Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90072
標題: Molecular identification and characterization of a serine carboxypeptidase-like gene associated with abiotic stress in tea plant, Camellia sinensis (L.)
茶樹中CsSCPL基因之分子鑑定及在非生物性逆境下表現之特性探討
作者: 邱致豪
Chih-Hao Chiu
關鍵字: 茶;酯型兒茶素;非生物性逆境;絲胺酸羧肽酶;二次代謝物;tea;Camellia sinensis L;catechins;serine carboxypeptidase-like protein;abiotic stress
引用: 李欣潔。(2013)。不同海拔烏龍茶中兒茶素含量之分析。中興大學生物科技學研究所碩班論文。 林儒宏,簡靖華,蕭建興,郭寬福,黃正宗,邱垂豐,與林金池。(2013)。近十年來中南部茶區農業氣象之溫度調查與變化趨勢。102年度農業供程與自動化計畫成果研討會論文集(台中市)。166-171。 Arimura, G., Kopke, S., Kunert, M., Volpe, V., David, A., Brand, P., Dabrowska, P., Maffei,M. E., and Boland,W. (2008). Effects of feeding Spodoptera littoralis on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emission. Plant Physiol. 146: 965- 973. Arimura, G., Kost, C., and Boland, W. (2005). Herbivore-induced, indirect plant defences. Biochim. Biophys. Acta 1734: 91- 111. Bajec, M. R., Pickering, G. J. (2008). Astringency: mechanisms and perception. Crit. Rev. Food Sci. Nutr. 48: 858- 75. Balentine, D. A. (1997). Introduction: tea and health. Crit. Rev. Food Sci. Nutr. 8: 691- 669. Boyle, B., and Brisson, N. (2001). Repression of the defense gene PR-10a by the single-stranded DNA binding protein SEBF. Plant Cell 13: 2525- 2537. Buchel, A. S., Brederode, F. T., Bol, J. F., and Linthorst, H. J. M. (1999). Mutation of GT-1 binding sites in the Pr-1A promoter influences the level of inducible gene expression in vivo. Plant Mol. Biol. 40: 387- 396. Cala, O, Pinaud, N., Simon, C., Fouquet, E., Laguerre, M, Dufourc, E. J.,and Pianet, I. (2010). NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects. FASEB. J. 24: 4281- 4290. Cheruiyot, E. K., Mumera, L. M., Ng'etich, W. K., Hassanali, A., and Wachira, F. (2007). Polyphenols as potential indicators for drought tolerance in tea (Camellia sinensis L.). Biosci. Biotechnol. Biochem. 71: 2190- 2197. Cho, J.Y., Mizutani, M., Shimizu, B., Kinoshita, T., Ogura, M., Tokoro, K., Lin, M. L., and Sakata, K. (2007). Chemical profiling and gene expression profiling during the manufacturing process of Taiwan oolong tea 'Oriental Beauty'. Biosci. Biotechnol. Biochem. 71: 1476-1486. Crespy, V., and Williamson, G. (2004). A review of the health effects of green tea catechins in in vivo animal models. J. Nutr. 134: 3431S- 3440S. D'Auria, J. C. (2006). Acyltransferases in plants: A good time to be BAHD. Curr. opin. plant biol. 9: 331- 340. Degenhardt, J., and Tobin, E. M. (1996). A DNA binding activity for one of two closely defined phytochrome regulatory elements in an Lhcb promoter is more abundant in etiolated than in green plants. Plant Cell 8: 31- 41. Dicosmo, F., and Misawa, M. (1985). Eliciting secondary metabolism in plant cell cultures. Trends Biotechnol. 3: 318- 322. Dong, F., Yang, Z., Baldermann, S., Sato, Y., Asai, T., and Watanabe, N. (2011). Herbivore-induced volatiles from tea (Camellia sinensis) plants and their involvement in intraplant communication and changes in endogenous nonvolatile metabolites. J. Agric. Food Chem. 59: 13131- 13135. Eulgem, T., Rushton, P. J., Robatzek, S., and Somssich, I. E. (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199- 206. Ferruzzi, M. G., Bordenave, N., and Hamaker, B. R. (2012). Dose flavor impact function? Potential consequences of polyphenol-protein interactions in delivery and bioactivity of flavan-3-ols from foods. Physiol. Behav. 107: 591- 597. Fraser, C. M., Rider, L. W., and Chapple, C. (2005). An expression and bioinformatics analysis of the Arabidopsis serine carboxypeptidase- like gene family. Plant Physiol. 138: 1136- 1148. Giuliano, G., Pichersky, E., Malik, V. S., Timko, M. P., Scolnik, P. A., and Cashmore. (1988). An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc. Natl. Acad. Sci. 85: 7089- 7093. Gupta, S., Hastak, K., Ahmad, N., Lewin, J. S., and Mukhtar, H. (2001). Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc. Natl. Acad. Sci. 98: 10350- 10355. Hara, Y., Luo, S. J., Wickremashinghe, R. L., and Yamanishi, T. (1995a). Botany (of tea). Food Rev. Int. 11: 371- 374. Hara, Y., Luo, S. J., Wickremashinghe, R. L., and Yamanishi, T. (1995b). IV. Processing tea. Food Rev. Int. 11: 409- 434. Hara, Y., Luo, S. J., Wickremashinghe, R. L., and Yamanishi, T. (1995c). V. Chemical composition of tea. Food Rev. Int. 11: 435- 456. Hara, Y., Luo, S. J., Wickremashinghe, R. L., and Yamanishi, T. (1995d). VI. Biochemistry of processing black tea. Food Rev. Int. 11: 457- 471. Hara, Y., Luo, S. J., Wickremashinghe, R. L., and Yamanishi, T. (1995e) VIII. Flavor of tea. Food Rev. Int. 11: 477- 525. Halliwell, B., Rafter, J., and Jenner, A. (2005). Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not? Am. J. Clin. Nutr. 81: 268S- 276S. Hayashi, N., Chen, R., Hiraoka, M., Ujihara, T., and Ikezaki, H. (2010). Beta-cyclodextrin/surface plasmon resonance detection system for sensing bitter-astringent taste intensity of green tea catechins. J. Agric. Food Chem. 58: 8351- 8356. Hudson, M. E., and Quail, P. H. (2003). Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol. 133: 1605- 1616. Jaiprakash, M. R., Pillai, B., Venkatesh, P., N S., Sinker, V. P., and Sadhale1, P. P. (2003). RNA isolation from high-phenolic freeze-dried tea (Camellia sinensis) leaves. Plant Mol. Biol. 21: 465a- 465g. Jiao, Y., Ma, L., Strickland, E., and Deng, X. W. (2005). Conservation and divergence of light-regulated genome expression patterns during seedling development in rice and arabidopsis. Plant Cell 17: 3239- 3256. Karuppusamy, S. (2009). A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J. Med. Plants Res. 3: 1222- 1239. Kavanagh, K. T., Hafer, L. J., Kim, D. W., Mann, K. K., Sherr, D. H., Rogers, A. E., and Sonenshein, G. E. (2001). Green tea extracts decrease carcinogen- induced mammary tumor burden in rats and rate of breast cancer cell proliferation in culture. J. Cell Biochem. 82: 387- 398. Klinedinst, S., Pascuzzi, P., Redman, J., Desai, M., and Arias, J. (2000).A xenobiotic-stress-activated transcription factor and its cognate target genes are preferentially expressed in root tip meristems. Plant Mol. Biol. 42: 679- 688. Koyama, K., Ikeda, H., Poudel, P. R., and Goto-Yamamoto, N. (2012). Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry 78: 54- 64. Kozak, M. (1983). Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 47: 1- 45. Lee, V. S. Y., Chen, C. R., Lio, Y. W., Tzen, J. T. C., and Chang, C. I. (2008). Structural determination and DPHH radical scavenging activity of two acylated tetraglycosides in Oolong Tea. Chem. Pharm. Bull. 56: 851- 853. Lehfeldt, C., Shirley, A. M., Meyer, K., Ruegger, M. O., Cusumano, J. C., Viitanen, P. V., Strack, D., and Chapple, C. (2000). Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. Plant Cell 12: 1295- 306. Li, A. L., Eannetta, N., Ghangas, G. S., and Steffens, J. C. (1999). Glucose polyester biosynthesis. Purification and characterization of a glucose acyltransferase. Plant Physiol. 121: 453- 460. Li, A. X., and Steffens, J. C. (2000). An acyltransferase catalyzing the formation of diacylglucose is a serine carboxypeptidase like protein. Proc. Natl. Acad. Sci. U. S. A. 97: 6902- 6907. Liang, Y., Lu, J., Zhang, L., Wu, S., and Wu, Y. (2003). Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions. Food Chem. 80: 283- 290. Lillo, C., Lea, U., and Ruoff, P. (2008). Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ. 31: 587- 601. Liu, H., Wang, X., Zhang, H., Yang, Y., Ge, X., and Song, F. (2008). A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene 420: 57- 65. Liu, M., Tian, H. L., Wu, J. H., Cang, R. R.,Wang, R. R., Qi, X. H., Xu, Q., and Chen, X. H. (2015). Relationship between gene expression and the accumulation of catechin during spring and autumn in tea plants (Camellia sinensis L.). Hortic. Res. 15011: 1- 8 Liu, Y., Gao L., Liu, L., Yang, Q., Lu, Z., Nie, Z., Wang, Y., and Xia, T. (2012). Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant (Camellia sinensis). J. Biol. Chem. 287: 44406- 44417. Martinez-Hernandez, A., Lopez-Ochoa, L., Arguello-Astorga, G., and Herrera-Estrella, L. (2002). Functional properties and regulatory complexity of a minimal RBCS light-responsive unit activated by phytochrome, cryptochrome, and plastid signals. Plant Physiol. 128: 1223- 1233. Mellway, R. D., Tran, L. T., Prouse, M. B., Malcolm, M., Campbell, M. M., and Constabel, C. P., (2009). The wound- , pathogen- , and ultraviolet B- responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar. Plant Physiol. 150: 924- 941. Milkowski, C., Baumert, A., Schmidt, D., Nehlin, L., and Strack, D. (2004). Molecular regulation of sinapate ester metabolism in Brassica napus: expression of genes, properties of the encoded proteins and correlation of enzyme activities with metabolite accumulation. Plant J. 38: 80- 92. Mugford, S. T., and Milkowski, C. (2012). Serine carboxypeptidase-like acyltransferases from plants. Methods enzymol. 516: 279- 297. Mugford, S. T., Qi, X., Bakht, S., Hill, L., Wegel, E., Hughes, R. K. (2009). A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell 21: 2473- 2484. Mugford, S. T., and Osbourn, A. (2010). Evolution of serine carboxypeptidase-like acyltransferases in the monocots. Plant Signaling and Behavior 5: 193- 195. Mukhtar, H., and Ahmad, N. (2000). Tea Polyphenols: prevention of cancer and optimizing health. Am. J. Clin. Nutr. 71: 1698S- 1702S. Nakamura, M., Tsunoda, T., and Obokata, J. (2002). Photosynthesis nuclear genes generally lack TATA-boxes: a tobacco photosystem I gene responds to light through an initiater. Plant J. 29: 1- 10. Narukawa, M., Noga, C., Ueno, Y., Sato, T., Misaka, T., and Watanabe, T. (2011). Evaluation of the bitterness of green tea catechins by a cell-based assay with the human bitter taste receptor hTAS2R39. Biochem. Biophys. Res. Commun. 405: 620- 615. Negishi, H., Xu, J. W., Ikeda, K., Njelekela, M., Nara, Y., and Yamori, Y. (2004). Black and green tea polyphenols attenuate blood pressure increases in stroke-prone spontaneously hypertensive rats. J. Nutr. 134: 38-42. Nguyen, L. H., Jensen, D. B., and Burgess, R. R. (1993). Over production and purification of s32, the Escherichia coli heat shock transcription factor. Protein Expr. Purif. 4: 425- 433. Petersen, T. N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods 8: 785- 786. Punyasiri, P. A., Abeysinghe, S. B., and Kumar, V. (2005). Preformed and induced chemical resistance of tea leaf against Exobasidium vexans infection. J. Chem. Ecol. 31: 1315- 24. Rawat, R., Xu, Z. F., Yao, K. M., and Chye, M.L. (2005). Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase. Plant Mol. Biol. 57: 629- 643. Ramakrishna, A., and Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 6: 1720- 1731. Ross, E. J., Stone, J. M., Elowsky, C. G., Arredondo-Peter, R., Klucas, R. V., and Sarath, G. (2004). Activation of the Oryza sativa non-symbiotic haemoglobin-2 promoter by the cytokinin-regulated transcription factor, ARR1. J. Exp. Bot. 55: 1721- 1731. Scharbert, S., Holzmann, N., and Hofmann, T. (2004).Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J. Agric. Food Chem. 52: 3498- 508. Sheahan, J. J. (1996). Sinapate esters provide greater UV-B attenuation than flavonoids in Arabidopsis thaliana (Brassicaceae). Am. J. Bot. 83: 679- 686. Shimoda, M., Shiratsuchi, H., and Osajima, Y. (1995). Comparison of the odor concentrates by SDE and adsorptive column method from green tea infusion. J. Agri. Food Chem. 43: 1616- 1620. Shirley, A. M., and Chapple, C. (2003). Biochemical characterisation of sinapoyl:choline sinapoyltransferase, a serine carboxypeptidase- like protein that functions as an acyltransferase in plant secondary metabolism. J. Biol. Chem. 278: 19870- 19877. Shirley, A. M., McMichael, C. M., and Chapple, C. (2001). The sng2 mutant of Arabidopsis is defective in the gene encoding the serine carboxypeptidase-like protein sinapoylglucose:choline sinapoyltransferase. Plant J. 28: 83- 94. Skrzydlewska, E., Ostrowska, J., Farbiszewski, R., and Michalak, K. (2002). Protective effect of green tea against lipid peroxidation in the rat liver, blood serum and the brain. Phytomedicine 9: 232- 238. Stehle, F., Stubbs, M. T., Strack, D., and Milkowski, C. (2008). Heterologous expression of a serine carboxypeptidase- like acyltransferase and characterization of the kinetic mechanism. FEBS. J. 275: 775- 787. Stehle, F., Brandt, W., Stubbs, M. T., Milkowski, C., and Strack, D. (2009). Sinapoyltransferases in the light of molecular evolution. Phytochemistry 70: 1652- 1662. Steffens, J. C. (2000). Acyltransferases in protease's clothing. Plant Cell 12: 1253- 1255. St. Pierre, B., and De Luca, V. (2000). Evolution of acyltransferase genes: Origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. Recent. Adv. Phytochem. 34: 285- 315. Sudha, G., and Ravishankar, G. A. (2003). Elicitation of anthocyanin production in callus cultures of Daucus carota and involvement of calcium channel modulators. Curr. Sci. 84: 775- 779. Terzaghi,W. B., and Cashmore, A. R. (1995). Light-regulated transcription. Annu. Rev. Plant Physiol Plant Mol. Biol. 46: 445- 474. Thum, K. E., Kim, M., Morishige, D. T., Eibl, C., Koop, H. U., and Mullet, J. E. (2001). Analysis of barley chloroplast psbD light-responsive promoter elements in transplastomic tobacco. Plant Mol. Biol. 47: 353- 366. Treutter, D. (2005). Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology. 7: 581- 591. Upadhyaya, H., Panda, S. K., and Dutta, B. K. (2008). Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery. Acta Physiologiae Plantarum 30: 457- 468. Von Gromoff, E. D., Schroda, M., Oster, U., and Beck, C. F. (2006). Identification of a plastid response element that acts as an enhancer within the Chlamydomonas HSP70A promoter. Nucleic Acids Res. 34: 4767- 4779. Wang, Y. S., Gao, L. P., Shana, Y., Liu, Y. J., Tianb, Y. W., and Tao Xia, T. (2012). Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.)O. Kuntze). Sci. hortic. 141: 7- 16. Wenkel, S., Turck, F., Singer, K., Gissot, L., Le Gourrierec, J., Samach, A., and Coupland, G. (2006). CONSTANS and the CCAAT Box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18: 2971- 2984. Wolfram, S., Wang, Y., and Thielecke, F. (2006) Anti-obesity effects of green tea. From bedside to bench. Mol. Nutr. Food Res. 50: 176- 187. Xu, N., Hagen, G., and Guilfoyle, T. (1997). Multiple auxin response modules in the soybean SAUR 15A promoter. Plant Sci. 126: 193- 201. Xu, Y., Ho, C. T., Amin, S. G., Han, C., and Chung, F. L. (1992). Inhibition of tobacco-specific nitrosamine-induced lung tumorigenesis in A/J mice by green tea and its major polyphenol as antioxidants. Cancer Res. 52: 3875- 3879. Yamane, T., Nakatani, H., Kikuoka, N., Matsumoto, H., Iwata, Y., Kitao, Y., Oya, K., and Takahashi, T. (1996). Inhibitory effects and toxicity of green tea polyphenols for gastrointestinal carcinogenesis. Cancer Res. 77: 1662- 1667. Yokozawa, T., Nakagawa, T., and Kitani, K. (2002). Antioxidative activity of green tea polyphenol in cholesterol-fed rats. J. Agric. Food Chem. 50: 3549- 3552. Yu, X. H., Chen, M. H., and Liu, C. J. (2008). Nucleocytoplasmic localized acyltransferases catalyze the malonylation of 7-O-glycosidic (iso)flavones in Medicago truncatula. Plant Journal 55: 382- 396. Zhang, G., Miura, Y., and Yagasaki, K. (2002). Effects of dietary powdered green tea and theanine on tumor growth and endogenous hyperlipidemia in hepatoma-bearing rats. Biosci. Biotechnol. Biochem. 66: 711- 716.
摘要: 
茶為目前在世界上最廣泛的飲品,超過三十個以上的國家皆有種植茶樹。茶樹中含有非常大量的二級代謝物,特別是多酚類及類黃酮類化合物,當中含量最多的則為兒茶素。文獻指出,喝茶時所產生的澀味主要由酯型兒茶素(gallate-type catechin)所引起。酯型兒茶素主要是由茶樹中的絲胺酸羧肽酶(serine carboxypeptidase-like acyltransferase, SCPL)反應生成。因此,本研究將從茶樹中選殖出CsSCPL基因,並進一步了解茶樹中CsSCPL基因之分子特性及在外部環境變化下表現之情形。我們從青心烏龍茶樹中選殖出一個新的CsSCPL基因。該基因之cDNA全長包含一段長度為1440鹼基對的開放閱讀框,可編碼480個胺基酸序列,預測之分子量為54.5 kDa,等電點為5.25。與柿子(persimmon) DkSCPL、釀酒葡萄(grape) VvSCPL、野草莓(woodland strawberry) FvSCPL、柳橙(sweet orange) CsSCPL17等高等植物之SCPL蛋白進行序列比對分析,結果發現CsSCPL與其他SCPL蛋白具有高度同源性。利用即時定量聚合酶連鎖反應(Quantitative real time polymerase chain reaction, qRT-PCR)方法分析,發現CsSCPL基因主要表現在茶苗的嫩葉以及成熟茶樹的一心二葉。在非生物性逆境處理下,CsSCPL基因表現受到高溫所誘導,然而在低溫、高鹽或乾旱處理下其表現量下降。利用高效液相層析法(high performance liquid chromatography, HPLC)分析發現高溫環境與酯型兒茶素之生成具有正關聯性。進一步收取在同一地點但四個不同生長季節之茶樹一心二葉材料進行分析,qRT-PCR分析結果顯示,CsSCPL基因相對其它季節而言,在夏季具有最高的表現量,且基因表現量與季節氣溫之變化亦呈現相同趨勢。CsSCPL基因上游啟動子調控序列之分析結果顯示,CsSCPL基因啟動子具有多個受光線及荷爾蒙如生長素(auxin)或乙烯(ethylene)調控之保留性序列。針對茶樹CsSCPL蛋白之確切功能分析則有待更進一步研究探討,以了解其在植物二次代謝物生合成途徑扮演之角色。

Tea (Camellia sinensis L.) is grown in more than 30 countries, and is the most widely consumed beverage in the world aside from water. Tea contains many secondary metabolites, especially polyphenolic compounds and flavonoid. The main substances causing astringent taste in oolong tea are catechins. It has been shown that gallate-type catechins are far more astringent than non-gallate-type catechins. Previous research had shown that the Serine carboxypeptidase-like (SCPL) proteins have involved in galloylated catechin biosynthesis. We isolated a CsSCPL gene encoding a serine carboxypeptidase-like protein from oolong tea plant. The full-length CsSCPL cDNA contains a 1440-bp open reading frame, encoding a protein of 480 amino acids with a calculated molecular mass of 54.5 kDa and an isoelectric point of 5.25. Sequence alignment analyses showed that CsSCPL is a serine carboxypeptidase with high homology to other SCPL proteins, including DkSCPL (persimmon), VvSCPL (grape), FvSCPL (woodland strawberry), and CsSCPL17 (sweet orange). Quantitative RT-PCR analyses revealed that the highest transcript levels of CsSCPL were in young leaves of tea seedlings and in buds of mature tea plants. The CsSCPL transcript levels increased in response to heat stress but decreased in response to cold, high salinity, and drought stresses. The degree of catechin galloylation was positively correlated with CsSCPL transcript levels after heat treatments. During four growing seasons, the CsSCPL was presented highest transcript levels in summer, which has the highest mean monthly temperature in the field. In silico promoter analysis presented that the CsSCPL promoter contains several important cis-elements which regulated by light, heat, cytokinin, and ethylene. Our results may provide useful information for further research on SCPL function in plants and oolong tea manufacture in the future.
URI: http://hdl.handle.net/11455/90072
Rights: 同意授權瀏覽/列印電子全文服務,2017-07-29起公開。
Appears in Collections:生物科技學研究所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7102041025-1.pdf9.58 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.