Please use this identifier to cite or link to this item:
標題: Characterization and Functional Analysis of B and C functional MADS Box Genes in Regulating Floral Organ Formation in Eustoma grandiflorum
洋桔梗中花器發育相關之B與C功能性MADS box基因之特性及功能性分析
作者: 謝依純
Yi-Chun Hsieh
關鍵字: 洋桔梗;Eustoma grandiflorum
引用: 陳星宇 (2000) 洋桔梗中與胚珠發育及花器形成相關MADS box 基因之分子選殖與特性分析。中興大學碩士論文。 王裕權 、張元聰、王仕賢、 張錦興 (2003)臺南區洋桔梗品種選育概況。臺南區農業專訊46:10-16。 劉友珍 (2005) 洋桔梗中E 功能性之MADS box 基因的選殖與特性分析。 中興大學碩士論文。 陳星宇 (2007) 洋桔梗與阿拉伯芥中與胚珠分化及花朵發育相關之MADS box 基因之選殖及功能性分析。中興大學博士論文。 張元聰、王裕權、陳燿煌、林棟樑、王仕賢 (2010) 洋桔梗育種之回顧與展望。台南區農業專訊73:7-10。 蔡宛育、陳彥樺、許謙信、易美秀、魏芳明 (2011) 提高洋桔梗生育及切花品質。臺中區農業專訊。74:13-17。 涂翠琴 (2011) 洋桔梗中與花器發育相關之MADS box 基因之特性與功能性分析。中興大學碩士論文。 莊天心 (2013) 洋桔梗中花器發育相關之MADS box 中的A 功能性基因之特性與功能性分析。中興大學碩士論文。 Alexander, M. P. (1969). Differential staining of aborted and nonaborted pollen.Stain technology, 44(3), 117-122. Angenent, G. C., Franken, J., Busscher, M., van Dijken, A., van Went, J. L., Dons, H. J., and van Tunen, A. J. (1995). A novel class of MADS box genes is involved in ovule development in petunia. The Plant Cell, 7(10), 1569-1582. Bowman, J. L., Smyth, D. R., and Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. The Plant Cell, 1(1), 37-52. Broholm, S. K., Pöllänen, E., Ruokolainen, S., Tähtiharju, S., Kotilainen, M., Albert, V. A., Elomaa. P., and Teeri, T. H. (2010). Functional characterization of B class MADS-box transcription factors in Gerbera hybrida. Journal of experimental botany, 61(1), 75-85. Clough, S. J., and Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. The plant journal, 16(6), 735-743. Coen, E. S., and Meyerowitz, E. M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature, 353(6339), 31-37. Coen, E. S., Romero, J., Doyle, S., Elliott, R., Murphy, G., and Carpenter, R. (1990). floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell, 63(6), 1311-1322. Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H. J., Angenent, G. C., and van Tunen, A. J. (1995). The petunia MADS box gene FBP11 determines ovule identity. The Plant Cell, 7(11), 1859-1868. Dornelas, M. C., and Dornelas, O. (2005). From leaf to flower: revisiting Goethe's concepts on the 'metamorphosis' of plants. Brazilian Journal of Plant Physiology, 17(4), 335-344. Honma, T., and Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 409(6819), 525-529. Li, G., Meng, Z., Kong, H., Chen, Z., and Lu, A. (2003). ABC model and floral evolution. Chinese Science Bulletin, 48(24), 2651-2657. Ikeda, M., and Ohme-Takagi, M. (2009). A novel group of transcriptional repressors in Arabidopsis. Plant and cell physiology, 50(5), 970-975. Ito, T., Ng, K. H., Lim, T. S., Yu, H., & Meyerowitz, E. M. (2007). The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. The Plant Cell, 19(11), 3516-3529. Kater, M. M., Colombo, L., Franken, J., Busscher, M., Masiero, S., Campagne, M. M. V. L., and Angenent, G. C. (1998). Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. The Plant Cell, 10(2), 171-182. Kaufmann, K., Melzer, R., and Theissen, G. (2005). MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 347(2), 183-198. Kramer, E. M., Dorit, R. L., and Irish, V. F. (1998). Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics, 149(2), 765-783. Kramer, E. M., Jaramillo, M. A., and Di Stilio, V. S. (2004). Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics, 166(2), 1011-1023. Kramer, E. M., Su, H. J., Wu, C. C., and Hu, J. M. (2006). A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evolutionary Biology, 6(1), 30. Mitsuda, N., Hiratsu, K., Todaka, D., Nakashima, K., Yamaguchi‐Shinozaki, K., and Ohme‐Takagi, M. (2006). Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice. Plant biotechnology journal, 4(3), 325-332. Mizukami, Y., Huang, H., Tudor, M., Hu, Y., and Ma, H. (1996). Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations. The Plant Cell, 8(5), 831-845. Mizukami, Y., and Ma, H. (1992). Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell, 71(1), 119-131. Münster, T., Pahnke, J., Di Rosa, A., Kim, J. T., Martin, W., Saedler, H., and Theissen, G. (1997). Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proceedings of the National Academy of Sciences, 94(6), 2415-2420. Nam, J., Kaufmann, K., Theissen, G., and Nei, M. (2005). A simple method for predicting the functional differentiation of duplicate genes and its application to MIKC-type MADS-box genes. Nucleic acids research, 33(2), e12-e12. Pelaz, S., Gustafson‐Brown, C., Kohalmi, S. E., Crosby, W. L., and Yanofsky, M. F. (2001). APETALA1 and SEPALLATA3 interact to promote flower development. The Plant Journal, 26(4), 385-394. Pinyopich, A., Ditta, G. S., Savidge, B., Liljegren, S. J., Baumann, E., Wisman, E., and Yanofsky, M. F. (2003). Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 424(6944), 85-88. Purugganan, M. D. (1997). The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. Journal of Molecular Evolution, 45(4), 392-396. Rogers, H. J. (2013). From models to ornamentals: how is flower senescence regulated?. Plant molecular biology, 82(6), 563-574. Rutledge, R., Regan, S., Nicolas, O., Fobert, P., Côté, C., Bosnich, W., Kauffeldt. C., Sunohara, G., Seguin, A., and Stewart, D. (1998). Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. The Plant Journal, 15(5), 625-634. Tanaka, Y., Oshima, Y., Yamamura, T., Sugiyama, M., Mitsuda, N., Ohtsubo, N., Ohme-Takagi, M., and Terakawa, T. (2013). Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression. Scientific reports, 3. Theissen, G. (2001). Development of floral organ identity: stories from the MADS house. Current opinion in plant biology, 4(1), 75-85. Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J. T., Münster, T., Winter., K. U., and Saedler, H. (2000). A short history of MADS-box genes in plants. In Plant Molecular Evolution (pp. 115-149). Springer Netherlands. Theissen, G., and Saedler, H. (2001). Plant biology: floral quartets. Nature,409(6819), 469-471. Tsuchimoto, S., van der Krol, A. R., and Chua, N. H. (1993). Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. The Plant Cell, 5(8), 843-853. Sasaki, K., Yamaguchi, H., Nakayama, M., Aida, R., and Ohtsubo, N. (2014). Co-modification of class B genes TfDEF and TfGLO in Torenia fournieri Lind. alters both flower morphology and inflorescence architecture. Plant molecular biology, 86(3), 319-334. Shinners, L. H. (1957). Synopsis of the genus Eustoma (Gentianaceae). The Southwestern Naturalist, 38-43. Sommer, H., Beltran, J. P., Huijser, P., Pape, H., Lönnig, W. E., Saedler, H., and Schwarz-Sommer, Z. (1990). Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. The EMBO Journal, 9(3), 605. Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A., and Meyerowitz, E. M. (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 346(6279), 35-39. Wood, C. E., and Weaver, R. E. (1982). The genera of Gentianaceae in the southeastern United States. J. Arnold Arbor, 63, 441-87.
洋桔梗具有多樣的花色及花型而成為台灣切花市場廣受歡迎的切花植物。在阿拉伯芥調控花器發育的ABCDE模式中,A和E群基因調控花萼的發育,A、B和E群基因共同調控花瓣的發育,B、C和E群基因則調控雄蕊的發育,C和E群基因調控雌蕊的發育。大多的ABCDE 基因轉譯出MADS box蛋白,其所具有MADS domain與DNA的結合相關、Intervening domain 與二聚體的形成相關、Keratin-like domain與蛋白質間的交互作用相關及C-terminal domain具有多元的功能。為了進一步探討MADS box基因在洋桔梗中的功能,選殖出洋桔梗中B群的兩個同源基因EgAP3 和EgPI及C群的同源基因EgAG 進行功能性分析。本研究中,藉由轉入去除 MADS domain之基因包含EgAP3-∆M, EgPI-∆M, EgAG-∆M至阿拉伯芥及洋桔梗中,得到顯性抑制突變株(dominant negative mutants)。實驗結果顯示,在35S::EgAP3-∆M、35S::EgPI-∆M及 35S::EgAG-∆M阿拉伯芥轉殖株觀察到雄不稔之性狀,但並未造成花器的改變。而35S::EgPI-∆M洋桔梗轉殖株中,則可觀察到花瓣無法正常發育,其花瓣細胞轉變成花萼細胞的型態,此結果顯示EgPI確實參與了花瓣的調控。更進一步利用RNA干擾 (RNA interference)以靜默EgAP3, EgPI和EgAG等基因在洋桔梗的表現。本實驗基因轉殖植物的性狀觀察及分析仍持續進行中。期望在不久的將來可利用調控花器形成相關EgMADS基因,能藉由操控花型而增加洋桔梗的市場價值。

Eustoma grandiflorum is a popular cut flower in the international market because it contains many cultivars with diverse flower color and shape. In the ABCDE model of floral development in Arabidopsis thaliana, class A and E genes regulate sepal, class A, B and E genes regulate petal, class B, C and E genes regulate stamen, and class C, E genes regulate carpel. Most ABCDE genes encode typical MADS box proteins which contain a DNA-binding domain (MADS domain), a protein dimerization domain (Intervening domain), a protein interaction domain (Keratin-like domain), and a C-terminal domain with diverse function. To explore the function of EgMADS genes in regulating flower formation in Eustoma grandiflorum, two B functional genes EgAP3, EgPI and one C functional gene EgAG were isolated and characterized. In this study, dominant negative mutants for EgAP3, EgPI and EgAG were generated in Arabidopsis and E. grandiflorum by ectopic expression of the truncated form of these three genes in which the MADS box domain was deleted (35S::EgAP3-∆M, 35S::EgPI-∆M, 35S::EgAG-∆M). Male sterility was observed in the 35S::EgAP3-∆M, 35S::EgPI-∆M and 35S::EgAG-∆M transgenic Arabidopsis. However, no further alteration in flower organ formation was observed in these transgenic Arabidopsis plants. Interestingly, abnormal petal development was observed in the 35S::EgPI-∆M transgenic Eustoma. The petals were converted into sepal-like structures in the 35S::EgPI-ΔM transgenic E. grandiflorum flowers. This result indicated that the function of EgPI is involved in petal development. In addition, down-regulation of EgAP3, EgPI and EgAG function by using RNA interference (RNAi) and phenotypic analysis of all the RNAi transgenic plants has also been undertaken to elucidate the function of these three genes in transgenic E. grandiflorum. In the future, the manipulation of these EgMADS genes in controlling floral shape for E. grandiflorum would increase its market value.
Rights: 同意授權瀏覽/列印電子全文服務,2015-08-20起公開。
Appears in Collections:生物科技學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7101041010-1.pdf4.89 MBAdobe PDFThis file is only available in the university internal network   
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.