Please use this identifier to cite or link to this item:
標題: The NAC-like gene AtNACL14 Controls Plant Growth and Development by Regulating Gibberellin Metabolism pathway in Arabidopsis
作者: 陳宏翊
Hong-Ie Chen
關鍵字: 吉貝素;阿拉伯芥;gibberellin;NAC;arabidopsis thaliana
引用: 陳宏翊(2008) 阿拉伯芥中AtNACL-like 14基因之功能性分析及sa7突變株之定性分析。國立中興大學生物科技學研究所碩士論文。 林建鑫(2007) 阿拉伯芥中NAC-like基因之分子選殖與功能性分析。國立中興大學生物科技學研究所碩士論文。 施靜芳(2004) 植物中調節分生組織活性之NAC-like基因及與開花老化相關之GIGANTEA (GI)同原基因之功能分析與應用。國立中興大學生物科技學研究所碩士論文。 劉祥欽(2003) 擬南芥中E3 RING Finger基因之分子選殖及特性分析。國立中興大學生物科技學研究所碩士論文。 Aach, H., Bode, H., Robinson, D.G., Graebe, J.E. (1997) ent-Kaurene synthetase is located in proplastids of meristematic shoot tissues. Planta, 202, 211–19. Achard, P., Gong, F., Cheminant, S., Alioua, M., Hedden, P., and Genschik, P. (2008). The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20, 2117-2129. Aida, M., Ishida, T., and Tasaka, M. (1999). Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP- SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development, 126, 1563-1570. Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., and Tasaka, M. (1997). Gene involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 9, 841-857. Appleford, N.E., Evans, D.J., Lenton, J.R., Gaskin, P., Croker, S.J., Devos, K.M., Phillips, A.L., and Hedden, P. (2006). Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 223, 568-582. Aukerman, M. J., Schmidt, R. J., Burr, B., and Burr, F. A. (1991) An arginine to lysine substitution in the bZIP domain of an opaque-2 mutant in maize abolishes specific DNA binding. Genes Dev. 5, 310-320. Avivi, Y., Morad V., Ben-Meir H., Zhao J., Kashkush K., Tzfira T., Citovsky V., Grafi G. (2004). Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality. Dev. Dyn. 230, 12-22 Baker, C.C., Sieber, P., Wellmerand, F., and Meyerowitz, E.M. (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr. Biol. 15, 303-315. Baranowskij, N., Frohberg, C., Prat, S., and Willmitzer, L. (1994) A novel DNA binding protein with homology to Myb oncoproteins containing only one repeat can function as a transcriptional activator. EMBO J. 13, 5383-5392. Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function, Cell 116, 281-297. Boulikas, T. (1994) Putative nuclear localization signals (NLS) in protein transcription factors. J. Cell. Biochem. 55, 32-58 Cokol, M., Nair, R., and Rost, B. (2000) Finding nuclear localization signals. EMBO Rep. 1, 411-415. Collinge, M. and Boller, T. (2001) Differential induction of two potatogenes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol. Biol. 46, 521-529. Cristel C. C., and Jennifer C. F. (2003). Shoot apical meristem maintenance: the art of a dynamic balance. TRENDS in Plant Science, 8, 394-401 Davies, P.J. (2010). The Plant Hormones: Their Nature, Occurrence, and Functions. In Plant Hormones: Biosynthesis, Signal Transduction, Action! Springer, pp. 1-15. De Jager, S. M., Maughan,S., Dewitte,W., Scofield,S., and Murray, J. A.H. (2005) The developmental context of cell-cycle control in plants. Semin. Cell Dev. Biol. 16, 385-396. Dehesh, K., Smith, L. G., Tepperman, J. M. and Quail, P. H. (1995) Twin autonomous bipartite nuclear localization signals direct nuclear import of GT-2. Plant J. 8, 25-36. Delessert, C., Kazan, K., Wilson, I.W., Van Der Straeten, D., Manners, J., Dennis, E.S., and Dolferus, R. (2005). The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J. 43, 745–757 Diévart, A., and Clark, S. E. (2004) LRR-containing receptors regulating plant development and defense. Development, 131, 251-261. Duval, M., Hsieh, T., Kim, S. Y., and Thomas, T. L. (2002). Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol. Biol., 50, 237-248. Ernst, H.A., Olsen, A.N., Larsen, S., and Lo L.L . (2004). Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep. 5, 297-303. Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme, T.M., Tran, L.S., Yamaguchi,S.K., and Shinozaki, K. (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39, 863-876. Grafi, G. (2004). How cells dedifferentiate: a lesson from plants. Dev. Biol. 268, 1-6 Green, S., and Chambon, P. (1988) Nuclear receptors enhance our understanding of transcription regulation. Trends Genet. 4, 309-314. Greve, K., La Cour, T., Jensen, M.K., Poulsen, F.M., and Skriver, K. (2003). Interactions between plant RING-H2 and plantspecific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization. Biochem. J. 371, 97-108 Guiltinan, M. J., and Miller, L. (1994) Molecular characterization of the DNA-binding and dimerization domains of the bZIP transcription factor, EmBP-1. Plant Mol. Biol. 26, 1041-1053. Guo, M., Rupe, M.A., Danilevskaya, O.N., Yang, X., and Hu, Z. (2003). Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. Plant J. 36, 30-44. Hedden, P., and Phillips, A.L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5, 523-530. Hegedus, D., Yu, M., Baldwin, D., Gruber, M., Sharpe, A., Parkin, I., Whitwill S., and Lydiate, D. (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol. Biol. 53, 383-397. Helliwell, C.A., Sullivan, J.A., Mould, R.M., Gray, J.C., Peacock, W.J., and Dennis, E.S. (2001). A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway. Plant J 28, 201-208. Hiller, L.K., Kelly, W.C., and Powell, L.E. (1979). Temperature Interactions with Growth Regulators and Endogenous Gibberellin-like Activity during Seedstalk Elongation in Carrots. Plant Physiol 63, 1055-1061. Hiroshi, A., Takeshi, U., Takuya, I., Motoaki, S., Kazuo, S., and Kazuko, Y.S. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 15, 63-78. Hollenberg, S. M., and Evans, R. M. (1988) Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell, 55, 899-906. Hope, I. A., and Struhl, K. (1986) Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell. 46, 885-894. Huang, H., Tudor, M., Su, T., Zhang, Y., Hu, Y. and Ma, H. (1996) DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation. Plant Cell 8, 81-94. Huang, S., Raman, A. S., Ream, J. E., Fujiwara, H., Cerny, R. E., and Brown, S. M. (1998) Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol. 118, 773-781. Irish, V.F. (1991) Cell lineage in plant development. Curr. Opin. Cell Biol. 3, 983-987. Ishida, T., Aida, M., Takada, S., and Tasaka, M. (2000). Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana. Plant Cell Physiol. 41, 60-67. Itoh, H., Ueguchi-Tanaka, M., Sentoku, N., Kitano, H., Matsuoka, M., and Kobayashi, M. (2001). Cloning and functional analysis of two gibberellin 3 beta -hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci U S A 98, 8909-8914. Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A., and Carrington, J. C. (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Developmental Cell, 4, 205-217. Katagiri, F., Seipel, K., and Chua, N. H. (1992) Identification of a novel dimer stabilization region in a plant bZIP transcription activator. Mol. Cell. Biol. 12, 4809-4816. Kikuchi, K., Ueguchi-Tanaka, M., Yoshida, T. K.,Nagato, Y., Matsusoka, M., and Hirano, H. Y. (1999) Molecular analysis of the NAC gene family in rice. Mol.Gen. Genet., 262, 1047-1051. Kim, H.S., Park, B.O., Yoo, J.H., Jung, M.S., Lee, S.M., Han, H.J., Kim, K.E., Kim, S.H., Lim, C.O., Yun, D.-J., Lee, S.Y., and Chung, W.S. (2007) Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis. J. Biol. Chem. 282, 36292-36302 Kim, S.G., Kim, S.Y., and Park, C.M. (2007) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta, 226, 647-654. Kim, S.G., Lee, A.-K., Yoon, H.-K., and Park, C.-M. (2008) A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J. 55, 77-88. Kim, S.Y., Kim, S.G., Kim, Y.S., Seo, P.J., Bae, M., Yoon, H.K. and Park, C.-M. (2007) Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res. 35, 203-213. Kim, Y.S., Kim, S.G., Park, J.E., Park, H.Y., Lim, M.H., Chua, N.-H. and Park, C.-M. (2006) A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell, 18, 3132-3144. Klinge, B., UÈ berlacker, B., Korfhage, C. and Werr, W. (1996) ZmHox: a novel class of maize homeobox genes. Plant Mol. Biol. 30, 439-453. Ko, J.-H., Yang, S.H., Park, A.H., Lerouxel, O. and Han, K.-H. (2007) ANAC012, a member of the plant-specific NAC transcription factorfamily, negatively regulates xylary fiber development in Arabidopsis thaliana. Plant J. 50, 1035-1048. Kost, B., Spielhofer, P., and Chua, N-H. (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J. 16 (3), 393-401. Kosugi, S., and Ohashi, Y. (1997) PCF1 and PCF2 specifically bind to cis-elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9, 1607-1619. Kubo, M., Udagawa, M., Nishikubo, N., Horiguchi, G., Yamaguchi, M., Ito, J., Mimura, T., Fukuda, H. and Demura, T. (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 19, 1855-1860. Kubo, M., Udagawa, M., Nishikubo, N., Horiguchi, G., Yamaguchi, M., Ito, J., Mimura, T., Fukuda, H., and Demura, T. (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 19, 1855-1860. Kurepin, L.V., Dahal, K.P., Savitch, L.V., Singh, J., Bode, R., Ivanov, A.G., Hurry, V., and Huner, N.P. (2013). Role of CBFs as Integrators of Chloroplast Redox, Phytochrome and Plant Hormone Signaling during Cold Acclimation. Int J Mol Sci 14, 12729-12763. Latchman, D. S. (1990) Eukaryotic transcription factors. Biochem J. 270, 281-289. Laufs, P., Peaucelle, A., Morin, H., and Traas, J. (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 131, 4311-4322. Lenhard, M. and Laux, T. (1999) Shoot meristem formation and maintenance. Curr. Opin. Plant Biol. 2, 44-50. Liu, L., White, M. J., and MacRae, T.H. (1999) Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur. J. Biochem. 262, 247-257. Long, J.A. and Barton, M.K. (1998) The development of apical embryonic pattern in Arabidopsis. Development, 125, 30273035. Long, J.A., and Barton, M.K. (2000) Initiation of axillary and floral meristems in Arabidopsis. Dev. Biol. 218, 341-353. Luran, N.H., and Yang, C.H. (2006). Molecular cloning and functional analysis of GIGANTEA (GI) orthologues from Adiantum capillus-venen and NAC-like genes from Arabidopsis. Graduate Institute of Biotechnology, National Chung Hsing University. Master Thesis. Lyck, R., Harmening, U., HoÈhfeld, I., Treuter, E., Scharf, K.-D. and Nover, L. (1997) Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta, 202, 117-125. Malamy, J. E. and Benfey, P.N. (1997) Down and out in Arabidopsis: the formation of lateral roots. Trends Plant Sci. 2, 390-396. Matsushita, A., Furumoto, T., Ishida, S., and Takahashi, Y. (2007). AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase. Plant Physiol 143, 1152-1162. Meisel, L. and Lam, E. (1996) The conserved ELK-homeodomain of KNOTTED-1 contains two regions that signal nuclear localization. Plant Mol. Biol. 30, 1-14. Michael, A. J., Hofer, J. M. I. and Ellis, T. H. N. (1996) Isolation by PCR of a cDNA clone from pea petals with similarity to petunia and wheat zinc finger proteins. Plant Mol. Biol. 30, 1051-1058. Mitsuda, N., Iwase, A., Yamamoto, H., Yoshida, M., Seki, M., Shinozaki, K. and Ohme-Takagi, M. (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell, 19, 270-280. Mitsuda, N., Seki, M., Shinozaki, K. and Ohme-Takagi, M. (2005) The NAC transcriptional factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and required for anther dehiscence. Plant Cell, 17, 2993–3006. Neuteboom, L.W., Veth-Tello, L.M., Clijdesdale, O.R., Hooykaas, P.J., and van der Zaal, B.J. (1999). A novel subtilisin-like protease gene from Arabidopsis thaliana is expressed at sites of lateral root emergence. DNA Res. 6, 13-19. Ng, S., Ivanova, A., Duncan, O., Law, S.R., Van Aken, O., De Clercq, I., Wang, Y., Carrie, C., Xu, L., Kmiec, B., Walker, H., Van Breusegem, F., Whelan, J., and Giraud, E. (2013). A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis. Plant Cell 25, 3450-3471. Ni, M., Dehesh, K., Tepperman, J. M., and Quail, P. H. (1996) GT-2: in vivo transcriptional activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity. Plant Cell 8, 1041-1059. Nikovics, K., Blein, T., Peaucelle, A., Ishida, T., Morin, H., Aida, M., and Laufs, P. (2006) The Balance between the MIR164A and CUC2 Genes Controls Leaf Margin Serration in Arabidopsis. Plant cell, 18, 2929-2945. Olsen A. N., Ernst H. A., Leggio L. L., Johansson E., Larsen S., Skriver K. (2004) Preliminary crystallographic analysis of the NAC domain of ANAC, a member of the plant-specific NAC transcription factor family. Biological Crystallography,60, 112-115. Olsen, A. N., Ernst, H. A., Leggio L. L., and Skriver K. (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10, 79-87. Olszewski, N., Sun, T.-P., and Gubler, F. (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell, 14, s61-s80. Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci, P., Hayashizaki, Y., Suzuki, K., Kojima, K., Takahara, Y., Yamamoto, K., and Kikuchi, S. (2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 10, 239-247. Phillips, A.L., Ward, D.A., Uknes, S., Appleford, N.E., Lange, T., Huttly, A.K., Gaskin, P., Graebe, J.E., and Hedden, P. (1995). Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol 108, 1049-1057. Poethig, S. (1989) Genetic mosaics and cell lineage analysis in plants. Trends Genet. 5, 273-277. Qu, L. J., and Zhu, Y. X. (2006) Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. Curr. Biol. 9, 544-549. Ren, T., Qu, F., Morris, T.J. (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12, 1917-1925. Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. (2002) Prediction of plant microRNA targets. Cell 110, 513-520. Riechmann, J. L., Heard J., Martin G., Reuber L., Jiang C. Z., Keddie J., Adam L., Pineda O., Ratcliffe O. J., Samaha R. R., Creelman R., Pilgrim M., Broun P., Zhang J. Z., Ghandehari D., Sherman B. K., and Yu G. L. (2000) Arabidopsis Transcription Factors: Genome-Wide Comparative Analysis Among. Science, 290, 2105-2110. Robertson, M. (2004) Two transcription factors are negative regulators of gibberellin response in the HvSPY-signaling pathway in barley aleurone. Plant Physiol. 136, 1-15. Ruiz, M., Xoconostle-Cazares, B., and Lucas, W. J. (1999) Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development, 126, 4405-4419. Sablowski, R.W.M. and Meyerowitz, E.M. (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 92, 93-103. Sadowski, I. Ma, J. Triezenberg, S. and Ptashne, M. (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature, 335, 563-564. Safrany, J., Haasz, V., Mate, Z., Ciolfi, A., Feher, B., Oravecz, A., Stec A.,, Dallmann, G., Morelli, G., Ulm, R., and Nagy, F. (2008) Identification of a novel cis-regulatory element for UV-B-induced transcription in Arabidopsis. Plant J. 55, 152-160. Sainz, M. B., Grotewold, E., and Chandler, V. L. (1997) Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell, 9, 611-625. Scott, M. P. (2000) Development The Natural History of Genes. Cell 100, 27-40. Skirycz, A., and Inze, D. (2010). More from less: plant growth under limited water. Curr Opin Biotechnol 21, 197-203. Souer, E., Houwelingen, A.V., Kloos, D., Mol, J. and Koes R. (1996) The No Apical Meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85, 159-170. Spray, C.R., Kobayashi, M., Suzuki, Y., Phinney, B.O., Gaskin, P., and MacMillan, J. (1996). The dwarf-1 (dt) Mutant of Zea mays blocks three steps in the gibberellin-biosynthetic pathway. Proc Natl Acad Sci U S A 93, 10515-10518. Steeves, T.A. and Sussex, I.M. (1989) Patterns in Plant Development (2nd edn), Cambridge University Press. Tran, L.S., Nakashimaa, K., Sakumaa, Y., Simpsonb, S., Fujitaa, Y., Maruyamaa, K., Fujitac, M., Sekic, M., Shinozakic, K., and Yamaguchi-Shinozaki D.K. (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought responsive cis-element in the EARLY RESPONSIVE TO DEHYDRATION STRESS 1 promoter. Plant Cell, 16, 2481-2498. Thomas, S.G., Phillips, A.L., and Hedden, P. (1999). Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci U S A 96, 4698-4703. Varagona, M. J. and Raikhel, N. V. (1994) The basic domain in the bZIP regulatory protein Opaque2 serves two independent functions: DNA binding and nuclear localization. Plant J. 5, 207-214. Vierstra, R.D. (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci. 8, 135-142. Weigel, D., and Jürgens., G. (2002) Stem cells that make stems. Nature, 415, 751-754. Weir, I. et al. (2004) CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development, 131, 915-922. Xie, Q., Frugis, G., Colgan, D., and Chua, N.H. (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14, 3024-3036. Xie, Q., Guo, H.S., Dallman, G., Fang, S., Weissman, A.M., and Chua, N.H. (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature, 419, 167-170. Xie, Q., Sanz-Burgos, A.P., Guo, H., Garcia, J.A., and Gutierrez, C. (1999) GRAB proteins novel members of the NAC domain family isolated by their interaction with a geminivirus protein. Plant Mol. Biol. 39, 647-656. Xu, Y.L., Li, L., Gage, D.A., and Zeevaart, J.A. (1999). Feedback regulation of GA5 expression and metabolic engineering of gibberellin levels in Arabidopsis. Plant Cell 11, 927-936. Yamaguchi, M., Kubo, M., Fukuda, H., and Demura, T. (2008) VASCULAR-RELATED NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J. Articles online in advance of print. Yamaguchi, S. (2008) Gibberellin Metabolism and its Regulation. Annu. Rev. Plant Biol. 59, 225-251. Yamaguchi, S., Smith, M.W., Brown, R.G., Kamiya, Y., and Sun, T. (1998). Phytochrome regulation and differential expression of gibberellin 3beta-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10, 2115-2126. Yanagisawa, S., and Sheen, J. (1998) Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell, 10, 75-89. Yoo, S.Y., Kim, Y., Kim, S.Y., Lee, J.S., and Ahn, J.H. (2007) Control of Flowering Time and Cold Response by a NAC-Domain Protein in Arabidopsis. PLoS ONE, e642, 1-10. Yoon, H.-K., Kim, S.G., Kim, S.Y., and Park, C.-M. (2008) Regulation of Leaf Senescence by NTL9-mediated Osmotic Stress Signaling in Arabidopsis. Mol.Cells, 25, 438-445. Zhao, C., Avci, U., Grant, E. H., Haigler, C.H. and Beers, E.P. (2008) XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant J. 53, 425-436. Zhong, R., Demura, T. and Ye, Z.-H. (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell, 18, 3158-3170. Zhong, R., Richardson, E.A. and Ye, Z.-H. (2007) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta, 225, 1603-1611. Zhong, R., Richardson, E.A., and Ye Z.-H. (2007) The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell, 19, 2776-2792.
NAC (for NAM, ATAF1, 2, and CUC2)基因為一群植物特有的基因群。大部分的NAC蛋白在其N端均含一個約為150胺基酸的高保守性DNA-binding domain以及NLS (localization signal sequence)序列。以阿拉伯芥為例,NAC蛋白參與許多植物生長和發育的過程,例如cell cycle的控制、生長荷爾蒙訊息的傳遞、花器的發育和頂端分生組織的形成等。目前在阿拉伯芥中,有一群NAC蛋白C端被預測出具有α螺旋的穿膜功能域,此功能域被認為與蛋白結合在膜上的能力有關。根據酵母菌的活性篩選分析的結果,推測AtNACL14在阿拉伯芥中扮演活化子的角色。異位表現AtNACL14全長的轉基因植物與野生行阿拉伯芥相比,無相異性狀,然而剔除穿膜區域的AtNACL14ΔTM轉基因植物,則呈現矮化與營養葉捲曲等性狀。藉由將AtNACL14融合GFP螢光蛋白的方式,來觀察其在次細胞層次的表現與分布位置,我們發現AtNACL14蛋白質會出現在內質網之膜上,反之剔除穿膜區域之AtNACL14ΔTM蛋白則會位在細胞核內,這個結果顯示AtNACL14蛋白是由內質網膜上切出然後進入細胞核中執行功能。經由生物晶片的分析,在異位表現剔除穿膜區域的AtNACL14ΔTM轉基因植物中,GA2ox1與GA2ox2被誘導表現,而GA20ox1及GA20ox相關的基因的表現則被抑制。進一步藉由即時定量聚合酵素鏈鎖反應分析,在吉貝素的生合成代謝路徑中,參與合成的酵素(GA20ox)被抑制,反之涉及代謝的酵素(GA2ox)表現量卻上升。此外,剔除穿膜區域的AtNACL14ΔTM轉基因植物的內生性吉貝素含量,相較野生型阿拉伯芥低。在低溫下AtNACL14會進入細胞核且GA2ox2表現量會上升,綜合上述,我們推測AtNACL14可藉由控制吉貝素的動態平衡來調控植物的生長發育。

AtNACL14 contained one highly conserved NAC domain in N-terminal region and a strong α-helical transmembrane motif (TM) in C-terminal region and has been predicted to be membrane-associated. AtNACL14 has transactivation capacity based on yeast transcription activity assays. This result indicated that AtNACL14 acts as a transcriptional activator. Transgenic plants ectopically expressing AtNACL14 was phenotypically indistinguishable from wild-type plants. Ectopic expression of AtNACL14ΔTM exhibited severe phenotypic alterations such as dwarfism and curled leaves in transgenic Arabidopsis. GFP+AtNACL14ΔTM (lacking a transmembrane domain) fusion proteins were accumulated in the nuclei of the Arabidopsis cells whereas the GFP+AtNACL14 fusion proteins were accumulated in the ER membrane and absent in the nuclei. These results revealed that AtNACL14 needs to be processing and releasing from the mitochondria to perform its function. Data of microarray showed that GA2ox1 and GA2ox2 were up-regulated but GA20ox1 and two GA20ox-related genes were down-regulated in 35S::AtNACL14ΔTM plants. Further analysis of the expression for genes in GA metabolism pathway indicated that most GA biosynthesis genes (GA20ox) were down-regulated whereas two GA deactivation genes (GA2ox) were up-regulated in 35S::AtNACL14ΔTM plants. In addition, levels of gibberellins in 35S::AtNACL14ΔTM plants were lower than that in wild type plants. Furthermore, 4℃ cold treatment caused the entering of AtNACL14 into nucleus and the up-regulation of GA2ox2. Our data suggest a role for AtNACL14 in controlling multiple plant developments by suppressing the GA biosynthesis in Arabidopsis.
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-20起公開。
Appears in Collections:生物科技學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-8097041106-1.pdf8.06 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.