Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90123
標題: Endophytic bacteria community composition in different paddy cultivars and soils
不同水稻品種及土壤種類對植體內生細菌群落組成之研究
作者: Yu-Ting Hsieh
謝于婷
關鍵字: paddy;endophytic bacteria;DGGE;microbial community;水稻;內生細菌;變性梯度電泳;微生物族群
引用: 王明光及江博能。2010。土壤生物多樣性。國立編譯館。 王明光及汪碧涵。 2009。土壤微生物多樣性監測。國立台灣大學農業化學系。 安寶貞及楊舜臣。2007。農業試驗所育成品種名錄。行政院農業委員會農業試驗所。 沈佛亭。2006。Gordonia菌屬放線菌之分子偵測、分類及鑑定。博士論文,國立中興大學土壤環境科學系。 宋勳、洪梅珠及許愛娜。1991。台灣稻米品質之研究。台中區農業改良場。 吳昇晏。2011。香蕉內生細菌對鐮胞菌之拮抗特性研究。 碩士論文,國立中興大學土壤環境科學系。 林詩耀。2007。重油降解細菌之表現型及基因行特性研究。碩士論文,國立中興大學土壤環境科學系。 陳治官。2007。前言-作物簡介。p. 2–8。水稻保護(下)植物保護圖鑑系列8。行政院農業委員會動植物防疫局。 陳榮五。2009。台中區農改場歷年育成品種專輯。行政院農業委員會台中區農改場。 黃正華。1987。台灣稻作品種圖誌。行政院農業委員會、台灣省政府農林廳及亞太糧食肥料技術中心。 楊秋忠。1999。土壤與肥料。農業世界。 鄧耀宗。2005。糧食作物-水稻。p. 45–56。台灣農家要覽-農作篇(一) 。行政院農業委員會。 鍾仁賜。2008。氮。p. 30–42。土壤與肥料分析手冊(一)土壤化學性質分析。 中華土壤肥料學會。 Andreote, F.D., W.L. de Araújo, J.L. de Azevedo, J.D. van Elsas, U.N. da Rocha, and L.S. van Overbeek. 2009. Endophytic colonization of potato (Solanum tuberosum L.) by a novel competent bacterial endophyte, Pseudomonas putida Strain P9, and its effect on associated bacterial communities. Appl. Environ. Microbiol. 75: 3396–3406. Araújo, W.L., J. Marcon, W. Maccheroni, J.D. van Elsas, J.W.L. van Vuurde, and J.L. Azevedo. 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl. Environ. Microbiol. 68: 4906–4914. Asraful Islam, S.M., R.K. Math, J.M. Kim, M.G. Yun, J.J. Cho, E.J. Kim, Y.H. Lee, and H.D. Yun. 2010. Effect of plant age on endophytic bacterial diversity of balloon flower (Platycodon grandiflorum) root and their antimicrobial activities. Curr. Microbiol. 61: 346–356. Baldani, V.L.D., J.I. Baldani, and J. Döbereiner. 2000. Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol. Fertil. Soils 30: 485–491. Bandara, W.M.M.S., G. Seneviratne, and S.A. Kulasooriya. 2006. Interactions among endophytic bacteria and fungi: effects and potentials. J. Biosci. 31: 645–650. Barraquio, W.L., L. Revilla, and J.K. Ladha. 1997. Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194: 15–24. Benhamou, N., J.W. Kloepper, A. Quadt-Hallman, and S. Tuzun. 1996. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 112: 919–929. Biggins, D.R., and J.R. Postgate. 1969. Nitrogen fixation by cultures and cell-free extracts of Mycobacterium flavum 301. J. Gen. Microbiol. 56: 181–193. Biggins, D.R., and J.R. Postgate. 1971. Nitrogen fixation by extracts of Mycobacterium flavum 301. Eur. J. Biochem. 19: 408–415. Brady, C.L., I. Cleenwerck, S.N. Venter, K. Engelbeen, P.D. Vos, and T.A. Coutinho. 2010. Emended description of the genus Pantoea, description of four species from human clinical samples, Pantoea septica sp. nov., Pantoea eucrina sp. nov., Pantoea brenneri sp. nov. and Pantoea conspicua sp. nov., and transfer of Pectobacterium cypripedii (Hori 1911) Brenner et al. 1973 emend. Hauben et al. 1998 to the genus as Pantoea cypripedii comb. nov. Int. J. Syst. Evol. Microbiol. 60: 2430–2440. Bremner, J.M., and M.A. Tabatabai. 1971. Use of automated combustion techniques for total carbon, total nitrogen, and total sulfur analysis of soils. p. 1–15. In Instrumental Methods for Analysis of Soils and Plant Tissue. Soil Science Society of America. Centre, E.C.J.R. 2006. The analysis of food samples for the presence of genetically modified organisms: user manual. WHO. Chanway, C.P. 1996. Endophytes: they're not just fungi! Can. J. Bot. 74: 321–322. Chen, C., E.M. Bauske, G. Musson, R. Rodriguezkabana, and J.W. Kloepper. 1995. Biological control of fusarium wilt on cotton by use of endophytic bacteria. Biol. Control 5: 83–91. Chen, W., Y. Tang, K. Mori, and X. Wu. 2012. Distribution of culturable endophytic bacteria in aquatic plants and their potential for bioremediation in polluted waters. Aquat. Biol. 15: 99–110. Chi, F., S.H. Shen, H.P. Cheng, Y.X. Jing, Y.G. Yanni, and F.B. Dazzo. 2005. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl. Environ. Microbiol. 71: 7271–7278. Chin, K.J., D. Hahn, U. Hengstmann, W. Liesack, and P.H. Janssen. 1999. Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of pice paddy microcosms. Appl. Environ. Microbiol. 65: 5042–5049. Cho, H.S., S.Y. Park, C.M. Ryu, J.F. Kim, J. G. Kim, and S.H. Park. 2007. Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium. FEMS Microbiol. Ecol. 60: 14–23. Choudhary, D.K., and B.N. Johri. 2009. Interactions of Bacillus spp. and plants – with special reference to induced systemic resistance (ISR). Microbiol. Res. 164: 493–513. Doty, S.L. 2008. Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol. 179: 318–333. Duangpaeng, A., P. Phetcharat, S. Chanthapho, N. Boonkantong, and N. Okuda. 2012. The study and development of endophytic bacteria for enhancing organic rice growth. Procedia Eng. 32: 172–176. Dunleavy, J.M. 1989. Curtobacterium plantarum sp. nov. is ubiquitous in plant leaves and is seed transmitted in soybean and corn. Int. J. Syst. Bacteriol. 39: 240–249. Dunne, C., J.J. Crowley, Y. Moënne-Loccoz, D.N. Dowling, S. Bruijn, and F. O'Gara. 1997. Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143: 3921–3931. Elbeltagy, A., K. Nishioka, T. Sato, H. Suzuki, B. Ye, T. Hamada, T. Isawa, H. Mitsui, and K. Minamisawa. 2001. Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl. Environ. Microbiol. 67: 5285–5293. Elbeltagy, A., K. Nishioka, H. Suzuki, T. Sato, Y.I. Sato, H. Morisaki, H. Mitsui, and K. Minamisawa. 2000. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci. Plant Nutr. 46: 617–629. Engelhard, M., T. Hurek, and B. Reinhold-Hurek. 2000. Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ. Microbiol. 2: 131–141. Enya, J., H. Shinohara, S. Yoshida, T. Tsukiboshi, H. Negishi, K. Suyama, and S. Tsushima. 2007. Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents. Microb. Ecol. 53: 524–536. Fazi, S., E. Vazquez, E.O. Casamayor, S. Amalfitano, and A. Butturini. 2013. Stream hydrological fragmentation drives bacterioplankton community composition. PLoS ONE 8Available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3669313/ (verified 27 September 2013). Feng, Y., D. Shen, X. Dong, and W. Song. 2003. In vitro symplasmata formation in the rice diazotrophic endophyte Pantoea agglomerans YS19. Plant Soil 255: 435–444. Feng, Y., D. Shen, and W. Song. 2006. Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J. Appl. Microbiol. 100: 938–945. Fromin, N., J. Hamelin, S. Tarnawski, D. Roesti, K. Jourdain-Miserez, N. Forestier, S. Teyssier-Cuvelle, F. Gillet, M. Aragno, and P. Rossi. 2002. Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ. Microbiol. 4: 634–643. Gafan, G.P., V.S. Lucas, G.J. Roberts, A. Petrie, M. Wilson, and D.A. Spratt. 2005. Statistical analyses of complex denaturing gradient gel electrophoresis profiles. J. Clin. Microbiol. 43: 3971–3978. Garbeva, P., L.S. Overbeek, J.W.L. Vuurde, and J.D. Elsas. 2001. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb. Ecol. 41: 369–383. Garcias-Bonet, N., J.M. Arrieta, C.N. de Santana, C.M. Duarte, and N. Marbà. 2012. Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica). Front. Microbiol. 3: 1–16. Govindasamy, V., M. Senthilkumar, V. Magheshwaran, U. Kumar, P. Bose, V. Sharma, and K. Annapurna. 2011. Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. p. 333–364. In Maheshwari, D.K. (ed.), Plant Growth and Health Promoting Bacteria. Microbiology Monographs. Springer Berlin Heidelberg. Gyaneshwar, P., P.M. Reddy, and J.K. Ladha. 2000. Nutrient amendments influence endophytic colonization of rice by Serratia marcescens IRBG500 and Herbaspirillum seropedicae Z67. J. Microbiol. Biotechnol. 10: 694–699. Hallman, J., J. Quadt-Hallmann, W.F. Mahaffee, and J.W. Kloepper. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43: 895–914. Han, J., Y. Song, Z. Liu, and Y. Hu. 2011. Culturable bacterial community analysis in the root domains of two varieties of tree peony (Paeonia ostii). FEMS Microbiol. Lett. 322: 15–24. Hardoim, P.R., F.D. Andreote, B. Reinhold-Hurek, A. Sessitsch, L.S. van Overbeek, and J.D. van Elsas. 2011. Rice root-associated bacteria: insights into community structures across 10 cultivars. FEMS Microbiol. Ecol. 77: 154–164. Hardoim, P.R., C.C.P. Hardoim, L.S. van Overbeek, and J.D. van Elsas. 2012. Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS ONE 7Available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281832/ (verified 1 February 2013). Hardoim, P.R., L.S. van Overbeek, and J.D. van Elsas. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16: 463–471. Hino, S., and P.W. Wilson. 1958. Nitrogen fixation by a favultative Bacillus. J. Bacteriol. 75: 403–408. Hulton, C.S.J., C.F. Higgins, and P.M. Sharp. 1991. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol. Microbiol. 5: 825–834. Islam, M.R., T. Sultana, J.C. Cho, M.M. Joe, and T.M. Sa. 2012. Diversity of free-living nitrogen-fixing bacteria associated with Korean paddy fields. Ann. Microbiol. 62: 1643–1650. Izumi, H., I.C. Anderson, I.J. Alexander, K. Killham, and E.R.B. Moore. 2006. Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris). FEMS Microbiol. Ecol. 56: 34–43. Jakobi, M., G. Winkelmann, D. Kaiser, C. Kempler, G. Jung, G. Berg, and H. Bahl. 1996. Maltophilin: a new antifungal compound produced by Stenotrophomonas maltophilia R3089. J. Antibiot. (Tokyo) 49: 1101–1104. James, E.K., P. Gyaneshwar, N. Mathan, W.L. Barraquio, P.M. Reddy, P.P.M. Iannetta, F.L. Olivares, and J.K. Ladha. 2002. Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol. Plant. Microbe Interact. 15: 894–906. Jha, B., M.C. Thakur, I. Gontia, V. Albrecht, M. Stoffels, M. Schmid, and A. Hartmann. 2009. Isolation, partial identification and application of diazotrophic rhizobacteria from traditional Indian rice cultivars. Eur. J. Soil Biol. 45: 62–72. Kaga, H., H. Mano, F. Tanaka, A. Watanabe, S. Kaneko, and H. Morisaki. 2009. Rice seeds as sources of endophytic bacteria. Microbes Environ. 24: 154–162. Kang, Y.M., C.K. Lee, and K.M. Cho. 2013. Diversity and antimicrobial activity of isolated endophytic bacteria from deodeok (Codonopsis lanceolata) of different locations and ages. Afr. J. Microbiol. Res. 7: 1015–1028. Katara, J., R. Deshmukh, N.K. Singh, and S. Kaur. 2012. Molecular typing of native Bacillus thuringiensis isolates from diverse habitats in India using REP-PCR and ERIC-PCR analysis. J. Gen. Appl. Microbiol. 58: 83–94. Kerndorff, H., S. Kühn, T. Minden, D. Orlikowski, and T. Struppe. 2008. Effects of natural attenuation processes on groundwater contamination caused by abandoned waste sites in Berlin. Environ. Geol. 55: 291–301. Khush, G.S. 1997. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35: 25–34. Kildea, S., V. Ransbotyn, M.R. Khan, B. Fagan, G. Leonard, E. Mullins, and F.M. Doohan. 2008. Bacillus megaterium shows potential for the biocontrol of septoria tritici blotch of wheat. Biol. Control 47: 37–45. Kirchhof, G., V.M. Reis, J.I. Baldani, B. Eckert, J. Döbereiner, and A. Hartmann. 1997. Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194: 45–55. Kirkpatrick, F.H. 1990. Overview of agarose gel properties. Available at Curr Commun Cell Mol Biol. 1:9-22. Kobayashi, D.Y., R.M. Reedy, J. Bick, and P.V. Oudemans. 2002. Characterization of a chitinase cene from Stenotrophomonas maltophilia Strain 34S1 and its involvement in biological control. Appl. Environ. Microbiol. 68: 1047–1054. Koeuth, T., J. Versalovic, and J.R. Lupski. 1995. Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res. 5: 408–418. Krishnan, P., R. Bhat, A. Kush, and P. Ravikumar. 2012. Isolation and functional characterization of bacterial endophytes from Carica papaya fruits. J. Appl. Microbiol. 113: 308–317. Liesack, W., S. Schnell, and N.P. Revsbech. 2000. Microbiology of flooded rice paddies. FEMS Microbiol. Rev. 24: 625–645. Liu, Y., S. Zuo, L. Xu, Y. Zou, and W. Song. 2012. Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines. Arch. Microbiol. 194: 1001–1012. Loaces, I., L. Ferrando, and A.F. Scavino. 2011. Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb. Ecol. 61: 606–618. Lodewyckx, C., J. Vangronsveld, F. Porteous, E.R.B. Moore, S. Taghavi, M. Mezgeay, and D. van der Lelie. 2002. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21: 583–606. López-López, A., M.A. Rogel, E. Ormeño-Orrillo, J. Martínez-Romero, and E. Martínez-Romero. 2010. Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst. Appl. Microbiol. 33: 322–327. Luo, S., L. Chen, J. Chen, X. Xiao, T. Xu, Y. Wan, C. Rao, C. Liu, Y. Liu, C. Lai, and G. Zeng. 2011. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85: 1130–1138. Ma, L., Y.H. Cao, M.H. Cheng, Y. Huang, M.H. Mo, Y. Wang, J.Z. Yang, and F.X. Yang. 2013. Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex. Antonie Van Leeuwenhoek 103: 299–312. Magnani, G.S., C.M. Didonet, L.M. Cruz, C.F. Picheth, F.O. Pedrosa, and E.M. Souza. 2010. Diversity of endophytic bacteria in Brazilian sugarcane. Genet. Mol. Res. GMR 9: 250–258. Mano, H., and H. Morisaki. 2008a. Endophytic bacteria in the rice plant. Microbes Environ. 23: 109–117. Mano, H., F. Tanaka, C. Nakamura, H. Kaga, and H. Morisaki. 2007. Culturable endophytic bacterial flora of the maturing leaves and roots of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ. 22: 175–185. Mano, H., F. Tanaka, A. Watanabe, H. Kaga, S. Okunishi, and H. Morisaki. 2006. Culturable surface and endophytic bacterialfFlora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ. 21: 86–100. Mastretta, C., S. Taghavi, D. van der Lelie, A. Mengoni, F. Galardi, C. Gonnelli, T. Barac, J. Boulet, N. Weyens, and J. Vangronsveld. 2009. Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int. J. Phytoremediation 11: 251–267. Mattos, K.A., V.L.M. Pádua, A. Romeiro, L.F. Hallack, B.C. Neves, T.M.U. Ulisses, C.F. Barros, A.R. Todeschini, J.O. Previato, and L. Mendonça-Previato. 2008. Endophytic colonization of rice (Oryza sativa L.) by the diazotrophic bacterium Burkholderia kururiensis and its ability to enhance plant growth. An. Acad. Bras. Ciênc. 80: 477–493. McInroy, J.A., and J.W. Kloepper. 1995. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173: 337–342. Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15: 1409–1416. Mercado-Blanco, J., and P.A.H.M. Bakker. 2007. Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 92: 367–389. Mercado-Blanco, J., and P. Prieto. 2012. Bacterial endophytes and root hairs. Plant Soil 361: 301–306. Minamisawa, K., K. Nishioka, T. Miyaki, B. Ye, T. Miyamoto, M. You, A. Saito, M. Saito, W.L. Barraquio, N. Teaumroong, T. Sein, and T. Sato. 2004. Anaerobic nitrogen-fixing consortia consisting of clostridia isolated from gramineous plants. Appl. Environ. Microbiol. 70: 3096–3102. Miyamoto, T., M. Kawahara, and K. Minamisawa. 2004. Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl. Environ. Microbiol. 70: 6580–6586. Muthukumarasamy, R., I. Cleenwerck, G. Revathi, M. Vadivelu, D. Janssens, B. Hoste, K. Ui Gum, K.D. Park, C. Young Son, T. Sa, and J. Caballero-Mellado. 2005. Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst. Appl. Microbiol. 28: 277–286. Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2: 317–322. Nelson, D.W., and L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter. p. 961–1010. In Methods of soil analysis. Part 3- chemical methods. Ogita, N., Y. Hashidoko, S.H. Limin, and S. Tahara. 2006. Linear 3-hydroxybutyrate tetramer (HB4) produced by Sphingomonas sp. Is characterized as a growth promoting factor for some rhizomicrofloral composers. Biosci. Biotechnol. Biochem. 70: 2325–2329. Okunishi, S., K. Sako, H. Mano, A. Imamura, and H. Morisaki. 2005. Bacterial flora of endophytes in the maturing seed of cultivated rice (Oryza sativa). Microbes Environ. 20: 168–177. Van Orsouw, N.J., and J. Vijg. 1999. Design and application of 2-D DGGE-based gene mutational scanning tests. Genet. Anal. Biomol. Eng. 14: 205–213. Padgham, J.L., and R.A. Sikora. 2007. Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Prot. 26: 971–977. Pedraza, R.O., C.H. Bellone, S. Carrizo de Bellone, P.M.F. Boa Sorte, and K.R. dos S. Teixeira. 2009. Azospirillum inoculation and nitrogen fertilization effect on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop. Eur. J. Soil Biol. 45: 36–43. Prakamhang, J., K. Minamisawa, K. Teamtaisong, N. Boonkerd, and N. Teaumroong. 2009. The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Appl. Soil Ecol. 42: 141–149. Prasanna, R., L. Nain, A.K. Pandey, and A.K. Saxena. 2012. Microbial diversity and multidimensional interactions in the rice ecosystem. Arch. Agron. Soil Sci. 58: 723–744. Prieto, P., and J. Mercado-Blanco. 2008. Endophytic colonization of olive roots by the biocontrol strain Pseudomonas fluorescens PICF7. FEMS Microbiol. Ecol. 64: 297–306. Prieto, P., E. Schilirò, M.M. Maldonado-González, R. Valderrama, J.B. Barroso-Albarracín, and J. Mercado-Blanco. 2011. Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb. Ecol. 62: 435–445. Rakotoniriana, E.F., M. Rafamantanana, D. Randriamampionona, C. Rabemanantsoa, S. Urveg-Ratsimamanga, M. El Jaziri, F. Munaut, A.M. Corbisier, J. Quetin-Leclercq, and S. Declerck. 2012. Study in vitro of the impact of endophytic bacteria isolated from Centella asiatica on the disease incidence caused by the hemibiotrophic fungus Colletotrichum higginsianum. Antonie Van Leeuwenhoek 103: 121–133. Reinhold-Hurek, B., and T. Hurek. 2011. Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14: 435–443. Reiter, B., H. Bürgmann, K. Burg, and A. Sessitsch. 2003a. Endophytic nifH gene diversity in African sweet potato. Can. J. Microbiol. 49: 549–555. Reiter, B., N. Wermbter, S. Gyamfi, H. Schwab, and A. Sessitsch. 2003b. Endophytic Pseudomonas spp. populations of pathogen-infected potato plants analysed by 16S rDNA- and 16S rRNA-based denaturating gradient gel electrophoresis. Plant Soil 257: 397–405. Rijavec, T., A. Lapanje, M. Dermastia, and M. Rupnik. 2007. Isolation of bacterial endophytes from germinated maize kernels. Can. J. Microbiol. 53: 802–808. Rosenblueth, M., and E. Martínez-Romero. 2006. Bacterial endophytes and their interactions with hosts. Mol. Plant. Microbe Interact. 19: 827–837. Rungin, S., C. Indananda, P. Suttiviriya, W. Kruasuwan, R. Jaemsaeng, and A. Thamchaipenet. 2012. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 102: 463–472. Sánchez, E., G.D. Palma, A. Capilla, E. Nova, T. Pozo, G. Castillejo, V. Varea, A. Marcos, J.A. Garrote, I. Polanco, A. López, C. Ribes-Koninckx, M.D. García-Novo, C. Calvo, L. Ortigosa, F. Palau, and Y. Sanz. 2011. Influence of environmental and genetic factors linked to celiac disease risk on infant gut colonization by Bacteroides species. Appl. Environ. Microbiol. 77: 5316–5323. Schmidt, M.A., E.M. Souza, V. Baura, R. Wassem, M.G. Yates, F.O. Pedrosa, and R.A. Monteiro. 2011. Evidence for the endophytic colonization of Phaseolus vulgaris(common bean) roots by the diazotroph Herbaspirillum seropedicae. Braz. J. Med. Biol. Res. 44: 182–185. Shangkuan, Y.H., J.F. Yang, H.C. Lin, and M.F. Shaio. 2000. Comparison of PCR–RFLP, ribotyping and ERIC–PCR for typing Bacillus anthracis and Bacillus cereus strains. J. Appl. Microbiol. 89: 452–462. Shen, F.T., M.J. Ho, H.R. Huang, A.B. Arun, P.D. Rekha, and C.C. Young. 2008. Molecular detection and phylogenetic characterization of Gordonia species in heavily oil-contaminated soils. Res. Microbiol. 159: 522–529. Sheng, H.M., H.S. Gao, L.G. Xue, S. Ding, C.L. Song, H.Y. Feng, and L.Z. An. 2011. Analysis of the composition and characteristics of culturable endophytic bacteria within subnival plants of the Tianshan mountains, northwestern China. Curr. Microbiol. 62: 923–932. Sheng, X.F., J.J. Xia, C.Y. Jiang, L.Y. He, and M. Qian. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ. Pollut. 156: 1164–1170. Shu, W., G.P. Pablo, Y. Jun, and H. Danfeng. 2012. Abundance and diversity of nitrogen-fixing bacteria in rhizosphere and bulk paddy soil under different duration of organic management. World J. Microbiol. Biotechnol. 28: 493–503. Souza, S.A., A.A. Xavier, M.R. Costa, A.M.S. Cardoso, M.C.T. Pereira, and S. Nietsche. 2013. Endophytic bacterial diversity in banana 'Prata Anã' (Musa spp.) roots. Genet. Mol. Biol. 36: 252–264. Sturz, A.V., B.R. christie, B.G. Matheson, and J. Nowak. 1997. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Available at Biol. fertil. soils. 25:13-19. Sturz, A.V., B.R. Christie, and J. Nowak. 2000. Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci. 19: 1–30. Sun, L., F. Qiu, X. Zhang, X. Dai, X. Dong, and W. Song. 2008. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb. Ecol. 55: 415–424. Sun, Z.B., X.F. Yuan, Y.X. Wang, H. Zhang, W.H. Zhang, and Y.J. Feng. 2012. Diversity of culturable entophytic bacteria in cucumber leaves at blossoming and fruiting stages. Nucleic Acids Res. 39: 764–772. Takahashi, H., H. Sekiguchi, T. Ito, M. Sasahara, N. Hatanaka, A. Ohba, S. Hase, S. Ando, H. Hasegawa, and S. Takenaka. 2011. Microbial community profiles in intercellular fluid of rice. J. Gen. Plant Pathol. 77: 121–131. Tester, M., and P. Langridge. 2010. Breeding technologies to increase crop production in a changing world. Science 327: 818–822. Thomas, P., and T.A. Soly. 2009. Endophytic bacteria associated with growing shoot tips of banana (Musa sp.) cv. grand naine and the affinity of endophytes to the host. Microb. Ecol. 58: 952–964. Ulrich, K., A. Ulrich, and D. Ewald. 2008. Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol. Ecol. 63: 169–180. Verma, S.C., J.K. Ladha, and A.K. Tripathi. 2001. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J. Biotechnol. 91: 127–141. Verma, S.C., A. Singh, S.P. Chowdhury, and A.K. Tripathi. 2004. Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol. Lett. 26: 425–429. Versalovic, J., T. Koeuth, and J.R. Lupski. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19: 6823–6831. Wang, L.Y., S.F. Chen, L. Wang, Y.G. Zhou, and H.C. Liu. 2012a. Cohnella plantaginis sp. nov., a novel nitrogen-fixing species isolated from plantain rhizosphere soil. Antonie Van Leeuwenhoek 102(1): 83–89. Wang, S., W. Wang, Z. Jin, B. Du, Y. Ding, T. Ni, and F. Jiao. 2013. Screening and diversity of plant growth promoting endophytic bacteria from peanut. Afr. J. Microbiol. Res. 7: 875–884. Wang, K., P. Yan, Q. Ding, Q. Wu, Z. Wang, and J. Peng. 2012b. Diversity of culturable root-associated/endophytic bacteria and their chitinolytic and aflatoxin inhibition activity of peanut plant in China. World J. Microbiol. Biotechnol. 29: 1–10. Xie, C.H., and A. Yokota. 2006. Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. Int. J. Syst. Evol. Microbiol. 56: 889–893. Yang, J.H., H.X. Liu, G.M. Zhu, Y.L. Pan, L.P. Xu, and J.H. Guo. 2008. Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. J. Appl. Microbiol. 104: 91–104. Yoon, J.H., T.K. Oh, and Y.H. Park. 2004. Transfer of Bacillus halodenitrificans denariaz et al. 1989 to the genus Virgibacillus as Virgibacillus halodenitrificans comb. nov. Int. J. Syst. Evol. Microbiol. 54: 2163–2167. You, C.B., M. Lin, X.J. Fang, and W. Song. 1995. Attachment of Alcaligenes to rice roots. Soil Biol. Biochem. 27: 463–466. Zinniel, D.K., P. Lambrecht, N.B. Harris, Z. Feng, D. Kuczmarski, P. Higley, C.A. Ishimaru, A. Arunakumari, R.G. Barletta, and A.K. Vidaver. 2002. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol. 68: 2198–2208. Zul, D., S. Denzel, A. Kotz, and J. Overmann. 2007. Effects of plant biomass, plant diversity, and water content on bacterial communities in soil lysimeters: implications for the determinants of bacterial diversity. Appl. Environ. Microbiol. 73: 6916–6929.
摘要: 
Paddy (Oryza sativa) is the most important cereal crop around the world. Its yield must be increased to fulfil the requirements of rice for humanbeing. Recently, several endophytic bacteria have been proposed to have beneficial effects on their host plants. To understand how endophytic bacteria promote plant growth, the characterization of endophytic community structure in plant is needed since the endophytic bacteria are affected by plant genotype or soil environment. The aim of this study was to assess the effects of different paddy cultivars and soils on the community composition of endophytic bacteria. Differences between bacterial communities within various paddy cultivars and soils were analyzed by obtaining isolates along with their 16S rDNA sequences analyses or isolating DNAs which were further used for 16S rDNA-denaturing gradient gel electrophoresis (DGGE) analyses. The results demonstrated that majority of endophytic isolates belonged to the genus Bacillus, and followed by Microbacterium and Paenibacillus spp. A total of 56 isolates with different genotypeswere obtained, which corresponds to 40 bacterial species. Only one specific bacterial genotype was same within two paddy cultivars, while others all showed different genotypes within different cultivars or soils. The community compositions of culturable endophytic bacteria were affected by both paddy cultivars and soils. Bacillus aryabhattai, Bacillus flexu, Bacillus megaterium, Bacillus methylotrophicus, Bacillus thioparans, Bacillus vallismortis, Microbacterium testaceum, Paenibacillus lautus, and Paenibacillus pabuli were isolated from different paddy cultivars and/or different soils. It was postulated that these bacteria were common soil inhabitants in paddy tissues or seeds. Cluster analyses of DGGE patterns revealed that the position of paddy tissues significantly affected the endophytic community composition. The sequences of the major bands in denaturing gradient gel were closely related to Pantoea spp, which did not coincide with the results obtained from cultivation method. It was proposed that Pantoea spp. were the dominant endophytic bacteria in paddy. Bacillus and Paenibacillus spp. which form endospores when plants were surface-sterilized might be recovered after plating on cultural medium. Some of the isolates are first reported to be endophytes of paddy such as Bacillus thioparans, Herbaspirillum aquaticum, Microbacterium pumilum, Paenibacillus elgii, Paenibacillus thailandensis, Paenibacillus pabuli, and Virgibacillus halodenitrificans, which are needed to be clarified in a near future.

水稻是世界上重要的糧食作物,然而面對世界變遷,需找出方法來提高水稻產量與品質。近年來,有許多研究發現內生細菌可有效幫助植物生長。想了解內生細菌對作物生長的影響,需先得知內生細菌在植體內中的群落結構,進而探討內生細菌間相互作用對植體的影響,而植物基因型及土壤環境皆可能影響植物內生細菌之群落組成。本研究之目的為瞭解不同水稻品種及不同性質土壤對水稻內生細菌群落的影響,分別利用培養方式進行內生菌株分離及16S rDNA定序分析,及變性梯度膠體電泳(DGGE)之16S rDNA核酸分析方法,觀察水稻植體中內生細菌之菌相差異,以得知不同水稻品種與土壤對內生細菌群落組成的影響,並分析利用培養方式與直接核酸分析方式所測得內生細菌群落之間的差異。研究結果顯示,培養方式分離出的水稻內生細菌以Bacillus菌屬為主,其次為Microbacterium及Paenibacillus菌屬。其中發現共56種不同基因型的菌株,歸類至40種菌種。不同水稻品種中分離之內生菌僅兩株菌為相同基因型,在不同種植土壤則沒有發現相同基因型的菌株,顯示不同水稻品種及土壤中內生細菌之基因型多樣性。部份菌種在不同水稻品種或不同土壤中皆有發現,包含Bacillus aryabhattai、Bacillus flexus、Bacillus megaterium、Bacillus methylotrophicus、Bacillus thioparans、Bacillus vallismortis、Microbacterium testaceum、Paenibacillus lautus及Paenibacillus pabuli,推測這些內生細菌可能為土壤中常見的菌種,並可進入水稻植體中,亦或原本即存在於種子內部且不易受土壤環境的影響。在直接核酸萃取之分析中,利用DGGE圖譜進行相似度分析,研究中發現利用傳統培養方式及直接核酸分析方式所得之內生細菌優勢微生物之結果不同。經培養後獲得之內生菌株多數為Bacillus菌屬,但DGGE分析中則以Pantoea菌屬之菌株為主。若以較能代表樣品中內生菌之直接DNA分析結果(未經培養)為依據,推測內生菌主要以Pantoea為優勢種,並含有許多其他水稻內生菌,由於數量較少,且在經由培養時可能因消毒產生些許逆境,而無法存活下來或呈現無法被培養的狀態,或不適合生長於研究中使用的培養基。本次研究中分離出的菌株,有尚無前人研究發現的內生細菌,包括Bacillus thioparans、Herbaspirillum aquaticum 、 Paenibacillus elgii 、 Paenibacillus pabuli及Virgibacillus halodenitrificans,與親緣關係相近於Microbacterium pumilum及Paenibacillus thailandensis的菌株,上述分離株可再進一步研究確認其內生細菌的內生特性。本研究探討水稻內生細菌與植物及土壤之間的關係,將有助於未來將內生細菌開發為微生物肥料。
URI: http://hdl.handle.net/11455/90123
Rights: 同意授權瀏覽/列印電子全文服務,2017-01-29起公開。
Appears in Collections:土壤環境科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7100039004-1.pdf5.13 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.