Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90121
標題: Effects of rhizobia inoculation, salt concentration and watering on isoflavones content of soybean
接種根瘤菌與鹽濃度以及泡水對大豆植株異黃酮含量之影響
作者: Wei-Jung Hsu
徐尉容
關鍵字: soybean;isoflavones;rhizobia;salt stress;water stress;大豆;異黃酮;根瘤菌;鹽逆境;水分逆境
引用: 周三、周明、張碩、劉占濤、趙永娟、余天真、岳旺。2007。鹽生野大豆的異黃酮積累及其生態學意義。植物生態學報。31:930-936。 周政輝。2006。黃豆發芽期間其芽和胚乳之嘌呤含量變化研究。嘉南藥理科技大學專題研究計畫成果報告。 柯勇。2004。植物生理學。藝軒圖書出版社。新北市。 劉寶、楊玲玲、王興紅、江立、孫成遜。2009。微生物對植物源中藥有效成分形成的影響。天然產物研究與開發。21:1065-1068。 蘇文華、張光飛、李秀華、歐曉昆。2005。植物藥材次生代謝產物的累積與環境的關係。中草藥。36:1415-1418。 Algar, E., B. Ramos-Solano, A. Garcia-Villaraco, M.D.S. Sierra, M.S.M. Gomez, and F.J. Gutierrez-Manero. 2013. Bacterial bioeffectors modify bioactive profile and increase isoflavone content in soybean sprouts (Glycine max var Osumi). Plant Foods Hum. Nutr. 68: 299–305. Ali, M.B., N. Singh, A.M. Shohael, E.J. Hahn, and K.-Y. Paek. 2006. Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Sci. 171: 147–154. Anderson, J.W., B.M. Smith, and C.S. Washnock. 1999. Cardiovascular and renal benefits of dry bean and soybean intake. Am. J. Clin. Nutr. 70: 464–474. Antunes, P.M., I. Rajcan, and M.J. Goss. 2006. Specific flavonoids as interconnecting signals in the tripartite symbiosis formed by arbuscular mycorrhizal fungi, Bradyrhizobium japonicum (Kirchner) Jordan and soybean (Glycine max (L.) Merr.). Soil Biol. Biochem. 38: 533–543. Arfaoui, A., A. El Hadrami, Y. Mabrouk, B. Sifi, A. Boudabous, I. El Hadrami, F. Daayf, and M. Cherif. 2007. Treatment of chickpea with Rhizobium isolates enhances the expression of phenylpropanoid defense-related genes in response to infection by Fusarium oxysporum f. sp. ciceris. Plant Physiol. Biochem. 45: 470–479. Arora, S., S. Jood, and N. Khetarpaul. 2010. Effect of germination and probiotic fermentation on nutrient composition of barley based food mixtures. Food Chem. 119: 779–784. Bais, H.P., S.-W. Park, T.L. Weir, R.M. Callaway, and J.M. Vivanco. 2004. How plants communicate using the underground information superhighway. Trends Plant Sci. 9: 26–32. Barnes, S., H. Kim, V. Darley-Usmar, R. Patel, J. Xu, B. Boersma, and M. Luo. 2000. Beyond ERα and ERβ: Estrogen receptor binding is only part of the isoflavone story. J. Nutr. 130: 656–657. Bartsev, A.V., W.J. Deakin, N.M. Boukli, C.B. McAlvin, G. Stacey, P. Malnoe, W.J. Broughton, and C. Staehelin. 2004. NopL, an Effector Protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol. 134: 871–879. Boot, K.J.M., A.A.N. van Brussel, T. Tak, H.P. Spaink, and J.W. Kijne. 1999. Lipochitin oligosaccharides from Rhizobium leguminosarum bv. viciae reduce auxin transport capacity in Vicia sativa subsp. nigra roots. Mol. Plant. Microbe Interact. 12: 839–844. Boue, S. m., F. f. Shih, B. y. Shih, K. w. Daigle, C. h. Carter-Wientjes, and T. e. Cleveland. 2008. Effect of biotic elicitors on enrichment of antioxidant properties and induced isoflavones in soybean. J. Food Sci. 73: 43–49. Caldwell, C.R., S.J. Britz, and R.M. Mirecki. 2005. Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean [Glycine max (L.) Merrill] grown in controlled environments. J. Agric. Food Chem. 53: 1125–1129. Carrao-Panizzi, M.C., M. Berhow, J.M.G. Mandarino, and M.C.N. de Oliveira. 2009. Environmental and genetic variation of isoflavone content of soybean seeds grown in Brazil. Pesqui. Agropecuaria Bras. 44: 1444–1451. Carvalho, L.C., and S. Amancio. 2002. Antioxidant defence system in plantlets transferred from in vitro to ex vitro: effects of increasing light intensity and CO2 concentration. Plant Sci. 162: 33–40. Chalker-Scott, L. 1999. Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 70: 1–9. Chaudiere, J., and R. Ferrari-Iliou. 1999. Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem. Toxicol. 37: 949–962. Conrath, U., C.M.J. Pieterse, and B. Mauch-Mani. 2002. Priming in plant–pathogen interactions. Trends Plant Sci. 7: 210–216. Cook, N.C., and S. Samman. 1996. Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 7: 66–76. Cooper, J. E. 2007. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J. Appl. Microbiol. 103: 1355–1365. Cooper, J.E., J.R. Rao, E. Everaert, and L.D. Cooman. 1995. Metabolism of flavonoids by Rhizobia. 27: 287–292. Coulembier, O., P. Degee, P. Guerin, and P. Dubois. 2003. Tensioactive properties of poly([R,S]-β-malic acid-b-ε-caprolactone) diblock copolymers in aqueous solution. Langmuir 19: 8661–8666. Darvill, A.G., and P. Albersheim. 1984. Phytoalexins and their elicitors-A defense against microbial infection in plants. Annu. Rev. Plant Physiol. 35: 243–275. Dayde, J., M. Berger, and V. Theodorou. 2004. Screening and breeding soybeans for isoflavone content and composition. 845–851. Devi, M.K.A., M. Gondi, G. Sakthivelu, P. Giridhar, T. Rajasekaran, and G.A. Ravishankar. 2009. Functional attributes of soybean seeds and products, with reference to isoflavone content and antioxidant activity. Food Chem. 114: 771–776. Dhaubhadel, S., B.D. McGarvey, R. Williams, and M. Gijzen. 2003. Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Mol. Biol. 53: 733–743. Dixon, R., and N. Paiva. 1995. Stress-Induced Phenylpropanoid Metabolism. Plant Cell 7: 1085–1097. Duncan, A.M., W.R. Phipps, and M.S. Kurzer. 2003. Phyto-oestrogens. Best Pract. Res. Clin. Endocrinol. Metab. 17: 253–271. Dunning Hotopp, J.C., and R.P. Hausinger. 2001. Alternative substrates of 2,4-dichlorophenoxyacetate/α-ketoglutarate dioxygenase. J. Mol. Catal. B Enzym. 15: 155–162. Eldridge, A.C., and W.F. Kwolek. 1983. Soybean isoflavones: effect of environment and variety on composition. J. Agric. Food Chem. 31: 394–396. Feng, S., L. Song, Y.K. Lee, and D. Huang. 2010. The effects of fungal stress on the antioxidant contents of black soybeans under germination. J. Agric. Food Chem. 58: 12491–12496. Gan, Y., I. Stulen, H. van Keulen, and P.J.C. Kuiper. 2003. Effect of N fertilizer top-dressing at various reproductive stages on growth, N2 fixation and yield of three soybean (Glycine max (L.) Merr.) genotypes. Field Crops Res. 80: 147–155. Garrity, G., D.J. Brenner, N.R. Krieg, and J.T. Staley. 2005. Bergey's ManualR of Systematic Bacteriology. Springer US. Gilbert, E.S., and D.E. Crowley. 1997. Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl. Environ. Microbiol. 63: 1933–1938. Graham, T.L. 1990. Role of constitutive isoflavone conjugates in the accumulation of glyceollin in soybean infected with Phytophthora megasperma. Mol. Plant. Microbe Interact. 3: 157. Graham, T.L. 1991. Glyceollin elicitors induce major but distinctly different shifts in isoflavonoid metabolism in proximal and distal soybean cell populations. Mol. Plant. Microbe Interact. 4: 60. Graham, M.Y., and T.L. Graham. 1991. Rapid accumulation of anionic peroxidases and phenolic polymers in soybean cotyledon tissues following treatment with phytophthora megasperma f. sp. Glycinea wall glucan. Plant Physiol. 97: 1445–1455. Harborne J.B. 1993. The Flavonoids: Advances in Research Since 1986. CRC Press. He, B., J. Bei, and S. Wang. 2003. Synthesis and characterization of a functionalized biodegradable copolymer: poly(l-lactide-co-RS-β-malic acid). Polymer 44: 989–994. Hein, F., S. Overkamp, and W. Barz. 2000. Plant gene register PGR 00-038. Cloning and characterization of a full-length cDNA (accession no. AJ250836) encoding phenylalanine ammonia-lyase from chickpea. Plant Physiol. 122: 1458. Hennecke, H., K. Kaluza, B. Thony, M. Fuhrmann, W. Ludwig, and E. Stackebrandt. 1985. Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen fixing bacteria. Arch. Microbiol. 142: 342–348. Herbinger, K., M. Tausz, A. Wonisch, G. Soja, A. Sorger, and D. Grill. 2002. Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiol. Biochem. 40: 691–696. Hernandez, I., L. Alegre, and S. Munne-Bosch. 2004. Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol. 24: 1303–1311. He, F.-J., and J.-Q. Chen. 2013. Consumption of soybean, soy foods, soy isoflavones and breast cancer incidence: Differences between Chinese women and women in Western countries and possible mechanisms. Food Sci. Hum. Wellness 2: 146–161. Hirsch, A.M., T.V. Bhuvaneswari, J.G. Torrey, and T. Bisseling. 1989. Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc. Natl. Acad. Sci. 86: 1244–1248. Hungria, M., A.W. Johnston, and D.A. Phillips. 1992. Effects of flavonoids released naturally from bean (Phaseolus vulgaris) on nodD-regulated gene transcription in Rhizobium leguminosarum bv. phaseoli. Mol. Plant-Microbe Interact. MPMI 5: 199–203. Hu, B.X. 2004. Breaking grounds : the journal of a top Chinese woman manager in retail. Homa&Sekey Books. Hwang, S.-Y., H.-W. Lin, R.-H. Chern, H.F. Lo, and L. Li. 1999. Reduced susceptibility to waterlogging together with high-light stress is related to increases in superoxide dismutase and catalase activities in sweet potato. Plant Growth Regul. 27: 167–172. Isanga, J., and G.-N. Zhang. 2008. Soybean bioactive components and their implications to health—A review. Food Rev. Int. 24: 252–276. Ito, K. 2014. Prostate cancer in Asian men. Nat. Rev. Urol. 11: 197–212. Kang, M.S. 2010. Water and Agricultural Sustainability Strategies. CRC Press. Kaufman, P.B., A. Kirakosyan, L.J. Cseke, J.A. Duke, S. Warber, and S.F. Bolling. 2005. Biotechnology studies on isoflavone production in edible legumes. Recent Res. Dev. Plant Sci. 3: 85–103. Keleş, Y., and I. Oncel. 2002. Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci. 163: 783–790. Khan, A.L., M. Hamayun, Y.-H. Kim, S.-M. Kang, and I.-J. Lee. 2011. Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol. Biochem. 49: 852–861. Khan, M. a. M., C. Ulrichs, and I. Mewis. 2012. Effect of water stress and aphid herbivory on flavonoids in broccoli ( Brassica oleracea var. italica Plenck). J. Appl. Bot. Food Qual. 84: 178. Khattak, A.B., A. Zeb, and N. Bibi. 2008. Impact of germination time and type of illumination on carotenoidcontent, protein solubility and in vitro protein digestibility of chickpea(Cicer arietinum L.) sprouts. Food Chem. 109: 797–801. Khattak, A.B., A. Zeb, N. Bibi, S.A. Khalil, and M.S. Khattak. 2007. Influence of germination techniques on phytic acid and polyphenols content of chickpea (Cicer arietinum L.) sprouts. Food Chem. 104: 1074–1079. Kim, E.H., S.H. Kim, J.I. Chung, H.Y. Chi, J.A. Kim, and I.M. Chung. 2006. Analysis of phenolic compounds and isoflavones in soybean seeds (Glycine max (L.) Merill) and sprouts grown under different conditions. Eur. Food Res. Technol. 222: 201–208. Kim, J.S., J.G. Kim, and W.J. Kim. 2004a. Changes in isoflavone and oligosaccharides of soybeans during germination. Korean J. Food Sci. 36: 294. Kim, E.M., K.J. Lee, and K.M. Chee. 2004. Comparison in Isoflavone Contents between Soybean and Soybean Sprouts of Various Soybean Cultivas. Korean J. Nutr. 37: 45–51. Klejdus, B., R. Mikelova, J. Petrlova, D. Potěšil, V. Adam, M. Stiborova, P. Hodek, J. Vacek, R. Kizek, and V. Kubaň. 2005. Evaluation of isoflavone aglycon and glycoside distribution in soy plants and soybeans by fast column high-performance liquid chromatography coupled with a diode-array detector. J. Agric. Food Chem. 53: 5848–5852. Kowalchuk, G.A., D.S. Buma, W. de Boer, P.G.L. Klinkhamer, and J.A. van Veen. 2002. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81: 509–520. Kulshrestha, A.S., W. Gao, and R.A. Gross. 2005. Glycerol copolyesters:  control of branching and molecular weight using a lipase catalyst. Macromolecules 38: 3193–3204. Lal, A., S. Warber, A. Kirakosyan, P.B. Kaufman, and J.A. Duke. 2003. Upregulation of isoflavonoids and soluble proteins in edible legumes by light and fungal elicitor treatments. J. Altern. Complement. Med. 9: 371–378. Lee, H.P., J. Lee, L. Gourley, S.W. Duffy, N.E. Day, and J. Esteve. 1991. Dietary effects on breast-cancer risk in Singapore. The Lancet 337: 1197–1200. Leigh, M.B., J.S. Fletcher, X. Fu, and F.J. Schmitz. 2002. Root Turnover:  An important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol. 36: 1579–1583. Lephart, E.D., T.W. West, K.S. Weber, R.W. Rhees, K.D.R. Setchell, H. Adlercreutz, and T.D. Lund. 2002. Neurobehavioral effects of dietary soy phytoestrogens. Neurotoxicol. Teratol. 24: 5–16. Lichtenstein, A.H. 1998. Soy Protein, Isoflavones and Cardiovascular Disease Risk. J. Nutr. 128: 1589–1592. Lin, P.-Y., and H.-M. Lai. 2006. Bioactive compounds in legumes and their germinated products. J. Agric. Food Chem. 54: 3807–3814. Li, L., and J. van Staden. 1998. Effects of plant growth regulators on the antioxidant system in callus of two maize cultivars subjected to water stress. Plant Growth Regul. 24: 55–66. Liu, L., X.-E. Guo, Y.-Q. Zhou, and J.-L. Xia. 2003. Prevalence of dementia in China. Dement. Geriatr. Cogn. Disord. 15: 226–230. Lovdal, T., K.M. Olsen, R. Slimestad, M. Verheul, and C. Lillo. 2010. Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71: 605–613. Marilley, L., G. Vogt, M. Blanc, and M. Aragno. 1998. Bacterial diversity in the bulk soil and rhizosphere fractions of Lolium perenne and Trifolium repens as revealed by PCR restriction analysis of 16S rDNA. Plant Soil 198: 219–224. Mathesius, U., H.R.M. Schlaman, H.P. Spaink, C. Of Sautter, B.G. Rolfe, and M.A. Djordjevic. 1998. Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J. 14: 23–34. Meksem, K., V.N. Njiti, W.J. Banz, M.J. Iqbal, M.M. Kassem, D.L. Hyten, J. Yuang, T.A. Winters, and D.A. Lightfoot. 2001. Genomic regions that underlie soybean seed isoflavone content. BioMed Res. Int. 1: 38–44. Messina, M.J., V. Persky, K.D.R. Setchell, and S. Barnes. 1994. Soy intake and cancer risk: A review of the in vitro and in vivo data. Nutr. Cancer 21: 113–131. Millet, Y.A., C.H. Danna, N.K. Clay, W. Songnuan, M.D. Simon, D. Werck-Reichhart, and F.M. Ausubel. 2010. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell Online 22: 973–990. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405–410. Mulder, L., B. Hogg, A. Bersoult, and J.V. Cullimore. 2005. Integration of signalling pathways in the establishment of the legume-rhizobia symbiosis. Physiol. Plant. 123: 207–218. Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651–681. Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473–497. Oh, M.-M., and C.B. Rajashekar. 2009. Antioxidant content of edible sprouts: effects of environmental shocks. J. Sci. Food Agric. 89: 2221–2227. Oldroyd, G.E.D. 2007. Nodules and hormones. Science 315: 52–53. Paolacci, A.R., R. D'Ovidio, R. Marabottini, C. Nali, G. Lorenzini, M.R. Abenavoli, and M. Badiani. 2001. Research Note: Ozone induces a differential accumulation of phenyalanine ammonia-lyase, chalcone synthase and chalcone isomerase RNA transcripts in sensitive and resistant bean cultivars. Funct. Plant Biol. 28: 425–428. Pare, P.W., and J.H. Tumlinson. 1999. Plant volatiles as a defense against insect herbivores. Plant Physiol. 121: 325–332. Park, K., J.W. Kloepper, and C.-M. Ryu. 2008. Rhizobacterial exopolysaccharides elicit induced resistance on cucumber. J. Microbiol. Biotechnol. 18: 1095–1100. Perata, P., and A. Alpi. 1993. Plant responses to anaerobiosis. Plant Sci. 93: 1–17. Phillips, D.A. 1992. Flavonoids: Plant signals to soil microbes. Phenolic Metabolism in Plants. Recent Advances in Phytochemistry. 26: 201–231. Phillips, D.A., H. Ferris, D.R. Cook, and D.R. Strong. 2003. Molecular control points in rhizosphere food webs. Ecology 84: 816–826. Phommalth, S., Y.-S. Jeong, Y.-H. Kim, K.H. Dhakal, and Y.-H. Hwang. 2008. Effects of light treatment on isoflavone content of germinated soybean seeds. J. Agric. Food Chem. 56: 10123–10128. Pilšakova, L., I. Riečansky, and F. Jagla. 2010. The physiological actions of isoflavone phytoestrogens. Physiol. Res. Acad. Sci. Bohemoslov. 59: 651–664. Potter, S.M., J.A. Baum, H. Teng, R.J. Stillman, N.F. Shay, and J.W. Erdman. 1998. Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. Am. J. Clin. Nutr. 68: 1375–1379. Ramos-Solano, B., E. Algar, A. Garcia-Villaraco, J. Garcia-Cristobal, J.A. Lucas Garcia, and F.J. Gutierrez-Manero. 2010. Biotic elicitation of isoflavone metabolism with plant growth promoting rhizobacteria in early stages of development in Glycine max var. Osumi. J. Agric. Food Chem. 58: 1484–1492. Ramos Solano, B., J. Barriuso Maicas, M.T. Pereyra de la Iglesia, J. Domenech, and F.J. Gutierrez Manero. 2008. Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. Phytopathology 98: 451–457. Sairam, R.K., P.S. Deshmukh, and D.C. Saxena. 1998. Role of antioxidant systems in wheat genotypes tolerance to water stress. Biol. Plant. 41: 387–394. Schutzendubel, A., P. Schwanz, T. Teichmann, K. Gross, R. Langenfeld-Heyser, D.L. Godbold, and A. Polle. 2001. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots Pine roots. Plant Physiol. 127: 887–898. Schwanz, P., C. Picon, P. Vivin, E. Dreyer, J.M. Guehl, and A. Polle. 1996. Responses of antioxidative systems to drought stress in Pendunculate oak and Maritime pine as modulated by elevated CO2. Plant Physiol. 110: 393–402. Sharma, S.B., and E.R. Signer. 1990. Temporal and spatial regulation of the symbiotic genes of Rhizobium meliloti in planta revealed by transposon Tn5-gusA. Genes Dev. 4: 344–356. Shaw, L.J., and R.G. Burns. 2004. Enhanced Mineralization of [U-14C]2,4-dichlorophenoxyacetic acid in soil from the rhizosphere of Trifolium pratense. Appl. Environ. Microbiol. 70: 4766–4774. Shaw, L.J., and R.G. Burns. 2005. Rhizodeposition and the enhanced mineralization of 2,4-dichlorophenoxyacetic acid in soil from the Trifolium pratense rhizosphere. Environ. Microbiol. 7: 191–202. Shaw, L.J., P. Morris, and J.E. Hooker. 2006. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ. Microbiol. 8: 1867–1880. Shen, F.-T., P. Kampfer, C.-C. Young, W.-A. Lai, and A.B. Arun. 2005. Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int. J. Syst. Evol. Microbiol. 55: 1301–1304. Shen, F.-T., and C.-C. Young. 2005. Rapid detection and identification of the metabolically diverse genus Gordonia by 16S rRNA-gene-targeted genus-specific primers. FEMS Microbiol. Lett. 250: 221–227. Shi, H., P.K. Nam, and Y. Ma. 2010. Comprehensive profiling of isoflavones, phytosterols, tocopherols, minerals, crude protein, lipid, and sugar during soybean (Glycine max) germination. J. Agric. Food Chem. 58: 4970–4976. Siciliano, S.D., and J.J. Germida. 1998. Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ. Rev. 6: 65–79. Singer, A.C., D.E. Crowley, and I.P. Thompson. 2003. Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol. 21: 123–130. Siow, R.C.M., and G.E. Mann. 2010. Dietary isoflavones and vascular protection: Activation of cellular antioxidant defenses by SERMs or hormesis? Mol. Aspects Med. 31: 468–477. Stackebrandt, E., W. Liesack, and B.M. Goebel. 1993. Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J. 7: 232–236. Swigonska, S., R. Amarowicz, A. Krol, A. Mostek, A. Badowiec, and S. Weidner. 2014. Influence of abiotic stress during soybean germination followed by recovery on the phenolic compounds of radicles and their antioxidant capacity. Acta Soc. Bot. Pol. 83: 209-218. Tsukamoto, C., S. Shimada, K. Igita, S. Kudou, M. Kokubun, K. Okubo, and K. Kitamura. 1995. Factors affecting isoflavone content in soybean seeds: changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J. Agric. Food Chem. 43: 1184–1192. Vincent, J.M. 1970. A manual for the practical study of the root-nodule bacteria. International Biological Programme. Blackwell Scientific, 1970. Vyn, T.J., X. Yin, T.W. Bruulsema, C.-J.C. Jackson, I. Rajcan, and S.M. Brouder. 2002. Potassium fertilization effects on isoflavone concentrations in soybean [Glycine max (L.) Merr.]. J. Agric. Food Chem. 50: 3501–3506. Walker, T.S., H.P. Bais, E. Grotewold, and J.M. Vivanco. 2003. Root exudation and rhizosphere biology. Plant Physiol. 132: 44–51. Whaley, W.L., J.D. Rummel, and N. Kastrapeli. 2006. Interactions of genistein and related isoflavones with lipid micelles. Langmuir ACS J. Surf. Colloids 22: 7175–7184. White L., H. Petrovitch, G. Ross, K.H. Masaki, R.D. Abbott, E.L. Teng, B.L. Rodriguze, P.L. Blanchette, R.J. Havlik, G. Wergow ske, D. Chiu, D.J. Foley, C. Murdaugh and J.D. Curb. 1996. Prevalence of dementia in older Japanese-American men in Hawaii: The Honolulu-Asia aging study. JAMA 276: 955–960. Wu, Z., L. Song, and D. Huang. 2011. Food grade fungal stress on germinating peanut seeds induced phytoalexins and enhanced polyphenolic antioxidants. J. Agric. Food Chem. 59: 5993–6003. Xu, Z., G. Zhou, and H. Shimizu. 2010. Plant responses to drought and rewatering. Plant Signal. Behav. 5: 649–654. Yu, O., and B. McGonigle. 2005. Metabolic engineering of isoflavone biosynthesis. Adv. Agron. 86: 147–190. Zhang, S., M.S. Reddy, and J.W. Kloepper. 2004. Tobacco growth enhancement and blue mold disease protection by rhizobacteria: Relationship between plant growth promotion and systemic disease protection by PGPR strain 90-166. Plant Soil 262: 277–288. Zietz, M., A. Weckmüller, S. Schmidt, S. Rohn, M. Schreiner, A. Krumbein, and L.W. Kroh. 2010. Genotypic and climatic influence on the antioxidant activity of flavonoids in kale (Brassica oleracea var. sabellica). J. Agric. Food Chem. 58: 2123–2130.
摘要: 
Soybean (Glycine max (L.) Merill) is one of the most widely cultivated crops in the world and is rich in isoflavones (IFs). IFs have an antioxidant activity and can reduce low-density lipoprotein, i.e. LDL, in the blood. In addition, the structure of IFs is similar to estrogen, and thus it has the potential health benefits of prevention and treatment of cancer, vascular disease, osteoporosis and menopausal symptoms, and this has opened a new market for industry. Utilizing a variety of environmental factors to increase the quantity of IFs has been attempted. IF contents in soybean may be enhanced by excitors, but the result always lead to decline the biomass of plant. Therefore, the objectives of this study was to examine the variation of IF contents by inoculating rhizobia as well as adding of different degress of water or salinity stress. This approach was expected to maintain the growth of plant and enhance IF contents. The results showed that the IF contents varied greatly among different soybean cultivars in range of 6.74 - 133 microgram/kg. There were a great difference in IFs increment among soybean cultivars, and the highest IFs increment is GRASS FARM brand. The IF contents of soybean sprouts was increased with germination days in five days. Drought and salt stresses resulted in decreased isoflavone contents in soybean sprouts. The water through treatment can improved IF contents in soybean sprouts without affecting the biomass. The highest IF contents was the treatment with 50 mL water in every 12 hours grown under dark conditions. The effect of different bacterial strains varied in enhancing IF contents in soybean sprouts/plants. The strain Mesorhizobium sp. 3-3 isolated from Taichung Wufeng Agricultural Research Institute's soil had the best induction of IFs production both in soybean sprouts and plants. The higher IF contents of the soybean plants were associated with the higher activities of nitrogen fixation in roots, but it is not statistically significant.

大豆 (Glycine max (L.) Merill) 為全球最廣泛種植的栽培作物之一。大豆富含的大豆異黃酮 (isoflavones) 具有抗氧化能力,亦可降低血液中低密度膽固醇 (low-density lipoprotein, LDL),其結構與人類雌激素相似,因此對於多種癌症、更年期症狀、骨質酥鬆症和心血管疾病等都具有預防與治療的潛在療效,而在全世界具有廣大的新興市場價值。過去許多研究嘗試利用各種不同環境因素去刺激大豆產生更多的異黃酮,雖然經刺激的大豆異黃酮含量有上升,但常造成植株生質量下降。因此,本研究藉由接種能促進植物生長的大豆根瘤菌,探討對異黃酮含量之影響,並以不同微生物刺激以及水分、鹽分管理方法處理大豆種子,探討對大豆植株與豆芽異黃酮含量之影響,期望促使大豆在生長過程中能感受到逆境的存在而提高植體內的異黃酮含量,另一方面又能保持其生長的狀態以確保得到更多的大豆產量。結果顯示,不同廠牌的大豆種子,異黃酮含量相差甚大,其範圍介於6.74 ~ 133 mg kg-1,最低和最高的廠牌可相差達20倍。而不同廠牌的大豆種子發芽時,異黃酮增加幅度差異很大,其中異黃酮濃度增加幅度最大的為青的農場廠牌。大豆在發芽五天內,異黃酮濃度隨發芽天數增加而上升。缺水和鹽逆境會導致大豆芽異黃酮含量下降。過水處理可在不影響大豆芽生長的情形下,提高異黃酮含量。其最佳結果為在不照光環境下,以每12小時過水50 mL可使異黃酮達最高量。不同根瘤菌種誘導大豆產生異黃酮的能力不同,而不論是在大豆植株或大豆芽試驗中皆以台中霧峰農試所土壤分離出來的Mesorhizobium sp. 3-3大豆根瘤菌誘導效果最佳。大豆根瘤的固氮活性和異黃酮含量有關係,在統計上雖不顯著,但有一致之趨勢。
URI: http://hdl.handle.net/11455/90121
Rights: 同意授權瀏覽/列印電子全文服務,2018-02-03起公開。
Appears in Collections:土壤環境科學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7100039002-1.pdf1.02 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.