Please use this identifier to cite or link to this item:
標題: Studies on the efficiency of phytoremediation with egyptian clover (Trifolium alexandrinum L.), pak choi (Brassica rapa L. Chinese Group) and sesbania (Sesbania cannabia (Retz.) Pers.) on salt-affected soil
埃及三葉草 (Trifolium alexandrinum L.)、小白菜 (Brassica rapa L. Chinese Group) 和田菁 (Sesbania cannabia (Retz.) Pers.) 植生復育鹽害土壤之效益研究
作者: Yu-Hsun Pan
關鍵字: phytoremediation;salt-affected soil;green manure;植生復育;鹽害;綠肥
引用: 吳正忠。2001。興大農業:鹽害土壤的診斷與改良。國立中興大學。 洪美華。2002。台灣本土豆科植物根瘤菌分離及特性研究。國立中興大學土壤環境科學系碩士論文。 黃煜誠。2013。研究根瘤菌對田菁吸收鹽分能力的影響。國立中興大學土壤環境科學系碩士論文。 潘佳辰。2013。豇豆根瘤篩選、固氮能力評估培養基比較及對豇豆生長影響之研究。國立中興大學土壤環境科學系碩士論文。 Al‐Rawahy, S.A., J.L. Stroehlein, and M. Pessarakli. 1992. Dry‐matter yield and nitrogen‐15, Na+, Cl‐, and K+ content of tomatoes under sodium chloride stress. Journal of Plant Nutrition 15:341-358. Ashraf, M., and L. Wu. 1994. Breeding for Salinity Tolerance in Plants. Critical Reviews in Plant Sciences 13:17-42. Ashraf, M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora 199:361-376. Bashan, Y., M. Moreno, and E. Troyo. 2000. Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol. Fertil. Soils, 32:265-272. Beltran, J.M. 1999. Irrigation with saline water: benefits and environmental impact. Agricultural Water Management, 40:183-194. Blumwald, E., G.S. Aharon, and M.P. Apse. 2000. Sodium transport in plant cells. Biochimica et Biophysica Acta (BBA) - Biomembranes 1465:140-151. Brady, N.C., and R.R. Weil. 2008. The nature and properties of soils. P. 401-44. 14th ed. Pearson education. New Jersey. Bray, R.H., and L.T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59:39-46. Bremner, J.M., and C.S. Mulvaney. 1982. Nitrogen—Total1, p. 595-624, In A. L. Page, (ed.) Methods of Soil Analysis Part 2 Chemical and Microbiological Properties. ed. Agronomy Monograph. American Society of Agronomy, Soil Science Society of America. Cachorro, P., A. Ortiz, and A. Cerda. 1994. Implications of calcium nutrition on the response of Phaseolus vulgaris L. to salinity. Plant Soil, 159:205-212. Carden, D.E., D.J. Walker, T.J. Flowers, and A.J. Miller. 2003. Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiology, 131:676-683. Cerezo, M., P. Cerezo, M. Garcı́a Agustı́n, E. Serna, and M. Primo. 1997. Kinetics of nitrate uptake by Citrus seedlings and inhibitory effects of salinity. Plant science, 126:105-112. Cram, W.J. 1973. Internal Factors Regulating Nitrate and Chloride Influx in Plant Cells. Journal of Experimental Botany, 24:328-341. Dahiya, S.S., and M. Singh. 1976. Effect of salinity, alkalinity and iron application on the availability of iron, manganese, phosphorus and sodium in pea (Pisum sativum L.) crop. Plant Soil, 44:697-702. Delgado, M.J., J.M. Garrido, F. Ligero, and C. Lluch. 1993. Nitrogen fixation and carbon metabolism by nodules and bacteroids of pea plants under sodium chloride stress. Physiologia Plantarum, 89:824-829. Elsheikh, E.A.E., and M. Wood. 1995. Nodulation and N2 fixation by soybean inoculated with salt-tolerant rhizobia or salt-sensitive bradyrhizobia in saline soil. Soil Biology and Biochemistry, 27:657-661. Epstein, E. 1985. Salt-tolerant crops: origins, development, and prospects of the concept, p. 187-198, In D. Pasternak and A. San Pietro, (eds.) Biosalinity in Action: Bioproduction with Saline Water. ed. Developments in Plant and Soil Sciences. Springer Netherlands. Evelin, H., B. Giri, and R. Kapoor. 2012. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza, 22:203-217. Flowers, T., and A. Yeo. 1986. Ion Relations of Plants Under Drought and Salinity. Functional Plant Biology, 13:75-91. Flowers, T., M. Hajibagheri, and N. Clipson. 1986. Halophytes. Quarterly Review of Biology:313-337. Francois, L.E., T.J. Donovan, and E.V. Maas. 1990. Salinit effects on emergence, vegetative growth, and seed yield of guar. Agronomy Journal, 82:587-592. Georgiev, G.I., and C.A. Atkins. 1993. Effects of salinity on N-2 fixation, nitrogen-metabolism and export and diffusive conductance of cowpea root-nodules. Symbiosis, 15:239-255. Glenn, E.P., J.J. Brown, and E. Blumwald. 1999. Salt Tolerance and Crop Potential of Halophytes. Critical Reviews in Plant Sciences, 18:227-255. Grattan, S.R., and C.M. Grieve. 1998. Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78:127-157. Greenway, H., and R. Munns. 1980. Mechanisms of salt tolerance in nonhalophytes. Annual review of plant physiology 31:149-190. Hussain, N. 2002. Effectiveness of Rhizobium under salinity stress. Asian journal of plant sciences, 1:12. Jha, Y., R.B. Subramanian, and S. Patel. 2011. Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta physiologiae plantarum, 33:797-802. Kafkafi, U., M.Y. Siddiqi, R.J. Ritchie, A.D.M. Glass, and T.J. Ruth. 1992. Reduction of nitrate (13NO3) influx and nitrogen (13N) translocation by tomato and melon varieties after short exposure to calcium and potassium chloride salts. Journal of Plant Nutrition, 15:959-975. Maathuis, F.J.M. 2006. The role of monovalent cation transporters in plant responses to salinity. Journal of experimental botany, 57:1137-1147. Mahmood, K., and K.A. Malik. 1987. Salt tolerance studies on atriplex rhagodioides F. Muell. Environmental and Experimental Botany, 27:119-125. Mahmood, K., and Mahmood. 1998. Effects of salinity, external K+/Na+ ratio and soil moisture on growth and ion content of Sesbania rostrata. Biologia plantarum, 41:297-302. Mahmood, K., K.A. Malik, M.A.K. Lodhi, and K.H. Sheikh. 1996. Seed germination and salinity tolerance in plant species growing on saline wastelands. Biologia plantarum, 38:309-315. Manchanda, G., N. Manchanda, and Garg. 2008. Salinity and its effects on the functional biology of legumes. Acta physiologiae plantarum, 30:595-618. Martinez, V., and A. Cerda. 1989. Influence of N source on rate of Cl, N, Na and K uptake by cucumber seedlings grown in saline condition. Journal of Plant Nutrition, 12:971-983. Mor, R.P., and H.R. Manchanda. 1992. Influence of phosphorus on the tolerance of table pea to chloride and sulfate salinity in a sandy soil. Arid Soil Research and Rehabilitation, 6:41-52. Munns, R., and A. Termaat. 1986. Whole-Plant Responses to Salinity. Functional Plant Biology, 13:143-160. Murashige, T., and F. Skoog. 1962. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15:473-497. Murphy, J., and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27:31-36. Ohyama, T., M. Ito, K. Kobayashi, S. Araki, S. Yasuyoshi, O. Sasaki, T. Yamazaki, K. Soyama, R. Tanemura, and Y. Mizuno. 1991. Analytical procedures of N, P, K contents in plant and manure materials using H2SO4-H2O2 Kjeldahl digestion method. Bulletin of the Faculty of Agriculture-Niigata University (Japan). Page, A.L., Chang, A.C., Adriano, D.C., 1990. Deficiencies and toxicities of trace elements. Agricultural Salinity Assessment and Management, Chapter 7, ASCE Manuals and Reports on Eng. Practice No. 71. ASCE, pp. 138-160. Palm, O., W.L. Weerakoon, M.A. de Silva, and T. Rosswall. 1988. Nitrogen mineralization ofSesbania sesban used as green manure for lowland rice in Sri Lanka. Plant and soil, 108:201-209. Papadopoulos, I., and V.V. Rendig. 1983. Interactive effects of salinity and nitrogen on growth and yield of tomato plants. Plant Soil, 73:47-57. Perez-Alfocea, F., M.E. Balibrea, A.S. Cruz, and M.T. Estan. 1996. Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil, 180:251-257. Pessarakli, M. 1991. Dry Matter Yield, Nitrogen-15 Absorption, and Water Uptake by Green Bean Under Sodium Cloride Stress. Crop Sci., 31:1633-1640. Qadir, M., and J.D. Oster. 2004. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Science of The Total Environment, 323:1-19. Qadir, M., A. Ghafoor, and G. Murtaza. 2000. Amelioration strategies for saline soils: a review. Land Degradation & Development, 11:501-521. Rabhi, M., S. Ferchichi, J. Jouini, M.H. Hamrouni, H.-W. Koyro, A. Ranieri, C. Abdelly, and A. Smaoui. 2010. Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresource Technology, 101:6822-6828. Ravindran, K.C., K. Venkatesan, V. Balakrishnan, K.P. Chellappan, and T. Balasubramanian. 2007. Restoration of saline land by halophytes for Indian soils. Soil Biology and Biochemistry, 39:2661-2664. Rhodes, D., and A. Hanson. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual review of plant biology, 44:357-384. Rogers, M.E., C.M. Rogers, M.C. Grieve, and Shannon. 2003. Plant growth and ion relations in lucerne (Medicago sativa L.) in response to the combined effects of NaCl and P. Plant and soil, 253:187-194. Salim, M. 1989. Effects of NaCl and KC1 Salinity on Growth and Ionic Relations of Red Kidney Beans (Phaseolus vulgaris L.). Journal of Agronomy and Crop Science, 163:338-334. Santa MarA-a, G.E., F. Rubio, J. Dubcovsky, and A. RodrA-guez Navarro. 1997. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell, 9:2281-2289. Sharpley, A.N., J.J. Meisinger, J.F. Power, and D.L. Suarez. 1992. Root Extraction of Nutrients Associated with Long-Term Soil Management, p. 151-217, In J. L. Hatfield and B. A. Stewart, (eds.) Limitations to Plant Root Growth. ed. Advances in Soil Science. Springer New York. Shukla, U.C., and A.K. Mukhi. 1985. Ameliorative role of zinc on maize growth (Zea mays L.) under salt-affected soil conditions. Plant Soil, 87:423-432. Tanji, K.K., Valoppi, L., Woodring, R.C. (Eds.), 1988. Selenium contents in animal and human food crops grown in California. University of California, Division of Agriculture and Natural Resources, Special Publication No. 3330, 102 pp. Tejera, N.A., R. Campos, J. Sanjuan, and C. Lluch. 2004. Nitrogenase and antioxidant enzyme activities in Phaseolus vulgaris nodules formed by Rhizobium tropici isogenic strains with varying tolerance to salt stress. Journal of Plant Physiology, 161:329-338. Tejera, N.A., R. Campos, J. Sanjuan, and C. Lluch. 2005. Effect of Sodium Chloride on Growth, Nutrient Accumulation, and Nitrogen Fixation of Common Bean Plants in Symbiosis with Isogenic Strains. Journal of Plant Nutrition, 28:1907-1921. Thao, H., T. Yamakawa, K. Shibata, P. Sarr, and A. Myint. 2008. Growth response of komatsuna (Brassica rapa var. peruviridis) to root and foliar applications of phosphite. Plant Soil, 308:1-10. Vincent, J.M. 1970. A manual for the practical study of the root-nodule bacteria. A manual for the practical study of the root-nodule bacteria. Waisel, Y., A. Eshel, and M. Agami. 1986. Salt balance of leaves of the mangrove Avicennia marina. Physiologia Plantarum, 67:67-72. Westerman, R. 1990. Testing soils for potassium, calcium, and magnesium. Soil testing and plant analysis:184-189. Zhu, J.-K. 2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology, 124:941-948. Zhu, J.-K. 2001. Plant salt tolerance. Trends in Plant Science, 6:66-71.
As the world population booming, food problem has been concern for a long time. Recently, different natural disasters, such as global warming, tsunami attack and sea level rising, and also man-made problem, like human activities, excessive use of fertilizer and water pollution, lots of arable land has been salt-affected. Farmers in Taiwan often over supply fertilizers, in addition, irrigate low quality water and greenhouse effect which create salt-affected soil problem. Phytoremediation is a cheap method to solve salt-affected problem and friendly to environment. In this study, Egyptian clover (Trifolium alexandrinum L.), Pak choi (Brassica rapa L Chinese Group.), Arucola (Eruca sativa) and Sesbania (Sesbania canabia (Retz.) Pers.) were grown under soils adjusted into different EC levels with NaCl. Part one of this study Egyptian clover and Pak choi were cultivated under EC levels at 4, 6, 8 and 12 dS m-1. Results showed that both of Egyptian clover and Pak choi could lower the soil sodium concentration remarkably under 4 and 6 dS m-1 treatments. As the higher biomass and Na accumulation of Pak choi made it became a better choice for it reducing soil sodium concentration to 35 and 26% under 4 and 6 dS m-1 treatments, respectively, and the corresponding values for Egyptian clover were 20 and 12%. The values of soil EC lowered from initial 4.01 to 3.15 and 3.55 dS m-1 for Pak choi and Egyptian clover, respectively. However, as the growth period increased of Pak choi, the K:Na of plant tissue quickly decreased from 1.76, 2.09, and 0.39 at 30 DAS 0.39 to 0.94, 0.92, and 0.19 at 40 DAS for 4, 6, and 8 dS m-1 treatments, respectively. This indicated that an extra K fertilizer may be needed to support Pak choi for lasting its Na removing potential. In the second part, two different salt tolerant rhizobia(Rhizobium pusense) were inoculated for Sesbania and growing under solution EC at 3, 6, 9 and 12 dS m-1 hydroponic systems. Results showed that rhizobium inoculation do not make any differences of the growth of sesbania among different EC treatments. At the last part of this study, the biomass of Pak choi and Sesbania grown applied back to their produced pot as green manure for treatments with soil EC adjusted to 4 and 12 dS m-1. Though Pak choi reduced soil sodium concentration to 60% in previous cultivation, the soil EC recovered back to their initial values for most salt elements Pak choi tissue released back to soil during growing periods for the crop tissue having easily decomposed character. The decomposition of Sesbania is much slower with the lower ratio of sodium in the tissue released back to soil during growing period. Accordingly, both of Pak choi and Sesbania are suitable for salt removing from the salted soil, Pak choi tissue should be moved out of the sites. Sesbania can be used as green manure for the following crops.

近年來溫室暖化、海嘯及海平面上升等自然災害,再加上人為活動、大量施肥及水資源的汙染,全世界的耕地面積越來越少而鹽害問題也日漸嚴重。台灣農民常過度施用肥料,加上溫室效應及灌溉水品質不良,往往造成土壤鹽化及物理性劣化。植生復育鹽害土壤為一價格便宜且對環境較友善之改良方法,但不同的作物其耐鹽特性及程度也不相同,因此,在選擇作物和環境的搭配相當重要。本研究針對埃及三葉草 (Trifolium alexandrinum L.)、小白菜 (Brassica rapa L Chinese Group.)、芝麻菜 (Eruca sativa) 及田菁 (Sesbania canabia (Retz.) Pers.) 在不同等級鹽害環境之下生長差異及改良效果做比較。第一部份試驗種植埃及三葉草及小白菜於4、6、8及12 dS m-1土壤之盆栽試驗。結果顯示,種植埃及三葉草及小白菜在4及6 dS m-1處理下能顯著的降低土壤鹽害離子濃度,埃及三葉草生質量低,改良鹽害土壤之效果有限,而小白菜根系發達且生質量累積快速,能在4 dS m-1及6 dS m-1處理降低土壤鈉濃度達35及26 % (高於埃及三葉草的20及12%) ;土壤EC值也由原本的4.01 dS m-1降至3.15 dS m-1(埃及三葉草降至3.55 dS m-1)。但隨著生長時間增加 (種植30天至40天),小白菜植體內之鉀鈉比快速下降 (4 dS m-1處理由1.76降至0.94;6dS m-1處理由2.09降至0.92;8 dS m-1處理由0.39降至0.19),顯示若長時間栽種可能會有鉀鈉離子失調而造成抑制生長的現象。第二部份試驗種植田菁並接種不同特性根瘤菌於3、6、9 及12 dS m-1之水耕環境,結果顯示田菁接種兩種喜好不同EC環境之田菁根瘤菌 (Rhizobium pusense),在任何EC處理下對其生長皆無明顯差異。第三部份試驗為小白菜及田菁復育4及12 dS m-1之鹽害土壤後再做為綠肥的評估試驗,結果顯示若將在鹽害土壤下種植四十天的小白菜及田菁做為綠肥拌回土壤,雖然小白菜在降低土壤鹽害上有較好的結果,土壤鈉濃度與對照組相比下降了40%,但小白菜因植體較柔軟,其所吸收之鹽害離子較容易釋放回歸土壤,造成EC值和鹽害離子濃度與復育前無異;田菁則能穩定的復育鹽害土壤且做為綠肥後其釋放鹽害離子之趨勢較為緩慢,得以兼做為植生復育及綠肥作物使用。總合本研究,小白菜及田菁皆可做為植生復育鹽害之作物,但小白菜適應環境不可超過6 dS m-1,且無法長時間生長;田菁在復育後可直接作為綠肥使用,具有改良鹽害土壤及增進土壤肥力之潛能。
Rights: 同意授權瀏覽/列印電子全文服務,2018-02-04起公開。
Appears in Collections:土壤環境科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101039003-1.pdf1.3 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.