Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90111
DC FieldValueLanguage
dc.contributorJang-Hung Huangen_US
dc.contributor黃政恆zh_TW
dc.contributor.authorPriscila Ungen_US
dc.contributor.author吳思聯zh_TW
dc.contributor.other土壤環境科學系所zh_TW
dc.date2014zh_TW
dc.date.accessioned2015-12-09T02:25:05Z-
dc.identifier.citationAdegoke, H.I., F.A. Adekola, O.S. Fatoki and B.J. Ximba. 2013. Sorptive interaction of oxyanions with iron oxides: a review. Pol. J. Environ. Stud. 22: 7-24. Afonso, M.D. and W. Stumm. 1992. Reductive dissolution of iron( Ⅲ )(hydr)oxides by hydrogen-sulfide. Langmuir 8: 1671-1675. Albrecht-Gary, A.M. and A.L. Crumbliss. 1998. Coordination chemistry of siderophores: Thermodynamics and kinetics of iron chelation and release. Met. Ions Biol. Syst. 35: 239 327. Arai, Y. and D.L. Sparks. 2007. Phosphate reaction dynamics in soils and soil components: A muiltiscale approach. Adv. Agronomy 94: 135-179. Atkins, P. and J. de Paula. 2009. Chemical kinetics: the rates of reactions.Elements of physical chemistry. Oxford University Press. p. 232-236. Belelli, P.G., S.A. Fuente and N.J. Castellani. 2014. Phosphate adsorption on goethite and Al-rich goethite. Comput. Mater. Sci. 85: 59-66. Biber, M.V., M.D. Afonso and W. Stumm. 1994. The coordination chemistry of weathering .4. Inhibition of the dissolution of oxide minerals. Geochim.Cosmochim. Acta 58: 1999-2010. Bondietti, G., J. Sinniger and W. Stumm. 1993. The reactivity of fe(Ⅲ)(hydr)oxides - effects of ligands in inhibiting the dissolution. Colloid Surf. A-Physicochem. Eng. Asp. 79: 157-167. Borer, P., S.J. Hug, B. Sulzberger, S.M. Kraemer and R. Kretzschmar. 2009. ATR-FTIR spectroscopic study of the adsorption of desferrioxamine B and aerobactin to the surface of lepidocrocite (gamma-FeOOH). Geochim. Cosmochim. Acta 73: 4661-4672. Borgias, B., A.D. Hugi and K.N. Raymond. 1989. Isomerization and solution structures of desferrioxamine B complexes of aluminum(Ⅲ) and gallium(Ⅲ). Inorg.Chem. 28: 3538-3545. Boukhalfa, H. and A.L. Crumbliss. 2002. Chemical aspects of siderophore mediated iron transport. BioMetals 15: 325-339. Carrasco, N., R. Kretzschmar, M.L. Pesch and S.M. Kraemer. 2008. Effects of anionic surfactants on ligand-promoted dissolution of iron and aluminum hydroxides. J. Colloid Interf. Sci. 321: 279-287. Cervini-Silva, J., J. Kearns and J. Banfield. 2012. Steady-state dissolution kinetics of mineral ferric phosphate in the presence of desferrioxamine-B and oxalate ligands at pH=4-6 and T=24 +/- 0.6 degrees C. Chem. Geol. 320: 1-8. Cervini-Silva, J. and G. Sposito. 2002. Steady-state dissolution kinetics of aluminum-goethite in the presence of desferrioxamine-B and oxalate ligands.Environ. Sci. Technol. 36: 337-342. Cheah, S.-F., S.M. Kraemer, J. Cervini-Silva and G. Sposito. 2003. Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of iron. Chem. Geol. 198: 63-75. Chen, Y.S.R., J.N. Butler and W. Stumm. 1973. Kinetics study of phosphate reaction with aluminum oxide and kaolinite. Environ. Sci. Technol. 7: 327-332. Cocozza, C., C.C.G. Tsao, S.-F. Cheah, S.M. Kraemer, K.N. Raymond, T.M. Miano, et al. 2002. Temperature dependence of goethite dissolution promoted by trihydroxamate siderophores. Geochim. Cosmochim. Acta 66: 431-438. Colombo, C., V. Barron and J. Torrent. 1994. Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites.Geochim. Cosmochim. Acta 58: 1261-1269. Cornell, R.M., A.M. Posner and J.P. Quirk. 1976. Kinetics and mechanisms of the acid dissolution of goethite (α-FeOOH). J. Inorg. Nucl. Chem. 38: 563-567. Cornell, R.M. and U. Schwertmann. 2004. The Iron Oxides. Wiley-VCH Verlag GmbH & Co. KGaA. p. 9-344. Dhungana, S. and A.L. Crumbliss. 2005. Coordination chemistry and redox processes in siderophore-mediated iron transport. Geomicrobiol. J. 22: 87-98. Dixon, J.B., S.B. Weed, M.L. Jackson, M.H. Milford and J.R. White. 1977. Iron oxide.Minerals in soil environments. Soil Science Society of America. p.145-167. Drever, J.I. and L.L. Stillings. 1997. The role of organic acids in mineral weathering. Colloid Surf. A-Physicochem. Eng. Asp. 120: 167-181. Duckworth, O.W., J.R. Bargar and G. Sposito. 2009a. Coupled biogeochemical cycling of iron and manganese as mediated by microbial siderophores. BioMetals 22: 605-613. Duckworth, O.W.,J.R. Bargar and G. Sposito. 2009b.Quantitative structure-activity relationships for aqueous metal-siderophore complexes. Environ.Sci. Technol. 43: 343-349. Duckworth, O.W. and G. Sposito. 2007. Siderophore-promoted dissolution of synthetic and biogenic layer-type Mn oxides. Chem. Geol. 242: 497-508. Essen, S.A., D. Bylund, S.J. Holmstrom, M. Moberg and U.S. Lündstrom. 2006.Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. BioMetals 19: 269-282. Erbs, J.J., B. Gilbert and R.L. Penn. 2008. Influence of size on reductive dissolution of six-line ferrihydrite. J. Phys. Chem. C 112: 12127-12133. Fendorf, S., M.J. Eick, P. Grossl and D.L. Sparks. 1997. Arsenate and chromate retention mechanisms on goethite .1. Surface structure. Environ. Sci. Technol. 31: 315-320. Filius, J.D., T. Hiemstra and W.H. Van Riemsdijk. 1997. Adsorption of small weak organic acids on goethite: Modeling of mechanisms. J. Colloid Interf. Sci. 195:368-380. Franke, R. and J. Hormes. 1995. The P K-near edge absorption spectra of phosphates. Physica B 216: 85-95. Furrer, G. and W. Stumm. 1986. The coordination chemistry of weathering .1. dissolution kinetics of delta-Al2O3 and BeO. Geochim. Cosmochim. Acta 50: 1847-1860. Geelhoed, J.S., T. Hiemstra and W.H. Van Riemsdijk. 1998. Competitive interaction between phosphate and citrate on goethite. Environ. Sci. Technol. 32: 2119-2123. Geelhoed, J.S., T. Hiemstra and W.H. VanRiemsdijk. 1997. Phosphate and sulfate adsorption on goethite: Single anion and competitive adsorption. Geochim. Cosmochim. Acta 61: 2389-2396. Ghose, S.K., S.C. Petitto, K.S. Tanwar, C.S. Lo, P.J. Eng, A.M. Chaka, et al. 2007. Chapter 1 Surface structure and reactivity of iron oxide–water interfaces.Developments in Earth and Environmental Sciences. Elsevier. p. 1-29. Goldberg, S. and G. Sposito. 1985. On the mechanism of specific phosphate - adsorption by hydroxylated mineral surfaces - a review. Commun. Soil Sci. Plant Anal. 16: 801-821. Hider, R.C. and X.L. Kong. 2010. Chemistry and biology of siderophores. Nat. Prod. Rep. 27: 637-657. Hiemstra, T., J. Antelo, A.M.D. van Rotterdam and W.H. van Riemsdijk. 2010. Nanoparticles in natural systems II: The natural oxide fraction at interaction with natural organic matter and phosphate. Geochim. Cosmochim. Acta 74: 59-69. Hiemstra, T. and W.H. Van Riemsdijk. 1999. Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides. J. Colloid Interf. Sci. 210: 182-193. Hiemstra, T. and W.H. VanRiemsdijk. 1996. A surface structural approach to ion adsorption: The charge distribution (CD) model. J. Colloid Interf. Sci. 179: 488-508. Hingston, F.J., J.P. Quirk and A.M. Posner. 1972. Anion adsorption by goethite and gibbsite. 1. Role of proton in determining adsorption envelopes. J. Soil Sci. 23: 177-192. Hinsinger, P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237: 173-195. Holmen, B.A. and W.H. Casey. 1996. Hydroxamate ligands, surface chemistry, and the mechanism of ligand-promoted dissolution of goethite alpha-FeOOH(s). Geochim. Cosmochim. Acta 60: 4403-4416. Holmen, B.A., M.I. TejedorTejedor and W.H. Casey. 1997. Hydroxamate complexes in solution and at the goethite-water interface: A cylindrical internal reflection Fourier transform infrared spectroscopy study. Langmuir 13: 2197-2206. Ito, H., M. Fujii, Y. Masago, C. Yoshimura, T.D. Waite and T. Omura. 2011.Mechanism and kinetics of ligand exchange between ferric citrate and desferrioxamine B. J. Phys. Chem. A 115: 5371-5379. Jonasson, R.G., R.R. Martin, M.E. Giuliacci and K. Tazaki. 1988. Surface-reactions of goethite with phosphate J. Chem. Soc., Faraday Trans. I 84: 2311-2315. Khare, N., D. Hesterberg and J.D. Martin. 2005. XANES investigation of phosphate sorption in single and binary systems of iron and aluminum oxide minerals. Environ. Sci. Technol. 39: 2152-2160. Kim, J., W. Li, B.L. Philips and C.P. Grey. 2011. Phosphate adsorption on the iron oxyhydroxides goethite (alpha-FeOOH), akaganeite (beta-FeOOH), and lepidocrocite (gamma-FeOOH): a P-31 NMR Study. Energy Environ. Sci. 4: 4298-4305. Kiss, T. and E. Farkas. 1998. Metal-binding ability of desferrioxamine B. J. Inclusion Phenom. Mol. Recognit. Chem. 32: 385-403. Kraemer, S.M. 2004. Iron oxide dissolution and solubility in the presence of siderophores. Aquat. Sci. 66: 3-18. Kraemer, S.M., S.F. Cheah, R. Zapf, J.D. Xu, K.N. Raymond and G. Sposito. 1999. Effect of hydroxamate siderophores on Fe release and Pb(II) adsorption by goethite. Geochim. Cosmochim. Acta 63: 3003-3008. Kruft, B.I., J.M. Harrington, O.W. Duckworth and A.A. Jarzecki. 2013. Quantum mechanical investigation of aqueous desferrioxamine B metal complexes: Trends in structure, binding, and infrared spectroscopy. J. Inorg. Biochem. 129: 150-161. Kubicki, J.D., K.W. Paul, L. Kabalan, Q. Zhu, M.K. Mrozik and M. Aryanpour. 2012. ATR-FTIR and density functional theory study of the structures, energetics, and vibrational spectra of phosphate adsorbed onto goethite. Langmuir 28: 14573-14587. Kwon, K.D. and J.D. Kubicki. 2004. Molecular orbital theory study on surface complex structures of phosphates to iron hydroxides: Calculation of vibrational frequencies and adsorption energies. Langmuir 20: 9249-9254. Ler, A. and R. Stanforth. 2003. Evidence for surface precipitation of phosphate on goethite. Environ. Sci. Technol. 37: 2694-2700. Li, L. and R. Stanforth. 2000. Distinguishing adsorption and surface precipitation of phosphate on goethite (alpha-FeOOH). J. Colloid Interf. Sci. 230: 12-21. Liu, C. and P.M. Huang. 2000. Kinetics of phosphate adsorption on iron oxides formed under the influence of citrate. Can. J. Soil Sci. 80: 445-454. Loring, J.S., A.A. Simanova and P. Persson. 2008. Highly mobile iron pool from a dissolution-readsorption process. Langmuir 24: 7054-7057. Luengo, C., M. Brigante, J. Antelo and M. Avena. 2006. Kinetics of phosphate adsorption on goethite: Comparing batch adsorption and ATR-IR measurements. J. Colloid Interf. Sci. 300: 511-518. McConnell, D. 1939. Symmetry of phosphosiderite. Am. Mineral. 24: 636-642. Murphy, J. and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31-36. Nanzyo, M. and Y. Watanabe. 1982. Diffuse relectance infrared-spectra and ion-adsorption properties of the phosphate surface complex on goethite. Soil Sci. Plant Nutr. 28: 359-368. Neilands, J.B. 1995. Siderophores - structure and function of microbial iron transport compounds. J. Biol. Chem. 270: 26723-26726. Nriagu, J.O. 1972. Solubility equilibrium constant of strengite. Am. J. Sci. 272: 476-484. Parfitt, R.L., R.J. Atkinson and R.S.C. Smart. 1975. Mechanism of phosphate fixation by iron oxides. Soil Sci. Soc. Am. J. 39: 837-841. Parfitt, R.L. and J.D. Russell. 1977. Adsorption on hydrous oxides - Mechanisms of adsorption of various ions on goethite. J. Soil Sci. 28: 297-305. Parfitt, R.L., J.D. Russell and V.C. Farmer. 1976. Confirmation of surface-structures of goethite (alpha-FeOOH) and phosphated goethite by infrared spectroscopy. J. Chem. Soc., Faraday Trans. I 72: 1082-1087. Persson, P., N. Nilsson and S. Sjoberg. 1996. Structure and bonding of orthophosphate ions at the iron oxide aqueous interface. J. Colloid Interf. Sci. 177: 263-275. Powell, P.E., G.R. Cline, C.P.P. Reid and P.J. Szaniszlo. 1980. Occurrence of hydroxamate siderophore iron chelators in soils. Nature 287: 833-834. Pralong, V., V. Caignaert and B. Raveau. 2011. Transition metal hydrogenophosphates: a potential source of new protonic and lithium conductors. J. Mater. Chem. 21: 12188-12201. Raghothama, K.G. and A.S. Karthikeyan. 2005. Phosphate acquisition. Plant Soil 274: 37-49. Rahnemaie, R., T. Hiemstra and W.H. van Riemsdijk. 2007. Geometry, charge distribution, and surface speciation of phosphate on goethite. Langmuir 23: 3680-3689. Reichard, P.U., S.M. Kraemer, S.W. Frazier and R. Kretzschmar. 2005. Goethite dissolution in the presence of phytosiderophores: Rates, mechanisms, and the synergistic effect of oxalate. Plant Soil 276: 115-132. Reichard, P.U., R. Kretzschmar and S.M. Kraemer. 2007a. Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochim. Cosmochim. Acta 71: 5635-5650. Reichard, P.U., R. Kretzschmar and S.M. Kraemer. 2007b. Rate laws of steady-state and non-steady-state ligand-controlled dissolution of goethite. Colloid Surf. A-Physicochem. Eng. Asp. 306: 22-28. Russell, J.D., R.L. Parfitt, A.R. Fraser and V. Farmer. 1974. Surface-structures of gibbsite goethite and phosphated goethite. Nature 248: 220-221. Schwertmann, U. 1991. Solubility and dissolution of iron-oxides Plant Soil 130: 1-25. Schwertmann, U. and R.M. Cornell. 2007. Goethite. Iron Oxides in the Laboratory. Wiley-VCH Verlag GmbH. p. 67-92. Sidhu, P.S., R.J. Gilkes, R.M. Cornell, A.M. Posner and J.P. Quirk. 1981. Dissolution of iron-oxides and oxyhydroxides in hydrochloric and perchloric acids. Clays Clay Miner. 29: 269-276. Simanova, A.A., J.S. Loring and P. Persson. 2011. Formation of Ternary Metal-Oxalate Surface Complexes on alpha-FeOOH Particles. J. Phys. Chem. C 115: 21191-21198. Simanova, A.A., P. Persson and J.S. Loring. 2010. Evidence for ligand hydrolysis and Fe(III) reduction in the dissolution of goethite by desferrioxamine-B. Geochim. Cosmochim. Acta 74: 6706-6720. Song, Y.N., P.Y. Zavalij, M. Suzuki and M.S. Whittingham. 2002. New iron(III) phosphate phases: Crystal structure and electrochemical and magnetic properties. Inorg. Chem. 41: 5778-5786. Sparks, D.L. 1989. Kinetics of soil chemical processes Academic Press, New York. Sparks, D.L. 1999. Kinetics of sorption/release reactions at the soil mineral/water interface. Soil physical chemistry. CRC Press LLC. Strauss, R., G.W. BrÜMmer and N.J. Barrow. 1997a. Effects of crystallinity of goethite: I. Preparation and properties of goethites of differing crystallinity. Eur. J. Soil Sci. 48: 87-99. Strauss, R., G.W. BrÜMmer and N.J. Barrow. 1997b. Effects of crystallinity of goethite: II. Rates of sorption and desorption of phosphate. Eur. J. Soil Sci. 48: 101-114. Stumm, W. 1992. Chemistry of the solid-water interface: processes at the mineral-water and particle-water interface in natural systemsJohn Wiley & Sons, Inc. Stumm, W. 1997. Reactivity at the mineral-water interface: Dissolution and inhibition. Colloid Surf. A-Physicochem. Eng. Asp. 120: 143-166. Stumm, W. 1995. The inner-sphere surface complex - a key to understanding surface reactivity. In: C. P. Huang, C. R. Omelia and J. J. Morgan, editors, Aquatic Chemistry. Amer Chemical Soc, Washington. p. 1-32. Tejedor-Tejedor, M.I. and M.A. Anderson. 1990. Protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility. Langmuir 6: 602-611. Torrent, J., V. Barron and U. Schwertmann. 1990. Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Sci. Soc. Am. J. 54: 1007-1012. Torrent, J., U. Schwertmann and V. Barron. 1992. Fast and slow phosphate sorption by goethite-rich natural materials. Clays Clay Miner. 40: 14-21. Wang, S.L., C.Y. Cheng, Y.M. Tzou, R.B. Liaw, T.W. Chang and J.H. Chen. 2007. Phosphate removal from water using lithium intercalated gibbsite. J. Hazard. Mater. 147: 205-212. Xu, R.K., G. Yu, L.M. Kozak and P.M. Huang. 2008. Desorption kinetics of arsenate adsorbed on Al (oxy)hydroxides formed under the influence of tannic acid. Geoderma 148: 55-62. Zhao, H.S. and R. Stanforth. 2001. Competitive adsorption of phosphate and arsenate on goethite. Environ. Sci. Technol. 35: 4753-4757. Zhou, J.M. and P.M. Huang. 2007. Kinetics of potassium release from illite as influenced by different phosphates. Geoderma 138: 221-228. Zinder, B., G. Furrer and W. Stumm. 1986. The coordination chemistry of weathering: II. Dissolution of Fe(III) oxides. Geochim. Cosmochim. Acta 50: 1861-1869.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/90111-
dc.description.abstractDesferrioxamine B(DFOB) is one of microbial trihydroxamate siderophores, which is excreted by soil microbes and plant rootunder iron (Fe) deficientconditions.It can dissolveFe oxide minerals and increase the Fe availability in soil.Phosphate (P) is well known to be easily fixed by Fe minerals in soil. Because P and DFOB may compete the same surface binding sites, it is unclear whether P availability is increased when Fe oxide minerals are dissolved by DFOB. The aim of this research is to investigate the effects of DFOB on the releasing rates of P and Fe from P-adsorbedgoethite. P-adsorbed goethites were prepared with 0, 40 and 100% P loading amountsat pH 5 and 9. DFOB-promoted dissolution experiments were conducted at pH 5 and at different temperatures (5, 25 and 45℃). The corresponding dissolution rate constants were obtained and subsequently used to calculate the pre-exponential factor (A) and activation energy (Ea) through Arrhenius equation. The results showed that the calculated activation energyfor the dissolution reaction increased with the P adsorptionincrease, as there was stronger bonding interaction between Fe and P. Although theactivation energy increases , the dissolution rate of Fe is also increased. It is because more P adsorbed on goethite, Eap become lower than EaFe and thus Fe dissolution is chemically controlled by P. The complex species of P also control Fe dissolution. Fe dissolution is more significantly enhanced by mononuclear bidentate complex. The enhancement of Fe dissolution with more adsorbed P can be explained by increased A value, which means that DFOB was more accessible to the surface of goethite. The increase in the accessibility of DFOB to the goethite surface with increasing P adsorptionresults from the increasing negative charge of goethite surface. Moreover, the dissolution-readsorption mechanism may play a significant role in enhancement of Fe and P dissolution.en_US
dc.description.abstractDesferrioxamine B (DFOB)是一種由微生物分泌的載鐵物質,它含有三個醯基羥胺官能基。鐵是生物生表的重要元素之一,但在土壤環境中,微生物和植物根系常處於缺乏鐵的情況下。為了攝取足夠的鐵元素,它們會分泌對鐵親和力高的載鐵物質,把鐵礦物上的鐵溶解,增加土壤中的有效鐵。除了鐵之外,土壤磷的有效性很低,它很容易被固定在鐵礦物上。由於磷酸鹽和DFOB會競爭針鐵礦上相同的反應位置,目前還不瞭解磷的吸附對DFOB溶解鐵的影響。因此,本研究的目的是探討DFOB對針鐵礦上磷和鐵 溶解的影響,從而了解DFOB對土壤中磷及鐵有效性的影響。實驗中先準備在pH5 和pH9 下不同含量( 0,40,100%磷 ) 磷吸附的含磷針鐵礦,並 在pH 5 下加入DFOB在不同溫度下(5,25 和 45℃)進行溶解實驗。計算出的溶解速率常數,隨後通過Arrhenius equation來計算指前因子A和活化能Ea。結果顯示,磷會阻擋DFOB吸附在針鐵礦上。由於鐵和磷之間的鍵結強度增加,活化能也隨磷吸附增加而增加。然而,鐵的溶解速率卻隨磷吸附增加而增加。當磷吸附增加,由於溶解鐵之活化能較溶解磷之活化能高,磷成為鐵溶解的控制因子。磷在針鐵礦上的鉗合型態對鐵溶解也有影響,單核雙配位的鉗合型態有促進鐵溶解的效果。另外,磷的吸附導致表面負電荷的增加,讓DFOB更容易跟針鐵礦的表面鐵反應,進一步促進鐵溶解。磷的重新吸附機制亦為促進鐵和磷溶解的原因之一。zh_TW
dc.description.tableofcontentsAcknowledgments............................................i Abstract................................................ ii 摘要......................................................iv Contents ..................................................v Figure List ............................................viii Table List...............................................xii 1.INTRODUCTION.............................................1 2.LITERATURE REVIEW .......................................3 2.1 Fe oxides..............................................3 2.1.1 Fe in soil ..........................................3 2.1.2 Fe oxide dissolution.................................4 2.1.3 Rate Laws of Fe oxide dissolution ...................6 2.2 Siderophores...........................................7 2.2.1 Definition of siderophores...........................7 2.2.2 Desferrioxamine B (DFOB).............................9 2.3 DFOB-induced Fe oxides dissolution....................11 2.3.1 Ligand-promoted dissolution by DFOB.................11 2.3.2 Reductive dissolution by DFOB.......................12 2.3.3 DFOB-induced dissolution in presence of other ligands...................................................14 2.4 Interactions between Fe oxide and phosphate ..........15 2.4.1 Introduction of phosphate...........................15 2.4.2 Bonding between goethite surface and phosphate..... 17 2.4.3 Retention of phosphate on goethite .................20 2.5 Arrhenius equation....................................22 3. MATERIALS AND METHODS .................................23 3.1 Materials.............................................23 3.2 Sample preparation....................................23 3.2.1 DFOB purification...................................23 3.2.2 Minerals synthesis..................................24 3.2.2.1 Goethite synthesis.000............................24 3.2.2.2 Ferric phosphate synthesis........................25 3.2.2.3 Mineral identification and post processing........25 3.2.3 Phosphate adsorption on goethite....................27 3.2.3.1 Phosphate adsorption isotherm ....................27 3.2.3.2 Preparation of phosphate-adsorbed goethite samples ..........................................................29 3.3 Dissolution of minerals in the presence of DFOB.......30 3.3.1 Dissolution in batch experiment.....................30 3.3.2 Determination of dissolved Fe and P.................31 3.3.3 Determination of DFOB concentration ................31 3.4 Zeta potential determination..........................33 3.5 X-ray absorption near edge structure (XANES) spectroscopic study.......................................34 4. RESULT AND DISCUSSION..................................35 4.1 Zeta potential of minerals............................35 4.2 DFOB adsorption.......................................37 4.3 Fe dissolution .......................................38 4.4 Relation between phosphate and Fe dissolution.........40 4.5 Rate coefficients and Arrhenius parameters........... 41 4.6 XANES spectroscopic result ...........................46 5. CONCLUSION............................................ 67 6. REFERENCES............................................ 69 Figure List Figure 2.1 a) The structure of goethite. b) The schematic model of goethite – water interface: A – crystalline bulk structure, B–crystalline surface structure, and C – semi-ordered physisorbed water or sorbates......................4 Figure 2.2 The scheme of Fe acquirement by organisms via siderophore excretion......................................9 Figure 2.3 a) Chemical structure of the fully protonated DFOB; b)Structure of metal-DFOB complex...................10 Figure 2.4 Adsorption of acetohydroxamic acid (aHA) through ligand exchange reaction..................................12 Figure 2.5 Structures of (a) monoclinic FePO ‧2H2O and (b) orthorhombic FePO4‧2H2O. Blue corresponds to FeO6 octahedra in hydrated P, and yellow corresponds to PO4 tetrahedra. (a) and (b) are shown along a axis, b axis across, c axis up. Stucture of (c) FePO4‧2H2O with water molecules located. Purple represents FeO6 octahedra in hydrated P, blue represents PO4 tetrahedra, orange represents hydrogen atom and red represents oxygen atom. ..........................16 Figure 2.6 Speciation of orthophosphate ions in solution as a function of pH..........................................17 Figure 2.7 (a) Models of ligand coordination to the Fe oxide surface; (b)Depicted PO4 surface-complexes on goethite....19 Figure 2.8Relative surface P speciation on goethite for two fixed P concentration: (a) 10-7 M and (b) 10-4 M, in 0.01 M NaNO3 as function of pH. Dotted line represents the monodentate species (FeOPO3);Solid lines depict the bidentate species (Fe2O2PO2 and Fe2O2POOH)................20 Figure 2.9 Scheme of surface precipitation mechanism. Step 1, adsorption of P on the surface. Step 2, dissolved Fe adsorbs on the surface P. Step 3, goethite dissolves to refill the consumed Fe. Step 4, P adsorbs to the surface-bound Fe..................................................21 Figure 3.1 XRD patterns of synthesized goethite...........26 Figure 3.2 XRD patterns of synthesized ferric phosphate (FePO4‧2H2O)..............................................27 Figure 3.3 a) Isothermal experiment of P adsorption on goethite; b) Linear Langmuir equation fitting for P adsorption................................................29 Figure 3.4 The influence of P, Fe(II) and Fe(III) concentration on DFOB determination. .....................32 Figure 3.5 The wavelength scanning spectra of DFOB in presence and absence of P.................................33 Figure 4.1 Zeta potential of intact goethite and P-goethites as a function of P loading................................48 Figure 4.2 Zeta potential at pH 5 of pH 5 and pH 9 P goethites as a function of P loading. ....................49 Figure 4.3 DFOB adsorption on pH 5 P-goethites and FePO4‧2H2O at 5 ℃, 25℃ and 45℃. ..............................50 Figure 4.4 DFOB adsorption on pH 9 P-goethites and FePO4‧2H2O at 5 ℃, 25℃ and 45℃. ..............................51 Figure 4.5 Fe dissolution of pH 5 P-goethites at 5℃, 25℃ and 45℃..................................................52 Figure 4.6 Fe dissolution of pH 9 P-goethites at 5℃, 25℃ and 45℃..................................................53 Figure 4.7 P dissolution of pH 5 P-goethite at 5℃, 25℃ and 45℃. ....................................................54 Figure 4.8 P dissolution of pH 9 P-goethite at 5℃, 25℃ and 45℃. ....................................................55 Figure 4.9 Comparison of Fe and P dissolution of pH 5 100% P-goethite at 5℃, 25℃ and 45℃. .........................56 Figure 4.10 The P/Fe ratio of 40% and 100% P-goethites and FePO4‧2H2O. ..............................................57 Figure 4.11 Fe dissolution fitting of all goethites and FePO4‧2H2O at 5, 25and 45℃................................58 Figure 4.12P dissolution fitting of pH 5 100% P-goethite and FePO4‧2H2O mineral at 5℃, 25℃ and 45℃...................59 Figure 4.13 Fe dissolution fitting of pH 5 P-goethites by Arrhenius equation........................................60 Figure 4.14 Fe dissolution fitting of pH 9 P-goethites by Arrhenius equation........................................60 Figure 4.15 Fe dissolution fitting of FePO4‧2H2O mineral by Arrhenius ................................................60 Figure 4.16 P dissolution fitting of pH 5 100% P- goethite and FePO4‧ 2H2O by Arrhenius equation....................61 Figure 4.17 XANES spectra of pH 5 100% P P-goethite at 0, 1 and 72 hr. dissolution times..............................62 Figure 4.18 XANES spectra of pH 9 100% P P-goethite at 0, 1 and 72 hr.dissolution times...............................63 Table List Table 3.1The N, C, S, H element amount of DFOB determined by elemental analysis. ......................................24 Table 4.1 Zeta potential determination of all minerals at pH 5. ...................................................... 48 Table 4.2 Rate coefficients of Fe dissolution in presence of DFOB at 5℃,25℃ and 45℃. ................................64 Table 4.3 Arrhenius parameters of Fe dissolution in presence of DFOB ..................................................65 Table 4.4 Rate coefficients and Arrhenius parameters of P dissolution of pH 5 100% P-goethite and FePO4‧2H2O mineral in presence of DFOB at 5℃, 25℃ and 45℃. ................66zh_TW
dc.language.isoen_USzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2015-07-15起公開。zh_TW
dc.subjectnoen_US
dc.subjectzh_TW
dc.titleDissolution of Phpsphate-adsorbed Geothite by Desferrioxamine Ben_US
dc.titleDesferrioxamine B 對磷吸附後針鐵礦之溶解機制zh_TW
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2015-07-15zh_TW
dc.date.openaccess2015-07-15-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1en_US-
item.grantfulltextrestricted-
Appears in Collections:土壤環境科學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101039012-1.pdf3.53 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.