Please use this identifier to cite or link to this item:
標題: The effect of NbUbE3R1 on the infection cycle of Bamboo mosaic virus in Nicotiana benthamiana
菸草差異性表現基因 NbUbE3R1 對於竹嵌紋病毒生命週期的影響
作者: 張瑞恩
Jui-En Chang
關鍵字: 無;no
引用: Alcaide-Loridan, C., and I. Jupin. 2012. Ubiquitin and plant viruses, let's play together! Plant physiology. 160:72-82. Angell, S.M., and D.C. Baulcombe. 1997. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. The EMBO journal.16:3675-3684. Azevedo, C., A. Sadanandom, K. Kitagawa, A. Freialdenhoven, K. Shirasu, and P.Schulze-Lefert. 2002. The RAR1 interactor SGT1, an essential component of Rgene-triggered disease resistance. Science. 295:2073-2076. Bachmair, A., M. Novatchkova, T. Potuschak, and F. Eisenhaber. 2001. Ubiquitylation in plants: a post-genomic look at a post-translational modification. Trends in plant science. 6:463-470. Barajas, D., Z. Li, and P.D. Nagy. 2009. The Nedd4-type Rsp5p ubiquitin ligase inhibits tombusvirus replication by regulating degradation of the p92 replication protein and decreasing the activity of the tombusvirus replicase. Journal of virology. 83:11751-11764. Barajas, D., and P.D. Nagy. 2010. Ubiquitination of tombusvirus p33 replication protein plays a role in virus replication and binding to the host Vps23p ESCRT protein. Virology. 397:358-368. Baulcombe, D. 2004. RNA silencing in plants. Nature. 431:356-363. Baulcombe, D.C. 1999. Fast forward genetics based on virus-induced gene silencing. Current opinion in plant biology. 2:109-113. Becker, F., E. Buschfeld, J. Schell, and A. Bachmair. 1993. Altered Response to Viral-Infection by Tobacco Plants Perturbed in Ubiquitin System. Plant J. 3:875-881. Berrocal-Lobo, M., S. Stone, X. Yang, J. Antico, J. Callis, K.M. Ramonell, and S. Somerville. 2010. ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses. PloS one. 5:e14426. Boller, T., and G. Felix. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual review of plant biology. 60:379-406. Bombarely, A., H.G. Rosli, J. Vrebalov, P. Moffett, L.A. Mueller, and G.B. Martin. 2012. A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant Microbe Interact. 25:1523-1530. Camborde, L., S. Planchais, V. Tournier, A. Jakubiec, G. Drugeon, E. Lacassagne, S. Pflieger, M. Chenon, and I. Jupin. 2010. The ubiquitin-proteasome system regulates the accumulation of Turnip yellow mosaic virus RNA-dependent RNA polymerase during viral infection. The Plant cell. 22:3142-3152. Chen, H.C., L.R. Kong, T.Y. Yeh, C.P. Cheng, Y.H. Hsu, and N.S. Lin. 2012. The conserved 5' apical hairpin stem loops of bamboo mosaic virus and its satellite RNA contribute to replication competence. Nucleic acids research. 40:4641-4652. Chen, I.H., M.H. Chiu, S.F. Cheng, Y.H. Hsu, and C.H. Tsai. 2013. The glutathione transferase of Nicotiana benthamiana NbGSTU4 plays a role in regulating the early replication of Bamboo mosaic virus. New Phytol. 199:749-757. Chen, S.C., A. Desprez, and R.C. Olsthoorn. 2010. Structural homology between bamboo mosaic virus and its satellite RNAs in the 5'untranslated region. The Journal of general virology. 91:782-787. Cheng, S.F., Y.P. Huang, Z.R. Wu, C.C. Hu, Y.H. Hsu, and C.H. Tsai. 2010. Identification of differentially expressed genes induced by Bamboo mosaic virus infection in Nicotiana benthamiana by cDNA-amplified fragment length polymorphism. BMC Plant Biol. 10:286. Cheng, S.F., M.S. Tsai, C.L. Huang, Y.P. Huang, I.H. Chen, N.S. Lin, Y.H. Hsu, C.H. Tsai, and C.P. Cheng. 2013. Ser/Thr kinase-like protein of Nicotiana benthamiana is involved in the cell-to-cell movement of Bamboo mosaic virus. PloS one. 8:e62907. Christie, S.R., and W.E. Crawford. 1978. Plant-Virus Range of Nicotiana-Benthamiana. Plant Dis Rep. 62:20-22. Cohn, J., G. Sessa, and G.B. Martin. 2001. Innate immunity in plants. Current opinion in immunology. 13:55-62. Delaure, S.L., W. van Hemelrijck, M.F.C. De Bolle, B.P.A. Cammue, and B.M.A. De Coninck. 2008. Building up plant defenses by breaking down proteins. Plant Sci. 174:375-385. Dielen, A.S., F.T. Sassaki, J. Walter, T. Michon, G. Menard, G. Pagny, R. Krause-Sakate, I.D. Maia, S. Badaoui, O. Le Gall, T. Candresse, and S. German-Retana. 2011. The 20S proteasome alpha(5) subunit of Arabidopsis thaliana carries an RNase activity and interacts in planta with the Lettuce mosaic potyvirus HcPro protein. Molecular plant pathology. 12:137-150. Drugeon, G., and I. Jupin. 2002. Stability in vitro of the 69K movement protein of Turnip yellow mosaic virus is regulated by the ubiquitin-mediated proteasome pathway. The Journal of general virology. 83:3187-3197. Goodin, M.M., D. Zaitlin, R.A. Naidu, and S.A. Lommel. 2008. Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Molecular plant-microbe interactions : MPMI. 21:1015-1026. Guzman, P. 2012. The prolific ATL family of RING-H2 ubiquitin ligases. Plant Signal Behav. 7:1014-1021. Hou, S., Y. Yang, and J.M. Zhou. 2009. The multilevel and dynamic interplay between plant and pathogen. Plant Signal Behav. 4:283-293. Hsu, Y.H., P. Annamalai, C.S. Lin, Y.Y. Chen, W.C. Chang, and N.S. Lin. 2000. A sensitive method for detecting bamboo mosaic virus (BaMV) and establishment of BaMV-free meristem-tip cultures. Plant Pathol. 49:101-107. Hua, Z., and R.D. Vierstra. 2011. The cullin-RING ubiquitin-protein ligases. Annual review of plant biology. 62:299-334. Huang, C.Y., Y.L. Huang, M. Meng, Y.H. Hsu, and C.H. Tsai. 2001. Sequences at the 3'untranslated region of bamboo mosaic potexvirus RNA interact with the viral RNA-dependent RNA polymerase. Journal of virology. 75:2818-2824. Huang, Y.L., Y.T. Han, Y.T. Chang, Y.H. Hsu, and M. Meng. 2004. Critical residues for GTP methylation and formation of the covalent m7GMP-enzyme intermediate in the capping enzyme domain of bamboo mosaic virus. Journal of virology. 78:1271-1280. Hwang, J., L. Winkler, and R.F. Kalejta. 2011. Ubiquitin-independent proteasomal degradation during oncogenic viral infections. Biochimica et biophysica acta. 1816:147-157. Jockusch, H., and C. Wiegand. 2003. Misfolded plant virus proteins: elicitors and targets of ubiquitylation. FEBS letters. 545:229-232. Ju, H.J., C.M. Ye, and J. Verchot-Lubicz. 2008. Mutational analysis of PVX TGBp3 links subcellular accumulation and protein turnover. Virology. 375:103-117. Kumagai, M.H., J. Donson, G. della-Cioppa, D. Harvey, K. Hanley, and L.K. Grill. 1995. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proceedings of the National Academy of Sciences of the United States of America. 92:1679-1683. Li, X., J. Kim, B. Song, A. Finzi, B. Pacheco, and J. Sodroski. 2013. Virus-specific effects of TRIM5alpha(rh) RING domain functions on restriction of retroviruses. Journal of virology. 87:7234-7245. Li, Y.I., Y.J. Chen, Y.H. Hsu, and M. Meng. 2001a. Characterization of the AdoMet-dependent guanylyltransferase activity that is associated with the N terminus of bamboo mosaic virus replicase. Journal of virology. 75:782-788. Li, Y.I., Y.M. Cheng, Y.L. Huang, C.H. Tsai, Y.H. Hsu, and M. Meng. 1998. Identification and characterization of the Escherichia coli-expressed RNA-dependent RNA polymerase of bamboo mosaic virus. Journal of virology. 72:10093-10099. Li, Y.I., T.W. Shih, Y.H. Hsu, Y.T. Han, Y.L. Huang, and M. Meng. 2001b. The helicase-like domain of plant potexvirus replicase participates in formation of RNA 5' cap structure by exhibiting RNA 5'-triphosphatase activity. Journal of virology. 75:12114-12120. Li, Z., D. Barajas, T. Panavas, D.A. Herbst, and P.D. Nagy. 2008. Cdc34pubiquitin-conjugating enzyme is a component of the tombusvirus replicase complex and ubiquitinates p33 replication protein. Journal of virology. 82:6911-6926. Lin, M.T., E.W. Kitajima, F.P. Cupertino, and C.L. Costa. 1977. Partial-Purification and Some Properties of Bamboo Mosaic-Virus. Phytopathology. 67:1439-1443. Lin, N.S., B.Y. Lin, N.W. Lo, C.C. Hu, T.Y. Chow, and Y.H. Hsu. 1994. Nucleotide-Sequence of the Genomic Rna of Bamboo Mosaic Potexvirus. Journal of General Virology. 75:2513-2518. Lin, S.S., R. Martin, S. Mongrand, S. Vandenabeele, K.C. Chen, I.C. Jang, and N.H. Chua. 2008. RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB1-induced programmed cell death in Arabidopsis. Plant J. 56:550-561. Mas, P., and R.N. Beachy. 1999. Replication of tobacco mosaic virus on endoplasmic reticulum and role of the cytoskeleton and virus movement protein in intracellular distribution of viral RNA. The Journal of cell biology. 147:945-958. Metzger, M.B., J.N. Pruneda, R.E. Klevit, and A.M. Weissman. 2014. RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochimica et biophysica acta. 1843:47-60. Pazhouhandeh, M., M. Dieterle, K. Marrocco, E. Lechner, B. Berry, V. Brault, O. Hemmer, T. Kretsch, K.E. Richards, P. Genschik, and V. Ziegler-Graff. 2006. F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function. Proceedings of the National Academy of Sciences of the United States of America. 103:1994-1999. Reichel, C., and R.N. Beachy. 2000. Degradation of tobacco mosaic virus movement protein by the 26S proteasome. Journal of virology. 74:3330-3337. Takizawa, M., A. Goto, and Y. Watanabe. 2005. The tobacco ubiquitin-activating enzymes NtE1A and NtE1B are induced by tobacco mosaic virus, wounding and stress hormones. Molecules and cells. 19:228-231. Tsai, C.H., C.P. Cheng, C.W. Peng, B.Y. Lin, N.S. Lin, and Y.H. Hsu. 1999. Sufficient length of a poly(A) tail for the formation of a potential pseudoknot is required for efficient replication of bamboo mosaic potexvirus RNA. Journal of virology. 73:2703-2709. Verchot, J. 2014. The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. Frontiers in plant science. 5:66. Vierstra, R.D. 2009. The ubiquitin-26S proteasome system at the nexus of plant biology. Nature reviews. Molecular cell biology. 10:385-397. Yuan, X., S. Zhang, S. Liu, M. Yu, H. Su, H. Shu, and X. Li. 2013. Global analysis of ankyrin repeat domain C3HC4-type RING finger gene family in plants. PloS one. 8:e58003. Zeng, L.R., M.E. Vega-Sanchez, T. Zhu, and G.L. Wang. 2006. Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell research. 16:413-426. Zhang, X., V. Garreton, and N.H. Chua. 2005. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes & development. 19:1532-1543.
當病毒感染植物時,可能影響寄主基因的表現,了解寄主基因在病毒的生活史中所扮演的角色,可有助於抗病毒技術的發展,在前人的研究中利用了 cDNA amplified fragment polymorphism (AFLP)之技術篩選出一些在竹嵌紋病毒感染菸草(Nicotiana benthamiana)時,有差異性表現的基因片段。其中一個基因片段ACGT2-1 在感染病毒後的 5 至 7 天可見基因表現量的增加,而利用病毒引發基因靜默技術(virus-induced gene silencing,VIGS)使得 ACGT2-1 基因表現量下降後 可發現竹嵌紋病毒外鞘蛋白在葉片的累積量顯著增加至 135% 推測 ACGT2-1,基因可能與病毒的防禦機制有關。接著想進一步了解 ACGT2-1 基因是參與在病毒的複製還是移動的階段,因此將處理 VIGS 後的原生質體接種病毒,發現在竹嵌紋病毒外鞘蛋白的累積量增加,然而利用北方墨點法偵測發現病毒正股及負股RNA 均有顯著增加的情形,顯示 ACGT2-1 可能參與病毒早期複製之階段。另外利用 Rapid amplification of cDNA ends (RACE)技術獲得了 ACGT2-1 的全長基因 NbACGT2-1 經由其序列比對後 發現它具有 RING domain 以及 transmembrane,region,已有研究指出 RING domain 可作為 E2 轉移泛蛋白給受質的一個平台,於細胞調節 protein ubiquitination 扮演重要角色,我們將之命名為 NbUbE3R1,若將此基因於菸草植物過量表現後,再進行 BaMV 的感染,發現竹嵌紋病毒外鞘蛋白的累積量減少 以上實驗結果明確的顯示此基因扮演了抑制竹嵌紋病毒的功能,而當此蛋白去除transmembrane region 後,可發現竹嵌紋病毒外鞘蛋白的累積量增加,失去限制病毒之功能。而 NbUbE3R1 如何與病毒蛋白結合使得具有防禦的功能,以及其進行防禦的機制,則有待進一步的研究了解。

The expression profile of host genes could be altered by viral infection. To understand how these differentially expressed host genes during virus infection involved in viral infection cycle could help the development of antiviral strategies. In a previous study, our lab has identified 90 differentially expressed genes in Bamboo
mosaic virus (BaMV)-inoculated plants by cDNA-AFLP screening method. One of the upregulated genes ACGT2-1 was further characterized. Tobacco rattle virus (TRV)-based virus induced gene silencing (VIGS) was used to knock down ACGT2-1 expression in Nicotiana benthamiana plant. The results showed that coat protein accumulation of BaMV was enhanced to 135%. This result suggests that ACGT2-1 might play a defense role against BaMV infection. Furthermore, to determine if this gene displayed interference in BaMV replication or cell-to-cell movement, BaMV RNA was inoculated into protoplasts derived from the knockdown and control plants.
In the plasmodesmata-removal system the coat protein accumulation was enhanced compared to that of the control protoplasts. Northern blot analysis indicated that the
accumulation of BaMV plus- and minus- strand RNAs was also enhanced. The results demonstrated that ACGT2-1 might be involved in the replication step of BaMV
infection cycle. In addition, rapid amplification of cDNA ends (RACE) technique was used to obtain the full-length of ACGT2-1. Furthermore, the accumulation of BaMV was reduced when ACGT2-1 was transiently expressed in plants. This result clearly demonstrates that ACGT2-1 plays a role in inhibiting the accumulation of BaMV. BLAST analysis of the ACGT2-1 showed that the ORF contained a RING domain and transmembrane region. The RING domain-containing proteins were demonstrated to act as scaffolds and promote the direct transfer of ubiquitin from the E2 conjugating enzyme to the substrate, and also play an important role in cell modulating protein ubiquitination. ACGT2-1 could be a putative C3HC4-type zinc finger ubiquitin E3 ligase; we then designated this protein as NbUbE3R1. Further studies will focus on whether NbUbE3R1 can interact with the viral protein to inhibit its function and the possible mechanism for the defense.
Rights: 同意授權瀏覽/列印電子全文服務,2015-05-11起公開。
Appears in Collections:生物科技學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101041020-1.pdf2.19 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.