Winter CM, Austin RS, Blanvillain-Baufume S, Reback MA, Monniaux M, Wu MF, Sang Y, Yamaguchi A, Yamaguchi N, Parker JE, Parcy F, Jensen ST, Li H, Wagner D (2011) LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev Cell 20:430–443. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39. 第三章: 陳星宇 (2007) 洋桔梗中與胚珠發育及花器形成相關 MADS box 基因之分子選 殖與特性分析,國立中興大學生物科技學研究所博士論文。 李姵芳 (2010) 文心蘭與阿拉伯芥中調控花器老化及脫離相關基因之選殖與功能性分析,國立中興大學生物科技學研究所碩士論文。 謝東霖 (2011) 文心蘭中兩個SVP同源基因OnSVP1/2 參與調控花器老化及凋落與開花時間之功能性之分析,國立中興大學生物科技學研究所碩士論文。 Alonso JM, Stepanova AN (2004) The ethylene signaling pathway. Science 306: 1513-1515. Butenko MA, Patterson SE, Grini PE, Stenvik GE, Amundsen SS, Mandal A, Aalen RB (2003) Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell 15:2296–2307. Camehl I, Oelmuller R (2010) Do ethylene response factor-9 and -14 repress PR gene espression in the interaction between Piriformospora indica and Arabidopsis? Plant Signal Behav 5:932-936. Chen MK, Hsu WH, Lee PF, Thiruvengadam M, Chen HI, Yang CH (2011) The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. Plant J 68:168-185. Cho SK, Larue CT, Chevalier D, Wang H, Jinn TL, Zhang S, Walker JC (2008) Regulation of floral organ abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:15629–15634. Fernandez DE, Heck GR, Perry SE, Patterson SE, Bleecker AB, Fang SC (2000) The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression. Plant Cell 12:183-198. Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404. Fujiwara S, Oda A, Yoshida R, Niinuma K, Miyata K, Tomozoe Y, TajimaT, Nakagawa M, Hayashi K, Coupland G, Mizoguchi T (2008) Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell 20: 2960–2971. Gonzalez-Carranza ZH, Elliott KA, Roberts JA (2007) Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana. J Exp Bot 58:3719-3730. Hartmann U, Hohmann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000) Molecular cloning of SVP: A negative regulator of the floral transition in Arabidopsis. Plant J 21:351-360. He C, Munster T, Saedler H (2004) On the origin of floral morphological novelties. FEBS Letters 567:147–151. Ichimura K, M Shimamura, T Hisamatsu (1998) Role of ethylene in senescence of cut Eustoma flowers. Postharvest Biol Technol 14:193-198. Kandasamy MK, Deal RB, McKinney EC, Meagher RB (2005a) Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence. Plant J 41:845-858. Kandasamy MK, McKinney EC, Deal RB, Meagher RB (2005b) Arabidopsis ARP7 is an essential actin-related protein required for normal embryogenesis, plant architecture, and floral organ abscission. Plant Physiol 138:2019-2032. Lee J, Oh M, Park H, Lee I (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. Plant J 55:832–843. Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397-402. Lewis MW, Leslie ME, Liljegren SJ (2006) Plant separation: 50 ways to leave your mother. Curr Opin Plant Biol 9:59–65. Li ZM, Zhang JZ, Mei L, Deng XX, Hu CG, Yao JL (2010) PtSVP, an SVP homolog from trifoliate orange (Poncirus trifoliata L. Raf.), shows seasonal periodicity of meristem determination and affects flower development in transgenic Arabidopsis and tobacco plants. Plant Mol Biol 74:129-142. Liljegren SJ (2012) Organ abscission: exit strategies require signals and moving traffic. Curr Opin Plant Biol 15:670–676. Liu C, Chen H, Er HL, Soo HM, Kumar PP, Han JH, Liou YC, Yu H (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135:1481-1491. Liu C, Thong Z, Yu H (2009) Coming into bloom: the specification of floral meristems.Development 136:3379-3391. Masiero S, Li MA, Will I, Hartmann U, Saedler H, Huijser P, Schwarz-Sommer Z, Sommer H (2004) INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum. Development 131:5981–5990. McKim SM, Stenvik GE, Butenko MA, Kristiansen W, Cho SK, Hepworth SR, Aalen RB, Haughn GW (2008) The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development 135:1537-1546. Meir S1, Philosoph-Hadas S, Sundaresan S, Selvaraj KS, Burd S, Ophir R, Kochanek B, Reid MS, Jiang CZ, Lers A (2010) Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. Plant Physiol 154:1929–1956. Michaels SD, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino RM (2003) AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J 33:867–874. Patterson SE, Bleecker AB (2004) Ethylene-dependent and –independent processes associated with floral organ abscission in Arabidopsis. Plant Physiol 134:194-203. Ramamoorthy R, Phua EE K, Lim SH, Tan HT W, Kumar PP (2013) Identification and characterization of RcMADS1, an AGL24 ortholog from the holoparasitic plant Rafflesia cantleyi Solms-Laubach (Rafflesiaceae). PLoS ONE 8:1-11. Roberts JA, Elliott KA, Gonzalez-Carranza ZH (2002) Abscission, dehiscence, and other cell separation processes. Annu Rev Plant Biol 53:131-158. Stenvik GE, Butenko MA, Urbanowicz BR, Rose JKC, Aalen RB (2006) Overexpression of INFLORESCENCE DEFICIENT IN ABSCISSION activates cell separation in vestigial abscission zones in Arabidopsis. Plant Cell 18:1467−1476. Stenvik GE, Tandstad NM, Guo Y, Shi CL, Kristiansen W, Holmgren A, Clark SE, Aalen RB, Butenko MA (2008) The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. Plant Cell 20:1805–1817. Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409:469-471 Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115-149. Teeri TH, Uimari A, Kotilainen M, Laitinen R, Help H, Elomaa P, Albert VA (2006) Reproductive meristem fates in Gerbera. J Exp Bot 57:3445-3455. Wang KLC, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14 Suppl:S131–S151. Wellmer F, Riechmann JL (2010) Gene networks controlling the initiation of flower development. Trends Genet 26:19-27. Yoo DS, Cho Y, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270–279.
摘要: 
洋桔梗在國際市場上是相當重要的高經濟花卉。目前洋桔梗待解決的問題是於25°C以上高溫會導致簇生化而抑制開花,且二週的瓶插壽命限制了外銷的市場,因此本實驗目的是利用基因轉殖調控洋桔梗開花時間與瓶插壽命。前人研究中已知阿拉伯芥中的FT與LFY是促進開花基因,本實驗從洋桔梗中選殖出EgFT與EgLFY並進行功能性分析。實驗結果得知,EgFT主要表現在葉片與未成熟花苞中的花萼與花瓣。大量表現EgFT阿拉伯芥轉殖株藉由促進AP1基因表現而提早開花。大量表現EgFT洋桔梗轉殖株藉由促進MADS box基因中的A群基因EgAP1與EgFUL表現而在高溫生長環境中也能正常抽苔與開花。另外,大量表現EgFT洋桔梗轉殖株導致雄蕊與雌蕊轉變成花萼化花瓣,同時可偵測到MADS box基因中的A群基因:EgAP1、EgFUL與E群基因:EgSEP1、EgSEP3受到正調控,而C群基因EgAG受到負調控。以上結果顯示EgFT促進A與E群基因,並抑制C群基因而調控開花時間與花萼與花瓣之形成。EgLFY主要表現在未成熟花苞中的花萼。大量表現EgLFY阿拉伯芥轉殖株可觀察到頂芽分生組織轉變成花器之性狀,然而大量表現EgLFY洋桔梗轉殖株觀察到花器轉變形成花序分生組織或形成多花萼之結構。大量表現EgLFY洋桔梗轉殖株的A群基因EgAP1受到正向調控,而B群基因EgAP3、EgPI與 C群基因EgAG以及E群基因EgSEP3受到負調控。以上結果顯示EgLFY促進A群基因,並抑制B/C/E群基因而調控花萼之形成。前人研究已知阿拉伯芥中LFY與TFL1共同調控花序之結構,本實驗也選殖出洋桔梗中TFL1同源基因進行功能性分析。EgTFL1主要表現在未成熟花苞的花瓣、雄蕊及雌蕊,此表現量與EgLFY呈現負相關,同時也觀察到EgTFL1在大量表現EgLFY洋桔梗轉殖株中受到負調控,因此推測EgLFY與EgTFL1表現量可互相拮抗並分別調控洋桔梗花序與花器分生組織之形成。(第二章)
前人研究指出大量表現SVP與AGL24基因可延緩阿拉伯芥花器老化與凋落。為了增加洋桔梗瓶插壽命,本實驗從洋桔梗中選殖出SVP與AGL24同源基因並進行功能性分析。EgSVP主要表現在葉片與未成熟花苞中的花萼、花瓣以及雌蕊; EgAGL24主要表現在成熟花器中的花瓣以及在葉片也可偵測到表現量。大量表現EgSVP與EgAGL24在阿拉伯芥中可觀察到晚開花性狀以及下游的FT受到負調控。在阿拉伯芥中大量表現EgSVP與EgAGL24有延緩花器老化與凋落之性狀,且此花器不老化與不凋落之性狀並不受到乙烯處理的影響。利用即時相對定量分析測定基因表現量,乙烯路徑基因ERF1與離層脫落起始相關基因IDA、HAESA以及HSL2受到抑制。綜合以上結果得知,EgSVP與EgAGL24藉由調控乙烯訊息路徑與離層脫落起始相關基因,進而調節阿拉伯芥花器的老化與凋落。(第三章)

Eustoma grandiflorum is an important economic flower crop in the international market. Two srious problems for E. grandiflorum floral industry is the rosetting under higher temperature (> 25°C) and the short vase life for only two weeks. The aim in this study is to manipulate flowering time and vase life of E. grandiflorum by gene transformation. It has been reported that FT and LFY are activators for flowering. EgFT and EgLFY were isolated and functionally analyzed in this study. EgFT was predominantly expressed in leaf and the sepal and petal of young flower buds. Early flowering was observed in the 35S::EgFT transgenic Arabidopsis by upregulating the expression of AP1. 35S::EgFT transgenic Eustoma bypassed rosetting and bolted under high-temperature conditions by upregulating of A (EgAP1/EgFUL) functional genes. In addition, stamen and carpel were converted into sepal/petal like structures due to the up-regulation of A (EgAP1/EgFUL), E (EgSEP3/EgSEP1) and down-regulation of C (EgAG) functional genes in 35S::EgFT Eustoma. These results indicated that EgFT is able to promote flowering and regulate sepal/petal formation by activating the A/E genes and suppressing the C gene in E. grandiflorum. EgLFY was predominantly expressed in the sepal of young flower buds. 35S::EgLFY converted shoot meristems into flowers in the transgenic Arabidopsis. Interestingly, floral meristems were converted into inflorescence meristems or developed into numerous sepals in 35S::EgLFY transgenic Eustoma. The upregulation of A (EgAP1) and downregulation of B (EgAP3/EgPI), C (EgAG) and E (EgSEP3) functional MADS box genes were observed in 35S::EgLFY Eustoma. These results indicated that EgLFY is able to regulate sepal formation by activating the A genes and suppressing the B/C/E gene in E. grandiflorum. In this study, EgTFL1 was also isolated and functionally analyzed. EgTFL1 was predominantly expressed in the petal, stamen and carpel of young flower buds, and the expression pattern was opposite to EgLFY. In addition, the expression level of EgTFL1 was downregulated in the 35S::EgLFY Eustoma. These results indicated that the EgLFY and EgTFL1 antagonized each other to regulate the development of inflorescence and floral meristems. (Chapter 2)
It has been reported that ectopic expression of Arabidopsis MADS box genes SVP and AGL24 delay flower senescence and abscission in transgenic Arabidopsis. In order to improve vase life for E. grandiflorum flowers, two homologous genes of Arabidopsis SVP and AGL24 were isolated and characterized from E. grandiflorum. EgSVP was highly expressed in leaf and the sepal/petal/carpel of young flower buds. EgAGL24 mRNA was also detected in leaf and was predominantly expressed in petal of the mature flowers. Flowering time was delayed and the expression of downstream gene FT was repressed in 35S::EgSVP and 35S::EgAGL24 transgenic Arabidopsis. Furthermore, ectopic expression of EgSVP and EgAGL24 significantly delayed flower senescence and abscission in transgenic Arabidopsis. The delayed senescence and abscission of the flower organs in 35S::EgSVP and 35S::EgAGL24 Arabidopsis were unaffected by the ethylene treatment. Ethylene signaling pathway gene ERF1 and abscission initiation genes IDA, HAESA, HSL2 were repressed in 35S::EgSVP and 35S::EgAGL24 transgenic Arabidopsis. These data suggested a novel role for EgSVP and EgAGL24 in controlling the floral senescence and abscission by regulating ethylene perception and abscission initiation in Arabidopsis. (Chapter 3)
URI: http://hdl.handle.net/11455/90058
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:生物科技學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-8097041105-1.pdf13.33 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.