Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90122
標題: Study on actinomycetes antagonistic to soilborne pathogens
放線菌拮抗土傳性病害之研究
作者: Chiao-Fang Hsu
徐巧芳
關鍵字: actinomycetes;Fusarium wilt of tomato;meloidogyne incognita;biocontrol;放線菌;番茄萎凋病;南方根瘤線蟲;生物防治
引用: 吳文希。 1988。 植物土媒病原學(立枯絲核菌之性質及防治) 國立編譯館。 台北。 孫守恭和黃振文。 1996。 番茄萎凋病。 p. 29-32 世維出版社。 台中。 張繼中。2009。臺東地區酸性土壤問題及其改善方法。67期。p. 14-18。臺東區農業專訊。 陸家云,許志剛,陳永萱,諶多仁,鄧小波和曹以勤。 2004。 植物病害診斷。 p. 170-174 中國農業出版社。北京。 陳盛義。 1996。番茄萎凋病與抗病育種. 種苗科技專訊:4-4。 Adam, M., H. Heuer, and J. Hallmann. 2014. Bacterial Antagonists of Fungal Pathogens Also Control Root-Knot Nematodes by Induced Systemic Resistance of Tomato Plants. PLoS One 9:8. Aghighi, S., G. Shahidi Bonjar, R. Rawashdeh, S. Batayneh, and I. Saadoun. 2004. First report of antifungal spectra of activity of Iranian actinomycetes strains against Alternaria solani, Alternaria alternate, Fusarium solani, Phytophthora megasperma, Verticillium dahliae and Saccharomyces cerevisiae. Asian Journal of Plant Sciences 3:463-471. Ahmed, E., and S.J.M. Holmstrom. 2014. Siderophores in environmental research: roles and applications. Microb Biotechnol. 7:196-208. Ahn, P. 1993. Tropical soils and fertilizer use. Intermediate tropical agriculture series. Scientific & Technical Longman England. Aldesuquy, H., F. Mansour, and S. Abo-Hamed. 1998. Effect of the culture filtrates ofStreptomyces on growth and productivity of wheat plants. Folia microbiologica 43:465-470. Balasubramanian, N., V.T. Priya, V. Shanmugaiah, and D. Lalithakumari. 2014. Effect of improved Trichoderma fusants and their parent strains in control of sheath blight of rice and wilt of tomato. J Plant Dis Prot. 121:71-78. Berdy, J. 2005. Bioactive microbial metabolites. The Journal of antibiotics 58:1-26. Bontemps, C., M. Toussaint, P.V. Revol, L. Hotel, M. Jeanbille, S. Uroz, M.P. Turpault, D. Blaudez, and P. Leblond. 2013. Taxonomic and functional diversity of Streptomyces in a forest soil. FEMS microbiology letters 342:157-167. Brady, N.C., and R.R. Weil. 2008. The nature and properties of soils. P. 359-368. 14th ed. Pearson education. New Jersey. Brzezinska, M.S., U. Jankiewicz, and M. Walczak. 2013. Biodegradation of chitinous substances and chitinase production by the soil actinomycete Streptomyces rimosus. Int Biodeterior Biodegrad 84:104-110. Carter, W.W. 1981. The effect of Meloidogyne incognita and tissue wounding on severity of seedling disease of cotton caused by Rhizoctonia solani. Journal of nematology 13:374. Crawford, D.L., J.M. Lynch, J.M. Whipps, and M.A. Ousley. 1993. Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Applied and environmental Microbiology 59:3899-3905. Doumbou, C.L., M.H. Salove, D.L. Crawford, and C. Beaulieu. 2001. Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82:85-102. El-Hadad, M.E., M.I. Mustafa, S.M. Selim, A.E.A. Mahgoob, T.S. El-Tayeb, and N.H.A. Aziz. 2010. In vitro evaluation of some bacterial isolates as biofertilizers and biocontrol agents against the second stage juveniles of Meloidogyne incognita. World J. Microbiol. Biotechnol. 26:2249-2256. El-Tarabily, K.A., and K. Sivasithamparam. 2006. Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol. Biochem. 38:1505-1520. El-Tarabily, K.A., M.H. Soliman, A.H. Nassar, H.A. Al-Hassani, K. Sivasithamparam, F. McKenna, and G.E.S. Hardy. 2000. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol. 49:573-583. El‐Tarabily, K.A., G.E. Hardr, K. Sivasithamparam, A.M. Hussein, and D. KURTBOKE. 1997. The potential for the biological control of cavity‐spot disease of carrots, caused by Pythium coloratum, by streptomycete and non‐streptomycete actinomycetes. New Phytologist 137:495-507. Errakhi, R., A. Lebrihi, and M. Barakate. 2009. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.). J. Appl. Microbiol. 107:672-681. Gordon, S.A., and R.P. Weber. 1951. Coloeimetric estimation of indoleacetic acid. American Society of Plant Biologists:192-195. Goudjal, Y., O. Toumatia, A. Yekkour, N. Sabaou, F. Mathieu, and A. Zitouni. 2014. Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiological Research 169:59-65. Gupta, C.P., R.C. Dubey, and D.K. Maheshwari. 2002. Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biol. Fertil. Soils 35:399-405. Gyaneshwar, P., G.N. Kumar, L. Parekh, and P. Poole. 2002. Role of soil microorganisms in improving P nutrition of plants, p. 133-143 Food Security in Nutrient-Stressed Environments: Exploiting Plants' Genetic Capabilities. ed. Springer. Hankin, L., and S. Anagnostakis. 1975. The use of solid media for detection of enzyme production by fungi. Mycologia:597-607. Hayakawa, M., and H. Nonomura. 1987. Humic Acid-Vitamin Agar, a New Medium for the Selective Isolation of Soil Actinomycetes. J. Ferment. Technol. 65:501-509. Hsu, S.C., and J.L. Lockwood. 1975a. Powdered chitin in agar as selective medium for enumeration of actinomycetes in water and soil. Applied Microbiology 29:422-426. Hsu, S.C., and J.L. Lockwood. 1975b. Powdered Chitin Agar as a Selective Medium for Enumeration of Actinomycetes in Water and Soil. Appl. Microbiol. 29:422-426. Huang, C.H., P.D. Roberts, and L.E. Datnoff. 2011. Silicon Suppresses Fusarium Crown and Root Rot of Tomato. J. Phytopathol. 159:546-554. Huang, X., N. Zhao, and K. Zhang. 2004. Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. Research in Microbiology 155:811-816. Huang, X., N. Zhang, X. Yong, X. Yang, and Q. Shen. 2012. Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiological research 167:135-143. Hwang, B.K., J.Y. Lee, B.S. Kim, and S.S. Moon. 1996. Isolation, structure elucidation, and antifungal activity of a manumycin-type antibiotic from Streptomyces flaveus. Journal of Agricultural and Food Chemistry 44:3653-3657. Inglis, G., and L. Kawchuk. 2002. Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Canadian journal of microbiology 48:60-70. Jonathan, E., M. Sivakumar, and D. Padmanabhan. 1996. Interaction of Meloidogyne incognita and Phytophthora palmivora on Betelvine. Nematologia Mediterranea 24:341-343. Kandoliya, U.K., and D.N. Vakharia. 2013. Antagonistic effect of Pseudomonas fluorescens against Fusarium oxysporum FSP CICERI causing wilt in chickpea. Legume Res 36:569-575. Kausar, H., M. Sariah, H.M. Saud, M.Z. Alam, and M.R. Ismail. 2011. Isolation and screening of potential actinobacteria for rapid composting of rice straw. Biodegradation 22:367-375. Khamna, S., A. Yokota, and S. Lumyong. 2009. Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649-655. Komada, H. 1975. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Review of Plant Protection Research 8:114-124. Kuster, E., and S.T. Williams. 1964. Selection of Media for Isolation of Streptomycetes. Nature 202:928-929. Leben, C., and G. Keitt. 1954. Antibiotics and plant disease, effects of antibiotics in control of plant diseases. Journal of Agricultural and Food Chemistry 2:234-239. Lemessa, F., and W. Zeller. 2007. Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biological control 42:336-344. Lloret-Climent, M., R. Amoros-Jimenez, L. Gonzalez-Franco, and J.-A. Nescolarde-Selva. 2014. Coverage and invariance for the biological control of pests in mediterranean greenhouses. Ecological Modelling 292:37-44. Milagres, A.M.F., A. Machuca, and D. Napoleao. 1999. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J. Microbiol. Methods 37:1-6. Neeno-Eckwall, E.C., L.L. Kinkel, and J.L. Schottel. 2001. Competition and antibiosis in the biological control of potato scab. Canadian journal of microbiology 47:332-340. Neilands, J.B. 1995. Siderophores-structure and function of microbial iron transport compounds J. Biol. Chem. 270:26723-26726. Omar, S. 1997. The role of rock-phosphate-solubilizing fungi and vesicular–arbusular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World Journal of Microbiology and Biotechnology 14:211-218. Ordentlich, A., Y. Elad, and I. Chet. 1988. The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology (USA). Pal, K.K., and B.M. Gardener. 2006. Biological control of plant pathogens. The plant health instructor 2:1117-1142. Palaniyandi, S.A., S.H. Yang, L.X. Zhang, and J.W. Suh. 2013. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 97:9621-9636. Perez-Miranda, S., N. Cabirol, R. George-Tellez, L.S. Zamudio-Rivera, and F.J. Fernandez. 2007. O-CAS, a fast and universal method for siderophore detection. J. Microbiol. Methods 70:127-131. Pikovskaya, R. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362-370. Porter, D., and N. Powell. 1967. Influence of certain Meloidogyne species on Fusarium wilt development in flue-cured tobacco. Phytopathology 57:282-285. Prapagdee, B., C. Kuekulvong, and S. Mongkolsuk. 2008. Antifungal Potential of Extracellular Metabolites Produced by Streptomyces hygroscopicus against Phytopathogenic Fungi. Int. J. Biol. Sci. 4:330-337. Rahman, M., M.A. Ali, T.K. Dey, M.M. Islam, L. Naher, and A. Ismail. 2014. Evolution of disease and potential biocontrol activity of Trichoderma sp against Rhizoctonia solani on potato. Biosci J 30:1108-1117. Raytapadar, S., and A.K. Paul. 2001. Production of an antifungal antibiotic by Streptomyces aburaviensis 1DA-28. Microbiological Research 155:315-323. Reynolds, H.W., and R. Hanson. 1957. Rhizoctonia disease of cotton in presence or absence of the cotton root-knot nematode in Arizona. Phytopathology 47:256-261. Rothrock, C.S., and D. Gottlieb. 1984. Role of antibiosis in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solani in soil. Canadian journal of microbiology 30:1440-1447. Ruanpanun, P., N. Tangchitsomkid, K.D. Hyde, and S. Lumyong. 2010. Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol. 26:1569-1578. Sabaou, N., N. Bounaga, and D. Bounaga. 1983. Actions antibiotique, mycolytique et parasitaire de deux actinomycetes envers Fusarium oxysporum f. sp. albedinis et autres formae speciales. Canadian Journal of Microbiology 29:194-199. Sadeghi, A., A. Hessan, H. Askari, S. Aghighi, and G. Shahidi Bonjar. 2006. Biological control potential of two Streptomyces isolates on Rhizoctonia solani, the causal agent of damping-off of sugar beet. Pakistan Journal of Biological Sciences 9:904-910. Sasser, J.N., J.D. Eisenback, C.C. Carter, and A.C. Triantaphyllou. 1983. The International Meloidogyne project - its goals and accomplishments . Annu Rev Phytopathol. 21:271-288. Sato, I., S. Yoshida, Y. Iwamoto, M. Aino, M. Hyakumachi, M. Shimizu, H. Takahashi, S. Ando, and S. Tsushima. 2014. Suppressive Potential of Paenibacillus Strains Isolated from the Tomato Phyllosphere against Fusarium Crown and Root Rot of Tomato. Microbes and Environments 29:168-177. Shirling, E.t., and D. Gottlieb. 1966. Methods for characterization of Streptomyces species. International journal of systematic bacteriology 16:313-340. Smith, J., A. Putnam, and M. Nair. 1990. In vitro control of Fusarium diseases of Asparagus officinalis L. with a Streptomyces or its polyene antibiotic, faeriefungin. Journal of Agricultural and food Chemistry 38:1729-1733. Sousa, C.d.S., A.C.F. Soares, and M.d.S. Garrido. 2008. Characterization of streptomycetes with potential to promote plant growth and biocontrol. Scientia Agricola 65:50-55. Sulochana, M.B., S.Y. Jayachandra, S.A. Kumar, A.B. Parameshwar, K.M. Reddy, and A. Dayanand. 2014. Siderophore as a Potential Plant Growth-Promoting Agent Produced by Pseudomonas aeruginosa JAS-25. Appl. Biochem. Biotechnol. 174:297-308. Tranier, M.S., J. Pognant-Gros, R.D. Quiroz, C.N.A. Gonzalez, T. Mateille, and S. Roussos. 2014. Commercial Biological Control Agents Targeted Against Plant-Parasitic Root-knot Nematodes. Braz Arch Biol. Technol. 57:831-841. Upadhyay, R., and B. Rai. 1987. Studies on antagonism betweenFusarium udum Butler and root region microflora of pigeon-pea. Plant Soil 101:79-93. Walker, G.E. 1991. Chemical, physical and biological-control of carrot seeding disease. Plant Soil 136:31-39. Welty, R., K. Barker, and D. Lindsey. 1980. Effects of Meloidogyne hapla and M. incognita on Phytophthora root rot of alfalfa. Plant Disease 64:1097-1099. Whipps, J.M. 2001. Microbial interactions and biocontrol in the rhizosphere. Journal of experimental Botany 52:487-511. Xue, L., Q.H. Xue, Q. Chen, C.F. Lin, G.H. Shen, and J. Zhao. 2013. Isolation and evaluation of rhizosphere actinomycetes with potential application for biocontrol of Verticillium wilt of cotton. Crop Prot 43:231-240. Yuan, W.M., and D.L. Crawford. 1995. Characterization of streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Applied and Environmental Microbiology 61:3119-3128. Zhao, S., C.-M. Du, and C.-Y. Tian. 2012. Suppression of Fusarium oxysporum and induced resistance of plants involved in the biocontrol of Cucumber Fusarium Wilt by Streptomyces bikiniensis HD-087. World Journal of Microbiology and Biotechnology 28:2919-2927.
摘要: 
The warm and humid climate as well as inappropriate soil fertilizer management result in outbreaks of plant disease in Taiwan, especially caused by soil-born plant pathogen. The were 177 strains of actinomycetes were isolated from four soils and one compost in Taiwan. Four isolates, A47, A177, A186 and A297, were selected for further studies based on their exceptional ability to inhibit Fusarium oxysporum f. sp. lycopersici and Rhizoctonia solani growth by dual culture test. Furthermore, the selected isolations were tested the antifungal activities against sclerotium rolfsii and Phytophthora capsici by the dual culture test. At least two of these plant fungal pathogens were inhibited by the selected isolates, and their antifungal index were all > 40%. Both A177 and A297 inhibited all the tested soil-born plant fungal pathogens with varying efficiencies. The production of extracellular enzymes, including chitinase, cellulose, gelatinase, protease and lipase and amylase by these isolates were analyzed. The production of plant growth regulator including indole-3- acetic acid and siderophore were also evaluated. A47, A177 and A297 showed the greatest in production of the extracellular enzymes and plant growth regulator. These isolates were used to determine their antagonistic ability to Fusarium oxysporum f. sp. lycopersici on potato dextrose agar plates with different pH values. The antifungal activities of A177, A186 and A297 were not significantly different as pH ranged from 4.5 to 9.5. The antifungal activities of A47 increased with increasing pH. A47, A177, A186 and A297 were taxonomically closed to Lentzea waywayandensis, Streptomyces sp., Amycolatopsis circi, and Streptomyces sp. repectively based on 16S rDNA sequences.The spore suspensions of A297 inhibited egg hatching rate of southern root-knot nematode, and increased the juvenile mortality. The hatching rate were 8%, and juveniles mortality rate were 30%. Although the spore suspension of A47 and A297 didn't show inhibition efficacy to juveniles, they decrease the ability of juveniles to infect water spinach by 16.3%. The pre-treatment of spore suspension of A297 reduced the population density of Fusarium oxysporum f. sp. lycopersici and disease severity (biocontrol efficacy 87%). Application of spore suspension of A47 and A177 didn't reduce the population of Fusarium oxysporum f. sp. lycopersici, but the disease severity was significantly reduced (biocontrol efficacy 100%). A47 and A177 may induce systemic resistance in tomato against Fusarium oxysporum f. sp. lycopersici. The culture filtrate of A297 treated with proteinase K and boiled. This indicated that A297 produced not only chitinase but also thermostable antifungal compound(s). A47, A177 and A297 could be developed as biocontrol agents for controlling tomato Fusarium wilt. Of them A47 and A297 could also be developed as biocontrol agents of southern root-knot nematode.

台灣氣候高溫多溼又缺乏冬季低溫,且農田未能適當肥培管理,造成植物病原菌肆虐,土傳性病害防治尤其困難。本研究自全台各地4個土壤和1個堆肥分離得177株放線菌,與番茄萎凋病菌 (Fusarium oxysporum f. sp. lycopersici) 和大蒜立枯絲核病菌 (Rhizoctonia solani) 進行對峙培養篩選出抑制能力較佳的菌株A47、A177、A186和A297,進一步與番茄白絹病菌 (Sclerotium rolfsii) 和甜椒疫病菌 (Phytophthora capsici) 等土傳性植物病原真菌進行對峙培養測定,結果顯示供試放線菌至少能抑制其中兩種病原菌生長,抗真菌指數 (antifungal index) > 40%,其中A177和A297對所有土傳性植物病原菌均有不同程度的拮抗能力。供試放線菌在不同pH的馬鈴薯葡萄糖培養基 (potato dextrose agar) 上和番茄萎凋病菌進行對峙培養,在pH 4.5 - 9.5間,A177、A186和A297拮抗番茄萎凋病菌的能力並無明顯差異,A47隨著pH越高拮抗能力越強。測定供試放線菌產生幾丁質分解酵素、纖維素分解酵素、明膠分解酵素、蛋白質分解酵素、脂質分解酵素和澱粉分解酵素等胞外酵素,吲哚乙酸和載鐵物質等植物調節物質,結果顯示A47、A177和A297產生胞外酵素和植物調節物質能力較強。根據16S rDNA序列分析結果顯示A47之分類地位最接近為Lentzea waywayandensis,A186為Amycolatopsis circi,A177和A297均為Streptomyces sp.。放線菌防治南方根瘤線蟲試驗中,A297孢子懸浮液抑制卵塊孵化並提高孵化後二齡幼蟲死亡率,卵塊孵化率僅有8%,孵化後二齡幼蟲死亡率為30% ; A47和A297孢子懸浮液雖然不能直接抑制二齡根瘤線蟲數量但會降低二齡根齡線蟲侵染蕹菜的能力,發病率 (disease incidence) 降低16.3%。供試放線菌於番茄萎凋病溫室防治試驗中,預先接種A297孢子懸浮液可直接減少番茄萎凋病菌之數量,降低番茄罹病度 (disease severity),生物防治效果達87% ; A47和A177雖然並沒有顯著降低番茄萎凋病菌的數量,亦可顯著降低番茄罹病度,生物防治效果達100%,推測可能是藉由誘導植物產生系統性抗病。A297培養濾液經過proteinase K和加熱處理,仍具有抑制番茄萎凋病菌生長的能力,顯示A297可藉由產生幾丁質分解酵素和耐高溫之抗生物質以抑制番茄萎凋病菌。本研究結果顯示A47、A177和A297具有作為番茄萎凋病生物防治劑的潛力,其中A47和A297亦具有發展為南方根瘤線蟲生物防治劑的潛力。
URI: http://hdl.handle.net/11455/90122
Rights: 同意授權瀏覽/列印電子全文服務,2018-02-04起公開。
Appears in Collections:土壤環境科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101039016-1.pdf1.37 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.