Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90120
標題: Effect of different carriers and formulations on survival rate of rhizobia
探討不同載體及製備對根瘤菌存活率之影響
作者: Hsin-Yu Lin
林欣余
關鍵字: rhizobia;inoculant;carrier;formulation;desiccation;根瘤菌;菌劑;載體;賦形;乾燥
引用: 江晃榮。1991。微生物肥料之巿場現況與展望。財團法人生物技術開發中 心。 吳敏慧。1959。優良大豆根瘤菌之選拔與試驗(一)。農林學報8: 83-87。 吳敏慧。1964。優良大豆根瘤菌之選拔與試驗(二)。農林學報13: 11-13。 林季融。2009。黏土礦物對土壤細菌生長影響研究。國立中興大學土壤環境科學所碩士論文。 林家弘。2014。微生物肥料產業現況與應用分析。國立中興大學農業企業經營管理所碩士論文。 林鴻淇。2003。農藥世界特別報導,第134期,10月1994。有機農業全球資訊網。 洪阿田、許秋玫。1994。台灣毛豆根瘤菌推廣應用。微生物肥料之開發與 利用研討會專刊p.53-69。 洪美華、賴威安、譚鎮中、陳鴻基、羅朝村、楊秋忠。2014。微生物肥料商品化保存及複合介質應用在苗木之開發。2014年農業環境領域土壤微生物與生態推動小組研究成果發表研討會論文集。p. 143-157。 培林企業有限公司產品介紹,2015.05.02,http://www.pei-lin.com/old/product-j.htm 張仲民。1989。普通土壤學。國立編譯館主編,茂昌圖書公司。 許嘉伊、楊玉婷、余祁暐。2012。全球微生物肥料研究發展趨勢分析。健康農業 12:25-31。 陳仁炫、鄒裕民。2008。土壤與肥料分析手冊(一)土壤化學性質分析。中華土壤肥料學會。 陳帝鴻。2009。透過碳化技術創造高產值,廢棄稻殼變黃金。工業技術研究院工業技術與資訊月刊215期。 楊秋忠,陳立夫,林俐玲。1996。水土保持土壤分析手冊,國立中興大學土壤環境科學系,國立中興大學水土保持學系,台中。 楊秋忠、洪美華、沈佛亭。2010。多種溶磷能力微生物肥料之開發與利用研究。第八屆海峽兩岸土壤肥料學術研討會暨土壤肥料推廣研究成果研討會論文集。中華土壤肥料學會。p.119-124。 楊秋忠、趙震慶、沈佛亭。2012。微生物肥料應用手冊,國立中興大學土壤環境科學系。中華土壤肥料學會。 楊秋忠。1990。生物肥料功效及應用微生物肥料在大豆及毛豆功效專輯。高雄農業改良場編印p. 3-6。 楊秋忠。2007。微生物肥料管理現況及訂定要義與展望。農業生技產業季刊p. 16-20。 楊秋忠。2010。土壤與肥料(第九版)。台中:農世股份有限公司。 經濟部標準檢驗局,CNS網路服務系統檢所。2009。微生物肥料檢驗法-豆科根瘤菌之測定CNS15301-1。 趙震慶。2004。土壤微生物在有機栽培上之應用。花蓮區有機農業生產技術研討會論文集p. 4-11。 賴威安、洪美華、黃韋碩、沈佛亭、楊秋忠。2009。利用有益微生物之接種加速豬糞生物固體之分解。土壤肥料通訊中華土壤肥料學會九十八年度年會特刊。92:135-136。中華土壤肥料學會編印。 榮興民、黃巧雲、陳雯莉、梁巍。2008。土壤礦物與微生物相互作用的機理及環境效應。生態環境學報28:376-387。 Abbas, M., M. Atiq-ur-Rahman, F. Manzoor, and A. Farooq. 2012. A quantitative analysis and comparison of nitrogen, potassium and phosphorus in rice husk and wheat bran samples. Pure Appl. Bio. 1: 14-15. Abd-Alla, M., and A. Issa. 1994. Suitability of some local agro-industrial wastes as carrier materials for cyanobacterial inoculant. Folia microbiologica 39: 576-578. Alabaster, O., Z. Tang, and N. Shivapurkar. 1997. Inhibition by wheat bran cereals of the development of aberrant crypt foci and colon tumours. Food and chemical toxicology 35: 517-522. Albareda, M., D.N. Rodríguez-Navarro, M. Camacho, and F.J. Temprano. 2008. Alternatives to peat as a carrier for rhizobia inoculants: Solid and liquid formulations. Soil Biol. Biochem. 40: 2771-2779. Albareda, M., D.N. Rodríguez-Navarro, and F.J. Temprano. 2009. Use of Sinorhizobium (Ensifer) fredii for soybean inoculants in South Spain. Eur. J. Agron. 30: 205-211. Ams, D.A., J.B. Fein, H. Dong, and P.A. Maurice. 2004. Experimental Measurements of the Adsorption of Bacillus subtilis and Pseudomonas mendocina Onto Fe-Oxyhydroxide-Coated and Uncoated Quartz Grains. Geomicrobiol. J. 21: 511-519. Anandham, R., R. Sridar, P. Nalayini, S. Poonguzhali, and M. Madhaiyan. 2007. Potential for plant growth promotion in groundnut (Arachis hypogaea L.) cv. ALR-2 by co-inoculation of sulfur-oxidizing bacteria and Rhizobium. Microbiological research 162: 139-153. Aregheore, E. 2002. Chemical evaluation and digestibility of cocoa (Theobroma cacao) byproducts fed to goats. Tropical Animal Health and Production 34: 339-348. Arora, N.K., E. Khare, R. Naraian, and D.K. Maheshwari. 2008. Sawdust as a superior carrier for production of multipurpose bioinoculant using plant growth promoting rhizobial and pseudomonad strains and their impact on productivity of Trifolium repense. Curr. Sci. India 95: 90-94. Atlas, R.M., and R. Bartha. 1986. Microbial ecology: fundamentals and applications. Ayeni, L. 2010. Effect of combined cocoa pod ash and NPK fertilizer on soil properties, nutrient uptake and yield of maize (Zea mays). J. Am. Sci. 6: 79-84. Babich, H., and G. Stotzky. 1979. Abiotic factors affecting the toxicity of lead to fungi. Appl. Environ. Microbiol. 38: 506-513. Baldwin, I., and E. Fred. 1929. Nomenclature of the root-nodule bacteria of the Leguminosae. Journal of bacteriology 17: 141. Basak, B.B., and D.R. Biswas. 2008. Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317: 235-255. Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol. Adv. 16: 729-770. Bashan, Y., L. de-Bashan, S.R. Prabhu, and J.-P. Hernandez. 2014. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378: 1-33. Bashan, Y., and H. Levanony. 1988. Adsorption of the rhizosphere bacterium Azospirillum brasilense Cd to soil, sand and peat particles. J. Gen. Microbiol. 134: 1811-1820. Berrada, H., and K. Fikri-Benbrahim. 2014. Taxonomy of the rhizobia: current perspectives. Brit. Microbiol. Res. J. 4: 616-639. Bradley, W. 1940. The structural scheme of attapulgite. Am. Mineral. 25: 405-410. Brady, N.C., and R.R. Weil. 2008. The nature and properties of soils. Prentice-Hall Inc. Broadbent, F. 1953. The soil organic fraction. Adv. Agron. 5: 153-183. Brockwell, J., and P.J. Bottomley. 1995. Recent advances in inoculant technology and prospects for the future. Soil Biol. Biochem. 27: 683-697. Brockwell, J., R. Gault, D. Chase, F. Hely, M. Zorin, and E. Corbin. 1980. An appraisal of practical alternatives to legume seed inoculation: field experiments on seed bed inoculation with solid and liquid inoculants. Aust. J. Agr. Res. 31: 47-60. Brosius, J., M.L. Palmer, P.J. Kennedy, and H.F. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. P. Natl. Atl. A. Sci. 75: 4801-4805. Bryan, C.S. 1938. Identification of Phytomons, Azotobacter, and Rhizobium or Achromobacter upon initial isolation Soil Sci. 45: 185-188. Burton, J.C. 1967. Rhizobium culture and use. Microb. Tech.: 1-33. Bushby, H.V.A., and K.C. Marshall. 1977. Some factors affecting the survival of root-nodule bacteria on desiccation. Soil Biol. Biochem. 9: 143-147. Cappuccino, J.G., N. Sherman, and A. Microbiology. 1983. A laboratory manualThe Benjamin/Cumming Pud. comp INC California. Chen, L., A. Figueredo, H. Villani, J. Michajluk, and M. Hungria. 2002. Diversity and symbiotic effectiveness of rhizobia isolated from field-grown soybean nodules in Paraguay. Biol. Fert. Soils 35: 448-457. Chien, S.-Y., C.-C. Young, and C.-L. Wang. 2007. Current status of bio-fertilizers development, farmers' acceptance and utilization, and future perspective in TaiwanFood and fertilizer technology center (FFTC). Chuah, T.G., A. Jumasiah, I. Azni, S. Katayon, and S.Y. Thomas Choong. 2005. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination 175: 305-316. Corby, H.D.L. 1976. A method of making a pure-culture, peat-type, legume inoculant, using a substitute for peat. In: P. S. Nutman, editor Symbiotic Nitrogen Fixation in Plants. p. 169-173. Courvoisier, E., and S. Dukan. 2009. Improvement of Escherichia coli growth by kaolinite. Appl. Clay Sci. 44: 67-70. Date, R., and R. Roughley. 1977. Preparation of legume seed inoculants. A Treatise on Dinitrogen Fixation. Section IV. Agronomy and Ecology. Eds. RWF Hardy and AH Gibson: 243-275. Davies, B.E. 1974. Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am. J. 38: 150-151. Day, E.J., and B.C. Dilworth. 1984. Toxicity of jimson weed seed and cocoa shell meal to broilers. Poultry Sci. 63: 466-468. Daza, A., C. Santamara, D.N. Rodrguez-Navarro, M. Camacho, R. Orive, and F. Temprano. 2000. Perlite as a carrier for bacterial inoculants. Soil Biology and Biochemistry 32: 567-572. Daza, A., C. Santamarı́a, D.N. Rodrı́guez-Navarro, M. Camacho, R. Orive, and F. Temprano. 2000. Perlite as a carrier for bacterial inoculants. Soil Biol. Biochem. 32: 567-572. De Oliveira, A.S., J.M.S. Campos, M.R.C. Oliveira, A.F. Brito, S.C.V. Filho, E. Detmann, R.F.D. Valadares, S.M. de Souza, and O.L.T. Machado. 2010. Nutrient digestibility, nitrogen metabolism and hepatic function of sheep fed diets containing solvent or expeller castorseed meal treated with calcium hydroxide. Anim. Feed Sci. Tech. 158: 15-28. Deaker, R. 2004. Legume seed inoculation technology-a review. Soil Biol. Biochem. 36: 1275-1288. Diaz, C.L., L.S. Melchers, P.J.J. Hooykaas, B.J.J. Lugtenberg, and J.W. Kijne. 1989. Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338: 579-581. Diouf, D., S. Forestier, M. Neyra, and D. Lesueur. 2003. Optimisation of inoculation of Leucaena leucocephala and Acacia mangium with Rhizobium under greenhouse conditions. Ann. Forest Sci. 60: 379-384. Dohrmann, R. 2006. Cation exchange capacity methodology I: An efficient model for the detection of incorrect cation exchange capacity and exchangeable cation results. Appl. Clay Sci. 34: 31-37. Edwards, U., T. Rogall, H. Blöcker, M. Emde, and E.C. Böttger. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17: 7843-7853. Fernandes Júnior, P.I., T.G. Rohr, P.J.d. Oliveira, G.R. Xavier, and N.G. Rumjanek. 2009. Polymers as carriers for rhizobial inoculant formulations. Pesqui. Agropecu. Bras. 44: 1184-1190. Ferreira, E.M., and V.e. Castro. 2005. Residues of the cork industry as carriers for the production of legume inoculants. Silva Lusitana 13: 159-167. Ferrieres, L., S.N. Aslam, R.M. Cooper, and D.J. Clarke. 2007. The yjbEFGH locus in Escherichia coli K-12 is an operon encoding proteins involved in exopolysaccharide production. Microbiology 153: 1070-1080. Fomina, M., and G.M. Gadd. 2002. Influence of clay minerals on the morphology of fungal pellets. Mycol. Res. 106: 107-117. Forestier, S., G. Alvarado, S. Badjel Badjel, and D. Lesueur. 2001. Effect of Rhizobium inoculation methodologies on nodulation and growth of Leucaena leucocephala. World J. Microb. Biot. 17: 359-362. Frank, B. 1889. Ueber die Pilzsymbiose der Leguminosen. Ber. Deut. Bot. Ges. 7: 332-346. Fulekar, M.H. 2010. Environmental biotechnology. CRC Press. Gaines Jr, G.L. 1957. The ion-exchange properties of muscovite mica. J. Phys. Chem. 61: 1408-1413. García‐Martínez, S., A. Grau, E. Agulló, M.Á. Bustamante, C. Paredes, R. Moral, and J.J. Ruiz. 2009. Use of Composts Derived from Winery Wastes in Tomato Crop. Commun. Soil Sci. Plan. 40: 445-452. Garg, S., A. Bhatnagar, A. Kalla, and N. Narula. 2001. In vitro nitrogen fixation, phosphate solubilization, survival and nutrient release by Azotobacter strains in an aquatic system. Bioresource technol. 80: 101-109. Gieseking, J.E. 1975. Soil components, edited by John E. GiesekingSpringer-Verlag, New York. Giltner, W. 1916. Laboratory manual in general microbiology. 2nd ed. Jone Wiley & Sons. Graham, P., M. Sadowsky, H. Keyser, Y. Barnet, R. Bradley, J. Cooper, D. De Ley, B. Jarvis, E. Roslycky, and B. Strijdom. 1991. Proposed minimal standards for the description of new genera and species of root-and stem-nodulating bacteria. Int. J. Syst. Bacteriol. 41: 582-587. Graham, P.H., and C.A. Parker. 1964. Diagnostic features in the characterisation of the root-nodule bacteria of legumes. Plant and Soil 20: 383-396. Haden, W.L., and I.A. Schwint. 1967. Attapulgite: Its properties and applications. Ind. Eng. Chem. 59: 58-69. Halliday, J., and P.H. Graham. 1978. Coal compared to peat as a carrier of rhizobia. Turrialba 28: 348-349. Hellriegel, H., and H. Wilfarth. 1888. Untersuchungen uber die Stickstoffnahrung der Gramineen und Leguminosen. Berlin, Buchdruckerei der 'Post' Kayssler. Hennecke, H., K. Kaluza, B. Thöny, M. Fuhrmann, W. Ludwig, and E. Stackebrandt. 1985. Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen fixing bacteria. Arch. Microbiol. 142: 342-348. Hepburn, D.M., I.J. Kemp, and A.J. Shields. 2000. Mica. Electrical Insulation Magazine, IEEE 16(5): 19-24. Hirsch, A. 2009. Brief History of the Discovery of Nitrogen Fixing Organisms. Available at Web site http://www.mcdb.ucla.edu/Research/Hirsch/imagesb/HistoryDiscoveryN2fixing Organisms. pdf (accessed November 2010). Hungria, M., M.F. Loureiro, I.C. Mendes, R.J. Campo, and P.H. Graham. 2005. Inoculant Preparation, Production and Application. In: D. Werner and W. Newton, editors, Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment. Springer Netherlands. p. 223-253. Hynes, R.K., D.C. Jans, E. Bremer, N.Z. Lupwayi, W.A. Rice, G.W. Clayton, and M.M. Collins. 2001. Rhizobium population dynamics in the pea rhizosphere of rhizobial inoculant strain applied in different formulations. Can. J. Microbiol. 47: 595-600. Jenkins, M.B., R.A. Virginia, and W.M. Jarrell. 1989. Ecology of Fast-Growing and Slow-Growing Mesquite-Nodulating Rhizobia in Chihuahuan and Sonoron Desert Ecosystems. Soil Science Society of America Journal 53: 543-549. Johnson, J., and M. Etzel. 1995. Properties of Lactobacillus helveticus CNRZ-32 attenuated by spray-drying, freeze-drying, or freezing. J. Dairy Sci. 78: 761-768. Jones, J.B. 1990. Universal soil extractants: Their composition and use. Communications in Soil Science and Plant Analysis 21: 1091-1101. Jordan, D. 1982. NOTES: transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol. 32: 136-139. Jumasiah, A., T.G. Chuah, J. Gimbon, T.S.Y. Choong, and I. Azni. 2005. Adsorption of basic dye onto palm kernel shell activated carbon: sorption equilibrium and kinetics studies. Desalination 186: 57-64. Kahkonen, M.P., H.J. Hopia Ai Fau - Vuorela, J.P. Vuorela Hj Fau - Rauha, K. Rauha Jp Fau - Pihlaja, T.S. Pihlaja K Fau - Kujala, M. Kujala Ts Fau - Heinonen, and M. Heinonen. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem.: 3954-3962. Kannaiyan, S. 2002. Biotechnology of biofertilizers. Alpha Science Int'l Ltd. Kim, S.-J., S.-H. Jung, and J.-S. Kim. 2010. Fast pyrolysis of palm kernel shells: Influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. Bioresource Technol. 101: 9294-9300. Kim, S.S., and S.R. Bhowmik. 1990. Survival of lactic acid bacteria during spray drying of plain yogurt. J. Food Sci. 55: 1008-1010. Kishore, G.K., S. Pande, and A.R. Podile. 2005. Phylloplane bacteria increase seedling emergence, growth and yield of field-grown groundnut (Arachis hypogaea L.). Lett. Appl. Microbiol. 40: 260-268. Kneen, B.E., and T.A. LaRue. 1983. Congo red absorption by Rhizobium Leguminosarum. Applied and environmental microbiology 45: 340-342. Kostov, O., and J.M. Lynch. 1998. Composted sawdust as a carrier for Bradyrhizobium, Rhizobium and Azospirillum in crop inoculation. World J. Microb. Biotech. 14: 389-397. Kucey, R., P. Snitwongse, P. Chaiwanakupt, P. Wadisirisuk, C. Siripaibool, T. Arayangkool, N. Boonkerd, and R. Rennie. 1988. Nitrogen fixation (15N dilution) with soybeans under Thai field conditions. Plant Soil 108: 33-41. Kyriazakis, I., and G. Emmans. 1995. The voluntary feed intake of pigs given feeds based on wheat bran, dried citrus pulp and grass meal, in relation to measurements of feed bulk. Brit. J. Nutr. 73: 191-207. Lavie, S., and G. Stotzky. 1986. Adhesion of the clay minerals montmorillonite, kaolinite, and attapulgite reduces respiration of Histoplasma capsulatum. Appl. Environ. Microbiol. 51: 65-73. Li, J.F., S.Q. Zhang, S.L. Shi, and P.H. Huo. 2011. Four materials as carriers for phosphate dissolving Rhizobium sp. inoculants. Adv. Mat. Res. 156: 919-928. Lian, W.-C., H.-C. Hsiao, and C.-C. Chou. 2002. Survival of bifidobacteria after spray-drying. Int. J. Food Microbiol. 74: 79-86. Lima, R.L.S., L.S. Severino, L.R. Sampaio, V. Sofiatti, J.A. Gomes, and N.E.M. Beltrão. 2011. Blends of castor meal and castor husks for optimized use as organic fertilizer. Ind. Crop. Prod. 33: 364-368. Lindstrom, K., and J.P. Young. 2011. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Agrobacterium and Rhizobium: minutes of the meeting, 7 September 2010, Geneva, Switzerland. Int. J. Syst. Evol. Microbiol. 61: 3089-3093. Lowther, W., and H. Patrick. 1995. Rhizobium strain requirements for improved nodulation of Lotus corniculatus. Soil Biol. Biochem. 27: 721-724. Marshall, K. 1964. Survival of root-nodule bacteria in dry soils exposed to high temperatures. Aust. J. Agr. Res. 15: 273-281. Martinez-Romero, E., K. Lindström, P. van Bercum, B. Eardly, W. Chen, P. de Lajudie, P. Graham, B. Jarvis, G. Laguerre, and X. Nesme. 2007. ICSP Subcommittee on the taxonomy of Rhizobium and Agrobacterium-diversity, phylogeny and systematics. Materon, L.A., and R.W. Weaver. 1985. Inoculant Maturity Influences Survival of Rhizobia on Seed. Appl. Environ. Microbiol. 49: 465-467. Materon, L.A., and R.W. Weaver. 1985. Inoculant maturity influences survival of rhizobia on seed. Appl. Environ. Microb. 49: 465-467. Maurice, S., P. Beauclair, J.-J. Giraud, G. Sommer, A. Hartmann, and G. Catroux. 2001. Survival and change in physiological state of Bradyrhizobium japonicum in soybean (Glycine max L. Merril) liquid inoculants after long-term storage. World J. Microbiol. Biotech. 17: 635-643. Miller, F.P., A.F. Vandome, and J. McBrewster. 2009. Castor Oil Alpha script Publishing. Mostasso, L., F.L. Mostasso, B.G. Dias, M.A.T. Vargas, and M. Hungria. 2002. Selection of bean (Phaseolus vulgaris L.) rhizobial strains for the Brazilian Cerrados. Field Crop. Res. 73: 121-132. Mutlu, H., and M.A.R. Meier. 2010. Castor oil as a renewable resource for the chemical industry. Eur. J. Lipid Sci. Tech. 112: 10-30. Nobbe, F., and L. Hiltner. 1896. Inoculation of the soil for cultivating leguminous plants. O'brien, R.D. 2008. Fats and oils: formulating and processing for applications. 2nd ed. AOCS Press. Odee, D., S. Indieka, and D. Lesueur. 2002. Evaluation of inoculation procedures for Calliandra calothyrsus Meisn. grown in tree nurseries. Biol. Fert. Soils 36: 124-128. Okon, Y., and C.A. Labandera-Gonzalez. 1994. Agronomic applications of azospirillum: An evaluation of 20 years worldwide field inoculation. Soil Biol. Biochem. 26: 1591-1601. P. Vidhyasekaran, M.M. 1995. Development of Formulations of Pseudomonas fluorescens for Control of Chickpea Wilt. Plant Dis. 79: 782-786. Pandey, P., and D.K. Maheshwari. 2007. Bioformulation of Burkholderia sp. MSSP with a multispecies consortium for growth promotion of Cajanus cajan. Can. J. Microbiol. 53: 213-222. Paul, E.A. 2007. Soil microbiology, ecology and biochemistry. the third edition ed. Academic press. Peterson, H.L., and T.E. Loynachan. 1981. The significance and application of Rhizobium in agriculture. Raja Sekar, K., and N. Karmegam. 2010. Earthworm casts as an alternate carrier material for biofertilizers: Assessment of endurance and viability of Azotobacter chroococcum, Bacillus megaterium and Rhizobium leguminosarum. Sci. Hortic-Amsterdam 124: 286-289. Rao, M.A., A. Violante, and L. Gianfreda. 2000. Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes: kinetics and stability. Soil Biol. Biochem. 32: 1007-1014. Rebah, F.B., R. Tyagi, and D. Prévost. 2002. Wastewater sludge as a substrate for growth and carrier for rhizobia: the effect of storage conditions on survival of Sinorhizobium meliloti. Bioresource Technol. 83: 145-151. Redgwell, R., V. Trovato, S. Merinat, D. Curti, S. Hediger, and A. Manez. 2003. Dietary fibre in cocoa shell: characterisation of component polysaccharides. Food Chem. 81: 103-112. Roberts, G.P., W.T. Leps, L.E. Silver, and W.J. Brill. 1980. Use of two-dimensional polyacrylamide gel electrophoresis to identify and classify Rhizobium strains. Appl. Environ. Microb. 39: 414-422. Rodriguez-Navarro, D.N., F. Temprano, and R. Orive. 1991. Survival of Rhizobium sp. (Hedysarum coronarium l.) on peat-based inoculants and inoculated seeds. Soil Biol. Biochem. 23: 375-379. Roughley, R. 1970. The preparation and use of legume seed inoculants. Plant Soil 32: 675-701. Roughley, R.J., and J.M. Vincent. 1967. Growth and Survival of Rhizobium spp. in Peat Culture. J. Appl. Bacteriol. 30: 362-376. Ruiz-Argüeso T, Santa Maria J, Labandera C, Orive R. 1979. Crecimiento y sobrevivencia de Rhizobium japonicum (CB-1809) y Rhizobium trifolii (WU-290) en turbas espanolas de diferentes orıgenes. Anales INIA/Serie Produccion Vegetal. Sadowsky, M.J., H.H. Keyser, and B.B. Bohlool. 1983. Biochemical characterization of fast-and slow-growing rhizobia that nodulate soybeans. Int. J. Syst. Bacteriol. 33: 716-722. Schulze, D.G. 1989. An Introduction to Soil Mineralogy. In: J. B. Dixon and S. B. Weed, editors, Minerals in Soil Environments. Soil Science Society of America, Madison, WI. p. 1-34. Seshadri, S., R. Muthukumarasamy, C. Lakshminarasimhan, and S. Ignacimuthu. 2000. Solubilization of inorganic phosphates by Azospirillum halopraeferans. Curr. Sci. India 79: 565-567. Severino, L.S., R.L.S. Lima, and N.E.M. Beltrão. 2006. Composição química de onze materiais orgânicos utilizados em substratos para produção de mudas. Embrapa Algodão. Sidhu, J.S., S.N. Al-Hooti, and J.M. Al-Saqer. 1999. Effect of adding wheat bran and germ fractions on the chemical composition of high-fiber toast bread. Food Chem. 67: 365-371. Singleton, P., H. Keyser, and E. Sande. 2002. Development and evaluation of liquid inoculants. Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR, Canberra. p. 52-66. Somasegaran, P., and H.J. Hoben. 1994. Handbook for Rhizobia: Methods in legume-Rhizobium technologySpring-Verlag, New York. Stephens, J.H.G., and H.M. Rask. 2000. Inoculant production and formulation. Field Crop. Res. 65: 249-258. Stotzky, G., and D. Pramer. 1972. Activity, Ecology, and Population Dynamics of Microorganisms in Soil. CRC Cr. Rev. Microbiol. 2: 59-137. Stotzky, G., and L.T. Rem. 1966. Influence of clay minerals on microorganisms: I. montmorillnite and kaolinite on bacteria. Can. J. Microbiol. 12: 547-563. Strijdom, B.W., and H.J. van Rensburg. 1981. Effect of steam sterilization and gamma irradiation of peat on quality of Rhizobium inoculants. Appl. Environ. Microb. 41: 1344-1347. Sumathi, S., S.P. Chai, and A.R. Mohamed. 2008. Utilization of oil palm as a source of renewable energy in Malaysia. Renew. Sust. Energ. Rev. 12: 2404-2421. Tate, R. 1995. Soil microbiology (symbiotic nitrogen fixation). Inc., New York: 307-333. Temprano, F., M. Albareda, M. Camacho, A. Daza, C. Santamaría, and N.D. Rodríguez-Navarro. 2002. Survival of several Rhizobium/Bradyrhizobium strains on different inoculant formulations and inoculated seeds. Int. Microbiol. 5: 81-86. Thompson, J.A. 1984. Production and quality control of carrier-based legume inoculants. 489-533. Tilak, K.V.B., and N.S. Subba-Rao. 1978. Carriers for legume (Rhizobium) inoculants. Fertilizer news 23: 25-28. Van Elsas, J., A. Dijkstra, J. Govaert, and J. Van Veen. 1986. Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into two soils of different texture in field microplots. FEMS Microbiol. Ecol. 2: 151-160. Van Elsas, J., and L. Van Overbeek. 1993. Bacterial responses to soil stimuli. Starvation in bacteria. Springer. p. 55-79. Vasudevan, N., and P. Rajaram. 2001. Bioremediation of oil sludge-contaminated soil. Environ. Int. 26: 409-411. Vincent, J.M. 1970. A manual for the practical study of the root-nodule bacteria. A manual for the practical study of the root-nodule bacteria. Waksman, S., and E. Fred. 1928. Laboratory manual of general microbiology. New York: McGraw-Hill Book Company. p. 33. Wani, P.A., M.S. Khan, and A. Zaidi. 2007. Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70: 36-45. Weiss, E.A. 2000. Oilseed cropsBlackwell Science. Willems, A. 2006. The taxonomy of rhizobia: an overview. Plant Soil 287: 3-14. Young, C.-C. 2007. Development and application of biofertilizers in the Republic of China. Yu, L., S. Haley, J. Perret, M. Harris, J. Wilson, and M. Qian. 2002. Free radical scavenging properties of wheat extracts. J. Agr. Food Chem. 50: 1619-1624. Yusoff, S. 2006. Renewable energy from palm oil – innovation on effective utilization of waste. J. Clean. Prod. 14: 87-93.
摘要: 
Since active ingredients in rhizobia-based biofertilizer consisted of live microorganisms, the durability is affected by biological activity. To decrease the cost in storage and transportation of biofertilizer and increase the biological activity while applying in heterogeneous soil, carriers were used to formulate the inoculants as solid state. Nowadays, not any solid rhizobia-based biofertilizers was officially registered for commercial usage in Taiwan; however, only liquid form has been used for agricultural practices. Thus, the aim of this study was to find appropriate carriers, preparations and storage methods for native rhizobia inoculants. Several carriers and rhizobial strains were characterized to study the possible factors that influence the survival of cells in inoculants. Tested carriers were muscovite, bentonite, vermiculite, attapulgite, peat, rice husk, wheat bran, palm kernel shell, castor meal, and cocoa shell. 6 rhizobial strains Rhizobium sp. CC-PTSB14, Ensifer sp. CC-SB1114, Burkholderia sp. CC-S-L25, Bradyrhizobium sp. CC-GTA, Ochrobactrum sp. CC-B-L12 and Shinella sp. CC-PN276 were used. Among them, carrier-based inoculants of CC-B-L12 was air dried completely, since the survival rate was higher (79.8%) in muscovite after 46 days storage, followed by attapulgite (1.16%); while CC-GTA shown lower survival rate (<1%) in both carriers. Inoculant preparation and temperature storage experiments were done with the 2 strains. The inoculant preparation by combination of cells suspension and carriers was simpler to obtain relatively high live cell counts than co-cultivation with carriers. Storage at 4℃ minimize the decline rate of cells number in most carrier-based inoculants, but muscovite made no significant difference. Considering that the formulation procedure may cause stress to rhizobia, effect of moisture contents during different desiccation time on live cell number was also evaluated. Moisture contents of CC-B-L12 inoculant in peat, rice bran and muscovite were rapidly decreased to low level (12, 7 and 1%, respectively) after 28-hour desiccation, and live cell counts were sharply declined (by 2.3, 2.4 and 2.0 Log CFU g-1, respectively); while cell counts was not effected in attapulgite. Moisture content was reached to 15-25% after 24-h drying, which had more cells number, but not suitable for storage. Higher survival rate of CC-B-L12 in muscovite was 4.8% after 32-h drying and 180-day storage, followed by using attapulgite as carriers. Results indicated that these 2 carriers may have better storage ability for rhizobia than peat, which is widely used by people. Muscovite and attapulgite can be alternative carriers for rhizobia in the future.

根瘤菌為一種非產孢的植物內生菌,因其具有促進植物生長的能力,尤其是固氮作用,所以稱之為「細胞內植物促生細菌」,或者廣義的「微生物肥料」。因微生物肥料中的有效組成為活菌,其效果會受到生物活性之影響,為了降低微生物肥料貯存及運送成本、提高其施用於異質性土壤中的微生物活性,常會使用載體將菌劑賦形成為固態。台灣迄今尚無以根瘤菌登記為微生物肥料,僅以液態劑型提供推廣。本研究目的為探討本土根瘤菌適合之賦形載體與製備儲存方式,並討論這些資材與根瘤菌的特性,研究影響其存活的可能因素。所試驗的載體有雲母、膨潤石、阿泰母石、泥炭土、稻殼、麥麩皮、棕櫚殼粉與可可殼膜。使用的根瘤細菌為本實驗室所分離之Rhizobium sp. CC-PTSB14、Ensifer sp. CC-SB1114、Burkholderia sp. CC-S-L25、Bradyrhizobium sp. CC-GTA及Ochrobactrum sp. CC-B-L12、Shinella sp. CC-PN276等6株。將菌懸浮液與載體複合並吹乾,其中以CC-B-L12與雲母複合的菌劑的存活率(46天貯存後為79.8%)較高,其次為阿泰姆石(1.2%),而CC-GTA於上述2種載體的存活率(<1%)低,以此兩株細菌的菌劑製備方式及其於不同溫度下貯存試驗。菌劑製備方式以先養菌再加入載體相較於與載體一起養菌的方法,其操作上較簡易且得到的活菌數較穩定。大部分的載體複合菌劑置於4℃下儲存可以減緩菌數衰減的速度,但雲母則無明顯差別。假設菌劑在乾燥賦型時會對根瘤菌造成逆境,因此進一步探討於不同吹風時間下,水分含量對活菌數的影響。菌劑於乾燥的過程中,CC-B-L12於泥炭、稻殼和雲母載體中經過吹風乾燥28小時後,水分含量快速下降(為12、7和1%),活菌數亦隨之急遽下降(減少2.3 、2.4和2.0 Log CFU g-1),以阿泰母石則較不受到乾燥時間的影響,經過24小時的乾燥,載體中水分含量約為15-25%,此時載體中的活菌數較高,但不適合保存。CC-B-L12與雲母複合載體經過32小時乾燥後,經180天的貯存仍有4.8%的存活率,其次為以阿泰姆石,兩種載體的試驗結果初步較目前廣用的泥炭土載體對於根瘤菌的保存效果為佳,未來將可運用雲母及阿泰姆石做為根瘤菌的載體開發強效性生物肥料。
URI: http://hdl.handle.net/11455/90120
Rights: 同意授權瀏覽/列印電子全文服務,2015-06-15起公開。
Appears in Collections:土壤環境科學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7101039005-1.pdf2.25 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.