Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorYu-Min Tzouen_US
dc.contributor.authorHan-tien Wuen_US
dc.identifier.citation王學川、邱白玉。2005。表面活性劑的毒性問題。日用化學品科學。28:22-26。 林正芳、林郁真、余宗賢。2008。新興污染物(抗生素與止痛藥)於特定污染源環境之流佈。持久性有機污染物(含戴奧辛)研討會。 林俊臣。2005。飼料添加物使用準則簡介,行政院農委會農政與農情,156:151-162。 郭文正。2004。濫用抗生素,危險!,百善書房。 吳雨新、陳保基。2008。農業概論 畜牧生產。 洪群雅。2013。豬糞於堆肥過程中抗生素濃度與微生物抗藥性之變化。國立中興大學土壤環境科學系碩士論文。 黃美霞。2012。金屬Zn(II)、Cu(II)及Al(III)對於鐵氧化物吸附四環類抗生素的影響。國立中興大學土壤環境科學系碩士論文。 陳瑞祥。2001。含藥物飼料添加物使用規範之簡介,動植物防疫檢疫局。 陳瑛瑛、陳嫣紅、王復德。2006。抗藥性微生物院內感染之防治策略˙臨床醫學,57:127-133。 張家銘、陳立佳、柯文謙。2001。乙內醯胺類抗生素及其抗藥性,內科學誌 (Journal of Internal Medicine of Taiwan),10: 185-197。 張博翔。2013。黏土礦物與四環素的吸/脫附機制研究。國立成功大學地球科學系博士論文。 蔡宗燕。2000。黏土奈米層狀材料之應用與開發。國立成功大學資源工程研究所專題演講內容。 劉朝鑫、陳啟銘、張聰洲、張文發、張紹光、郭忠政、林志勳、朱純燕。2008。行政院農業委員會動植物防疫檢驗局財團法人台灣動物科技研究所豬隻常用動物用藥品使用手冊。 Barrientos Velazquez, A. L. 2011. Texas bentonites as amendments of Aflatoxin-contaminated poultry feed. University of Texas A&M. Soil Science. Bae, W., K. N. Kaya, D. D. Hancock, D. R. Call, Y. H. Park, and T. E. Besser. 2005. Prevalence and antimicrobial resistance of thermophilic Campylobacter spp. from cattle farms in Washington State. Appl. Environ. Microbiol. 71:169-174. Bish, D. L. 1994. Quantitative x-ray analysis of soils. J.E. Amonette, and L.W. Zelazny (ed.) Quantitative methods in soil mineralogy. SSSA, Madison, WI. 267-296. Campagnolo, E. R., K. R. Johnson, A. Karpati, C. S. Rubin, D. W. Kolpin, M. T. Meyer, J. E. Esteban, R. W. Currier, K. Smith, K. M. Thu, and M. McGeehin. 2002. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Sci. Total Environ. 299:89-95. Chang, P. H., Z. H. Li, T. L. Yu, S. Munkhbayer, T. H. Kuo, Y. C. Hung, J. S. Jean, and K. H. Lin. 2009. Sorptive removal of tetracycline from water by palygorskite. J. Hazard. Mater. 165:148-155. Chang, P. H., Z. H. Li, W. T. Jiang, and J. S. Jean. 2009. Adsorption and intercalation of tetracycline by swelling clay minerals. Appl. Clay Sci. 46:27-36. Chen, W. R., and C. H. Huang. 2011. Transformation kinetics and pathways of tetracycline antibiotics with manganese oxide. Environ. Pollut. 159:1092-1100. Cheng, G., and K. G. Karthikeyan, 2008. Sorption of the antibiotic tetracycline to humic-mineral complexes. Environ. Qual. 37:704-711. Chopra, I., and M. Roberts. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65:232-260. Deng, Y. J., J. B. Dixon, and G. N. White. 2003. Intercalation and surface modification of smectite by two non-ionic surfactants. Clays Clay Miner. 51:150-161. Dolliver, H., S. Gupta. 2008. Antibiotic losses in leaching and surface runoff from manure-amended agricultural land. J. Environ. Qual. 37:1227-1237. Dugger, B. M. 1948. A product of the continuing search for new antibiotics. Ann. N. Y. Acad. Sci. 51:177-181. Figueroa, R. A., A. Leonard, and A. A. Mackay. 2004. Modeling tetracycline antibiotic sorption to clays. Environ Sci. Technol. 38:476-483. Figueroa, R. A., and A. A. Mackay. 2005. Sorption of oxytetracycline to iron oxide and iron oxide-rich soils. Environ Sci. Technol. 39:6664-6671. Finlay, A. C., G. L. Hobby, S. Y. Pan, P. P. Regna, J. B. Routien, G. M. Shull, B. A. Sobin, I. A. Solomons, and J. H. Vinson. 1950. Terramycin, a new antibiotic. Sci. 111:85. Fred, E. H. 1979. Mechanism of action of antibacterial agents, Springer-Verlag Berlin Heidelberg, New York. Fukushima, Y., and S. Inagaki. 1987. Synthesis of an Intercalated Compound of Montmorillonite and 6-polyamide. Journal of Inclusion Phenomenology. 5:473-482. Gu, C., and K. G. Karthikeyan. 2005. Interaction of tetracycline with aluminum and iron hydrous oxides. Environ. Sci. Technol. 39:2660–2667. Gu, C., K. G. Karthikeyman, S. D. Sibley, and J. A. Pedersen. 2007. Complexation of antibiotic tetracycline with humic acid. Chemophere 66:1494-1501. Guégan, R. 2010. Intercalation of a Nonionic Surfactant (C10E3) Bilayer into a Na-Montmorillonite Clay. Langmuir. 26:19175–19180. Guégan, R., M. Giovanela, F. Warmont, and M. Motelica-Heino. 2015. Nonionic organoclay: A 'Swiss Army knife' for the adsorption of organic micro-pollutants? J Colloid interface Sci. 437:71-79. Hamscher, G., S. Sczesny, H. Hoper, and H. Nau. 2002. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal. Chem. 74:1509-1518. He, H. P., Q. Zhou, W. N. Martens, T. J. Kloprogge, P. Yuan, Y. F. Xi, J. X. Zhu, and R. L. Frost. 2006. Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics. Clays Clay Miner. 54:689-696. Homem, V., and L. Santos. 2011. Degradation and removal methods of antibiotics from aqueous matrices – A review. J. Environ. Manage. 92:2304-2347. Hu, X., Q. Zhou, and Y. Luo. 2010. Occurrence and source analysis of typical veterinary antibiotics in mature, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ. Pollut. 158:2992-2998. Ikhtiyarova, G. A., A. S. Özcan, Ö. Gök, and A. Özcan. 2012. Chracterization of natural- and organo-bentonite by XRD, SEM, FT-IR and thermal analysis techniques and its adsorption behavior in aqueous solutions. Clay Miner. 47:31-44. Jacobsen A. M., B. Halling-Sorensen, and F. Ingerslev. 2004. Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 1038:157-170. Ji, L. I., W. Chen, S. Zheng, Z. Xu, and D. Zhu. 2009. Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langnuir 25:11608-11613. Johns, T., M. Duquette. 1991. Detoxification and mineral supplementation as functions of geophagy. Am. J. Clin. Nutr. 53:448–456. Kay, P., P. A. Blackwell, and A. B. Boxall, 2005. Colum studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land. Chemosphere 60:497-507. Karthikeyan, K. G., and M. T. Meyer. 2006. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci. Total Environ. 361:196-207. Kolpin, D. W., E. T. Furlong, M. T. Meyer, E. M. Thurman, S. D. Zaugg, L. B. Barber, and H. T. Buxon. 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance. Environ. Sci. Technol. 36:1202-1211. Kümmerer, K. 2009. Antibiotics in the aquatic environment-A review: Part I. Chemosphere 75:417-434. Kulshrestha, P., Jr. R. F. Giese, D. S. Aga. 2004. Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ. Sci. Technol. 38:4097–4105. Leypold, C.F., M. Reiher, G. Brehm, M. O. Schmitt, S. Schneider, P. Matousek, and M. Towrie. 2003. Tetracycline and derivatives assignment of IR and Raman spectra via DFT calculations. Phys. Chem. 5:1149–1157. Levy, S. B. 2002. The antibiotic paradox : how the misuse of antibiotics destroys their curative powers., Perseus Books, New York. Li, Z.H., P.H. Chang, J.S. Jean, W.T. Jiang, and C.J. Wang. 2010. Interaction between tetracycline and smectite and in aqueous solution. J. Colloid Interface Sci. 341:311-319. Li, Z.H., L. Schulz, C. Ackley, and N. Fenske. 2010. Adsorption of tetracycline on kaoline with pH-dependent surface charges. J Colloid Interface Sci. 351:254-260. Lin, A. C., T. H. Yu, and C. F. Lin. 2008. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemophere 74:131-141. Lindsey, M. E., M. Meyer, and E. M. Thurman. 2001. Analysis of trace levels of sulfonamide and tetracycline antimicrobials, in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal. Chem. 73:4640-4646. Luber, P., J. Wangner, H. Hahn, and E. Bartelt. 2003. Antimicrobial resistance in Campylobacter jejuni and Campylobacter coli strains isolated in 1991 and 2001-2002 from poultry and humans in Berlin, Germany. Antimicrob. Agents Chemother. 47:3825-3830. Martinez, E. E., and W. Shimoda, 1989. Liquid chromatographic determination of epimerization of chlortetracycline residue to 4-epi-chlortetracycline residue in animal feed, using McIlvain's buffer as extractant. J Assoc Off Anal Chem., 72:848–50. Miao, X. S., F. Bishay, M. Chen, and C. D. Metcalfe. 2004. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environ. Sci. Technol. 38:3533-3541. Oka, H.,Y. Ito, Y. Ikai, H. Matsumoto, K. Kato, I. Yamamoto, M. Shimizu, N. Kawamura, Y. Miyazaki, T. Nojiri, M. Okumura, S. Ohmi, T. Sato, and G. Mori.1985-1997. Survey of residual tetracyclines in kidneys of diseased animals in Aichi Prefecture, Japan (1985~1997). J.AOAC Int. 84:350-353. Parolo, M. E., M. C. Savini, J. M. Valles, M. T. Baschini, and M. J. Avena. 2008. Tetracycline adsorption on montmorillonite: pH and ionic strength effects. Appl. Clay Sci. 40:179–186. Parolo, M. E., G. R. Pettinari, T. B. Musso, M. P. Sanchez-Izquierdo, and L. G. Fernandez. 2014. Characterization of organo-modified bentonite sorbents: The effect of modification conditions on adsorption performance. Appl. Surf. Sci. 320:356-363. Park, Y., G. Ayoko, and R. Frost. 2011. Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media. J. Colloid Interface Sci. 354:292-305. Picó, Y., and V. Andren. 2007. Fluoroquinolones in soil risks and challenges. Analyt. And Bioanalyt. Chem. 387:1287-1299. Roberts, M. C. 1996. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 19:1-24. Ruthven, D. M. 1984. Principles of Adsorption and Adsorption processes., John Wiley, New York. Sarmah, A. K., M. T. Meyer, and A. B. Boxall. 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemophere 65:725-759. Sassman, S. A., and L. S. Lee. 2005. Sorption of three tetracycline by several soils : Assessing the role of pH and cation exchange. Environ. Sci. Technol. 39:7452-7459. Shanmukh, S., and R. A Dluhy. 2004. 2D IR analyses of rate processes in lipid-antibiotic monomolecular films, Vib. Spectrosc. 36:167–177. Shen, W., H. He, J. Zhu, P. Yuan, and R. Frost . 2007. Grafting of montmorillonite with different functional silanes via two different reaction systems. J. Colloid Interface Sci. 313:268-273. Slamova, R., M. Trckova, H. Vondruskova, Z. Zraly, and I. Pavlik. 2011. Clay minerals in animal nutrition. Appl. Clay Sci. 51:395-398. Stephens. C. R., K. Murai, K. J. Brunings, and R.B. Woodward. 1956. Acidity Constants of the Tetracycline Antibiotics. J. Am. Chem. Soc. 78:4155–4158. Turku, I., T. Sainio, and E. Paatero. 2007. Thermodynamics of tetracycline adsorption on silica. Environ Chem Lett. 5:225-228. Wan, Y. Y. Bao, and Q. Zhou. 2010. Simultaneous adsorption and desorption of cadmium and tetracycline on cinnamon soil. Chemophere 80:807-812. Wang, Y. J., D. A. Jia, R. J. Sun, H. W. Zhu, D. M. Zhou. 2008. Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environ. Sci. Technol. 42:3254-3259. WHO. 1997. The Medical impact of the use of antimicrobials in food animals: report of a WHO meeting, Berlin, Germany, 13-17 October 1997. Winckler, C., J. Capdeville, G. Gebresenbet, B. Horning, U. Robiha, M. Tosi, and S. Waiblinger. 2003. Selection of parameters for on-farm welfare-assessment protocols in cattle and buffalo. Anim. Welf. 12:619-624. Williams, L.B., M. Holland, D. D. Eberl, T. Brunet, L. Brunet de Courssou. 2004. Killer Clays! Natural antibacterial clay minerals. Mineralog. Soc. Bull. 139:3–8. Zhao, Y. P., X. Y. Gu, S. X. Gao, J. J. Geng., and X. R. Wang. 2012. Adsorption of tetracycline (TC) onto montmorillonite: Cation and humic acid effects. Geoderma 183:12-18. Zhao, Y. P., J. J. Geng., X. R. Wang, X. Y. Gu, and S. X. Gao. 2011. Adsorption of tetracycline onto goethite in the presence of metal cations and humic substances. J. Colloid Interface Sci. 361:247-251. Zhu, L., X. Ren, and S. Ku. 1998. Use of cetyltrimethylammonium bromide-bentonite to remove organic contaminants of varying polar character from water. Environ. Sci. Technol. 23:3374-3378.zh_TW
dc.description.abstractTetracyclines (TCs) are commonly used as feed supplements to enhance animal growth or to treat diseases derived from microbial infections. Because TC cannot be completely metabolized in vivo, about 30-90 % TCs are excreted via the feces and urine as integral. As a result, TC has been found in many soils and natural waters, particularly in those areas near the farmlands. Inorganic colloids, such as clay minerals, distribute widely in the environments which may perform as a good adsorbent for TC or other pollutants because these minerals exhibit unique properties of small particle size and large surface area. Bentonite, one of the soil minerals consisting mainly of montmorillonite, can be a scavenger for environmental pollutants; however, the hydrophilic surfaces of bentonite may limit its application for removing less or non-polar organic molecules. Therefore, a cationic surfactant, such as alkyl amines, had been used to convert the bentonite surfaces becoming more hydrophobic to promote its adsorption capacity of non-polar molecules. Cationic surfactant exhibits a higher bio-toxicity, and this kind of surfactant may lead to a poison while being used as an antibiotic carrier. In this study, a non-ionic surfactant, i.e., Brij30, was used to modify bentonite, and its interaction with TC over a pH range of 3-8 was investigated. Results showed that TC adsorption on bentonite/or Brij30 modified bentonite could be described by the Langmuir model. However, Brij30 would inhibit TC adsorption on bentonite due probably to the blockage of the adsorptive sites of bentonite by Brij30. At pH 3, each bentonite sample exhibited a better adsorption ability of TC, attributing to the electrostatic attractions between TC and bentonite. The results of pH and ionic strengthen effects indicated that TC adsorption on Brij30-modified bentonite was more favorable at pH 8 than that at pH 5. This may be attributed to the hydrophobic interactions of TC molecules with Brij30. Besides, XRD diagram indicated that the d-spacing of TC-loading bentonite exhibited the highest at pH 8 which suggested that TC molecules may associate each other, probably through hydrophobic forces, prior to entering the interlayer of bentonite. FTIR spectra showed that the C=O from A ring and O=C-NH2 group may play an important role in TC adsorption.en_US
dc.description.abstract四環黴素(TC),為一種常用的抗生素,長期以來一直被添加在動物飼料中用來治療病菌感染或是促進動物的生長,但大部分的抗生素不能在動物體內代謝掉,因此約有30-90%會經由動物的排泄物排出體外,可能導致其散佈在土壤及自然水體中。過去的研究指出,土壤中存在的無機膠體(如礦物)由於具粒徑小及比表面積大的優點,因此對抗生素等環境污染物具有一定的吸附能力,其中又以膨潤土(Bentonite)較常為學者所利用,此礦物為一種主要由蒙特石組成的黏土礦物,由於蒙特石親水性的表面卻不利於非極性分子的吸附,故常會加入陽離子界面活性劑,如烷胺類化合物使其成為有機膨潤土(organo-bentonite)來促進蒙特石類礦物對非極性分子的吸附能力。但陽離子型界面活性劑通常對生物的毒性較高,若作為抗生素的載體施用於動物飼料中將可能造成動物本身的毒害,因此,本研究以非離子型界面活性劑來改質黏土礦物膨潤土,瞭解此改質後的有機黏土與TC間的交互作用。結果顯示,改質前後之膨潤土對TC之吸附皆較符合Langmuir吸附模式,且膨潤土插層之非離子型界面活性劑在pH 5-8的條件下均無促進TC吸附的效果,反而會因佔據TC的吸附位置而抑制TC的吸附,因此對TC的吸附量皆有下降的現象。pH 3的條件下,因TC與帶負電的膨潤土表面會以靜電作用力吸引,故不論是否有經過Brij30改質,均有最高的TC吸附量;由pH及離子強度影響實驗發現,與pH 5的結果相較,在pH 8條件下有助於改質膨潤土對TC的吸附,XRD分析結果也顯示TC吸附後最大的層間距出現在pH 8,此可能是由於TC間疏水性作用的結合,使得進入層間的分子較大並與非離子型界面活性劑的疏水端作用,因而促進改質膨潤土對TC的吸附。而FTIR的分析結果則顯示,TC結構上A環、C環的C=O鍵與O=C-NH2鍵在膨潤土吸附上扮演著重要的角色。zh_TW
dc.description.tableofcontents目錄 謝誌 i 摘要 ii Abstract iii 圖目錄 viii 表目錄 x 第一章、前言 1 第二章、前人研究 4 2.1抗生素的歷史 4 2.2抗生素的種類與抑菌機制 5 2.3細菌抗藥性的產生 7 2.4環境中抗生素的主要來源 9 2.5世界各國及台灣對農用抗生素的管制情形 12 2.6 四環素 13 2.6.1四環類抗生素簡介 13 2.6.2環境中的四環素殘留濃度 17 2.6.3四環素在環境中的吸附 18 2.7黏土礦物-膨潤土(Bentonite) 19 2.7.1膨潤土簡介 19 2.7.2有機黏土礦物的改質 19 2.8黏土礦物作為飼料添加劑 21 第三章、材料與方法 22 3.1藥品 22 3.2儀器設備 23 3.3 膨潤土樣品來源 24 3.4非離子型界面活性劑改質之膨潤土製備 24 3.5 膨潤土樣品的X光繞射分析 25 3.6 膨潤土樣品的紅外線光譜分析 26 3.7 膨潤土樣品的總有機碳分析 26 3.8 膨潤土樣品對於TC的吸附 26 3.8.1不同pH下 TC標準曲線製作 26 3.8.2 膨潤土樣品在不同pH下對TC的動力吸附實驗 27 3.8.3 膨潤土樣品在不同pH下對TC的等溫吸附實驗 27 3.8.4不同pH影響膨潤土樣品吸附TC 28 3.8.5離子強度影響膨潤土樣品吸附TC 28 3.9吸附於膨潤土樣品上TC之多次脫附實驗 29 3.10動力吸附模式 29 3.10.1擬一階動力吸附模式 (Pseudo-first-order kinetic model) 29 3.10.2擬二階動力吸附模式 (Pseudo-second-order kinetic model) 30 3.11等溫吸附模式 30 3.11.1 Freundlich吸附理論 30 3.11.2 Langmuir吸附理論 31 第四章、結果與討論 33 4.1非離子型界面活性劑改質膨潤土 33 4.1.1改質膨潤土的總有機碳含量 33 4.1.2 膨潤土樣品的層間間距分析 34 4.1.3 膨潤土樣品的紅外線光譜分析 35 4.2 膨潤土對TC的動力吸附實驗 37 4.3不同pH對膨潤土樣品吸附TC的影響 40 4.3.1 pH影響膨潤土樣品吸附TC實驗 40 4.3.2 不同pH下膨潤土樣品對TC的等溫吸附實驗 43 4.3.3陽離子交換 49 4.4離子強度對膨潤土樣品吸附TC的影響 50 4.5 不同pH影響TC從吸附劑上的脫附 53 4.5.1 膨潤土對TC的動力脫附實驗 53 4.5.2 不同pH下脫附次數對TC脫附的影響 54 4.6 膨潤土樣品吸附TC前後的層間間距分析 56 4.7 膨潤土樣品吸附TC前後的紅外線光譜分析 61 第五章、結論 66 參考文獻 67zh_TW
dc.subjectnon-ionic surfactanten_US
dc.titleInteraction of Tetracyclines with non-ionic surfactant modified Bentonite.en_US
dc.typeThesis and Dissertationen_US
item.openairetypeThesis and Dissertation-
item.fulltextwith fulltext-
Appears in Collections:土壤環境科學系
Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101039007-1.pdf2.8 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.