Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90126
DC FieldValueLanguage
dc.contributor黃政恆zh_TW
dc.contributor.authorChuan-Fu Kaoen_US
dc.contributor.author高傳富zh_TW
dc.contributor.other土壤環境科學系所zh_TW
dc.date2015zh_TW
dc.date.accessioned2015-12-09T02:25:09Z-
dc.identifier.citation行政院農委會。2013。101年我國糧食供需統計結果。農政與農情第256期。 王一雄。1997。土壤環境污染與農藥。明文書局。 Ando, T., S. Yoshida and I. Nishiyama. 1983. Nature of oxidizing power of rice roots. Plant and Soil. 72: 57-71. Arenovski, A. L. and B. L. Howes.1992. Lacunal allocation and gas-transport capacity in the salt-marsh grass spartina-alterniflora. Oecologia. 90(3): 316-322. Armstrong J. and Armstrong W. 1988. Phramited australis preliminary study of soil-oxidizing sites and internal gas transport pathways. New Phytologist. 108: 373-382. Armstrong W. 1971. Radial oxygen lossws from intact rice roots as affected by distance from the apex, respiration, and waterlogging. Physiologia Plantarum. 25: 192-197. Armstrong, W. 1967. The oxidising activity of roots in waterlogged soils. Physiologia Plantarum. 20: 920-926. Audebert, A. 2006. Iron partitioning as a mechanism for iron toxicity tolerance in lowland rice. In: Audebert, A. (ed.), Narteh, L.T. (ed.), Kiepe P. (ed.), Millar D. (ed.), Beks B. (ed.). Iron toxicity in rice-based systems in West Africa. Cotonou: [WARDA Africa Rice Center]. 34-46. Audebert, A. and K.L. Sahrawat. 2000. Mechanisms for iron toxicity tolerance in lowland rice. Journal of Plant Nutrition 23: 1877-1885. Bacha, R.E. and L. R. Hossner. 1977. Characteristics of coatings formed on rice roots as affected by iron and manganses additions. Soil Sci. Soc. Amer. J. 41: 931-935. Barbosa F. M. P., N. K. Fageria, and L. F. Stone. 1983. Water management and limiting in relation to grain yield and iron toxicity. Pesquisa Agropecuaria Brasileria. 18: 903-910. Barrier, A. and S. J. Prosser. 1996. Automated analysis of light-element stable isotopes by isotope ratio mass spectrometer. in: Mass Spectrometry of Soils. p. 1-46. Baruah, K.K., S. Das and K. Das. 2007. Physiological disorder of rice associated with high levels of iron in growth medium. Journal of Plant Nutrition 30: 1871-1883. Batty, L. C., A. J. M. Baker and B. D. Wheeler. 2002. Aluminium and phosphate uptake by Phragmites australis: the role of Fe, Mn and Al root plaques. Annals of Botany 89(4): 443-449. Batty, L. C., A. J. M. Baker, B. D. Wheeler and C. D. Curtis. 2000. The effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis (Cav.) Trin ex. Steudel. Annals of Botany 86(3): 647-653. Becker, M. and F. Asch. 2005. Iron toxicity in rice conditions and management concepts. Journal and Plant Nutrition and Soil Science. 168: 558-573. Bienfait H.F., R. J. Bino, A. M. van der Bliek, J. F. Duivenvoorden and J. M.Fontain. 1983. Characterization of ferric reducing activity in roots of Fe deficient Phaseolus vulgaris. Physiologia Plantarum. 59: 196-202. Boone, C. M., J. M. Bristow and G. W. VanLoon. 1983. The relative efficiency of ionic iron (III) and iron (II) utilization by the rice plant. J. Plant Nutr. 6: 201-208. Brantley, S. L., L. J. Liermann, R. L. Guynn, A. Anbar, G.A. Icopini and J. Barling. 2004. Fe isotopic fractionation during mineral dissolution with and without bacteria. Geochimica et Cosmochimica Acta. 68 (15): 3189-3204. Breemen, N. V. and F. R. Moormann. 1978. Iron- toxic soils. In: Soils and Rice, ed. International Rice Research Institue. Los Banos, Philippines: IRRI. pp. 781-780. Brian, L. B., R. M. Handler, M. M. Scherer, L. Wu and A. D. Czaja. 2010. Iron isotope fractionation between aqueous ferrous iron and goethite. Earth and Planetary Letters. 295: 241-250. Briat, J. F. and Lobreaux, S. 1997. Iron transport and storage in plants. Trends Plant Sci. 2: 187-193. Bughio, N., H. Yamaguchi, N. K. Nishizawa, H. Nakanishi, and S. Mori. 2002. Cloning an iron- regulated metal transporter from rice. J. Exp. Bot. 53: 1677-1682. Chen, C. C., J. B. Dixon and F.T. Turner. 1980. Iron coatings on rice root-mineralogy and quantity influencing factors. Soil Science Society of America Journal 44(3): 635-639. Colangelo E. P. and M. L. Guerinot. 2004. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. The Plant Cell. 16: 3400-3412. Colmer T. D. and O. Pedersen. 2008. Oxygen dynamics in submerged rice (Oryza sativa L.). New Phytologist. 178: 326-334. Colmer T.D. 2003. Long- disatnace transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant, Cell and Environment. 26: 17-36. Colmer, T. D. 2003. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Annals of Botany. 91(2): 301-309. Conlin, T. S. S. and A. A. Crowder. 1989. Location of radial oxygen loss and zones of potential iron uptake in a grass and two non-grass emergent species. Can. J. Bot. 67: 717-722. Connolly, E.L., M. L. Guerinot. 2002. Iron Stress in plants. Genome Biology. 3: 1024.1-1024.4. Da Silveira, V. C., A. P. de Oliveira, R.A. Sperotto, L.S. Espindola, L. Amaral, J.F. Dias, J.B. da Cunha and J.P. Fett. 2007. Influence of iron on mineral status of two rice (Oryza sativa L.) cultivars. Brazilian Journal of Plant Physiology. 19: 127-139. Dauphas, N. and O. Rouxel. 2006. Mass spectrometry and natural variations of iron isotopes. Mass Spectrometry Reviews 25(4): 515-550. De Dorolodot S, S. Lutts, P. Bertin. 2005. Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice. Journal of Plant Nutrition. 28: 1-20. Edie D., M. Broderius, J. Fett, M. L. Guerinot. 1996. A novel iron- regulated metal transporter from plants identify by functional expression in yeast. Proceedings of the National Academy of Scicences USA. 93: 5624-5628. Edie, N. and M. Whiteley. 1996. Physiotherapy and occupational therapy in palliative care. J Palliative Care 12: 71-71. Elec V., A. Q. Celsa, M. Rhulyx, G. C. Andres, E. J. B. Sarah, B. G. Glenn and K. S. Rakesh. 2013. Mainting elevated Fe2+ concentration in solution culture for the development of a rapid and repeatable screening technique for iron toxicity tolerance in rice (Oryza sativa L.). Plant Soil. 372: 253-264. Fageria, N.K., A.B. Santos, M.P.B. Filho and C.M. Guimaraes. 2008. Iron toxicity in lowland rice. Journal of Plant Nutrition 31: 1676-1697. Fageria, N. K., M. P. B. Filho, J. R. P. Decarvalho. 1981. Influence of iron on growth and adsorption of P, K, Ca and Mg by rice plant in nutrient solution. 16: 483-488. Fang, W.C. and C.H. Kao. 2000. Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc. Plant Sci 158: 71-76. Gao, S., K. K. Tanji, S. C. Scardaci and A. T. Chow. 2002. Comparison of redox indicators in a paddy soil during rice-growing season. Soil Science Society of America Journal 66: 805-817. Garcia, M. J., V. Saurez, F. J. Romera, E. Alcantara, R. Perez- Vicente. 2011. A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe- acquisition genes in Strategy I plants. Plant Physicloogy and Biochemistry. 49: 537-544. Ghosh, P. and A. K. Kashyap. 2003. Effect of rice cultivars on rate of N-mineralization, nitrification and nitrifier population size in an irrigated rice ecosystem. Applied Soil Ecology. 24(1): 27-41. Gill, S.S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48: 909-930. Graziano, M. and L. Lamattina. 2007. Nitric oxide accumulation is required for molucular and physicology response to iron deficiency in tomato roots. The Plant Journal. 52: 949-960. Green, M. S. and J. R. Etherington. 1977. Oxidation of ferrous iron by rice (Oryza sativa L.) roots: a mechanism for waterlogging tolerance. Journal of experimental Botany. 28: 678-690. Greenwood, C. and J. Thomson. 1961. Physicochemical Studies on Starches .23. Some Physical Properties of Floridean Starch and Characterization of Structure-Type of Branched Alpha-1,4-Glucans. J Chem Soc: 1534-1542. Greipsson S. and A. A. Crowder. 1992. Amelioration of copper and nickel toxicity by iron plaque on roots of rice. Canadian Journal of Botany. 70: 824-830. Guerinot, M. L. and Y. Yi. 1994. Iron: nutritious, noxious and not readily available. Plant Physiol. 104: 815-820. Halliwell, B. 1994. Free radicals and antioxidants: A personal view. Nutr Rev. 52 (2): 253-2650. Halliwell, B. and J.M.C. Gutteridge. 1990. The Antioxidants of Human Extracellular Fluids. Arch Biochem Biophys 280: 1-8. Hansel, C. M., La Force, M. J., S. Fendorf, S. Sutton. 2002. Spatial and temporal association of As and Fe species on aquatic plant roots. Environ. Sci. Technol. 36: 1988-1994. Hansel, C.M., S. Fendorf, S. Sutton and M. Newville. 2001. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environmental Science & Technology 35: 3863-3868. Higuchi, K., K. Suzuki, H. Nakanishi, H. Yamaguchi, N. K. Nishizawa, S. Mori 1999. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physicology. 119: 471-479. Higushi K., S. Watanabe, M. Takahashi, S. KawASCki, H. Nakanishi, N. K. Nishizawa, S. Mori. 2001a. Nicotianamine synthase gene expression differs in barely and rice under Fe- deficient conditions. The Plant Journal. 25: 159-167. Hinsinger, P. and C. Plassard. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant and Soil 248 (1-2): 43-59. Howeler, R. H. 1973. Iron- induced oranging disease of rice in relation to physico chemical change in a flooded oxisol. Soil Sci. Soc. Amer. Proc. 37: 898-903. Icopini, G. A., A. D. Anbar, S. S. Ruebush, M. Tien, S. L. Brantley. 2004. Iron isotope fractionation during microbial reduction of iron: The importance of adsorption. Geological Society of America. 32 (3): 205-208. Inoue H., M. Takahashi, T. Kobayashi, M. Suzuki, H. Nakanishi, S. Moris, N. K. Nishuzawa. 2008. Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophores synthesis in rice. Plant Molucular Biology. 66: 193-203. Ishimaru, Y., M. Suzuki, T. Tsukamoto, K. Suzuki, M. Nakazono, T. Kobayashi, Y. Wada, S. Watanabe, S. Matsuhashi, M. Takahashi, H. Nakanishi, S. Mori and N. K. Nishizawa. 2006. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. The Plant Journal. 45: 335-346. Jacq, V., K. Prade and J.C.G. Ottow. 1986. Significance of iron and sulphate redox process in flooded soils for the nutrition of rice. Proceedings of the 13th Congress of the International Society of Soil Science. 13-20. Jayawardena, S. D. G., T. Watanabe and D. Tanaka. 1977. Relation between root oxidizing power and resistance to iron toxicity in rice. The Report of the Soc. of Crop Sci. and Breeding in Kinki (Japan) No. 22, 38-47. Johnson, C. , B. Beard and F. Albarede. 2004. Reviews in Mineralogy and Geochemistry: Geochemistry of Non-Traditional Stable Isotopes. vol. 55. Johnsongreen P. C. and A. A. Crowder. 1991. Iron oxide deposition on axenic and non- axenic roots of rice seedlings (Oryza sativa L.). J. Plant Nutr. 14: 375-385. Kappler A. and D.K. Newman. 2004. Formation of Fe (III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochim. Cosmochim. Acta. 68(6): 1217-1226. Kashem, M. A. and B. R. Singh. 2004. Transformations in Solid Phase Species of Metals as Affected by Flooding and Organic Matter. Communications in Soil Science and Plant Analysis 35(9&10): 1435-1456. Kludze, H. K. and R. D. Delaune. 1993. Aerenchyma formation and methane and oxygen exchange in rice. Soil Science Society of America Journal 57(2): 386-391. Kobayashi T., M. Suzuki, H. Inoue, R. N. Itai, M. Takahashi, H. Nakanishi, S. Mori, N. K. Nishizawa 2005. Expression of iron-acquisition- related genes in iron- deficient rice is co- coordinately induced by partially conserved iron- deficiency- responsive elements. Journal of Experimental Botany. 56: 1305-1316. Kobayashi, S. T. J. Boggon, T. Dayaram, P. A. Janne, O. Kocher, M. Meyerson, B. E. Johnson, M. J. Eck, D. G. Tenen, B. Halmos. 2005. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352 (8): 786-792. Kogel-Knabner, I., W. Amelung, Z. Cao, S. Fiedler, P. Frenzel, R. Jahn, K. Kalbitz, A. Kolbl and M. Schloter. 2010. Biogeochemistry of Paddy Soils. Geoderma. 157: 1-14. Kraemer, S.M. 2004. Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66: 3-18. Kuo, S. 1986. Concurrent sorption of phosphorous and zinc, candium, or calcium by a hrdrous ferric oxide. Soil Sci. Soc. Amer. J. 50: 1412-1419. Lauilhere and Briat. 1993. Iron release and uptake by plant ferritin: effects of pH, reduction and chelation. Biochemistry Journal. 290: 693-699. Laura R. C., C. M. Johnson, B. L. Beard, D. K. Newman. 2004. Isotope fractionation by Fe(II)-oxidizing photoautotrophic. Geochimica et Cosmochimica Acta. 68 (6): 1227-1242. Lemon, H.M., J.H. Mueller, J.M. Looney, W.H. Chasen and M. Kelman. 1960. Hypercitricemia in Human Cancer Factors Concerned in Pathogenesis and Treatment. Brit J Cancer 14: 376-396. Lindsay, W. L. 1979. Chemical Equilibria in Soils. John Wiley and Sons, New York. Ling H. Q., P. Bauer, Z. Bereczky, B. Keller, M. Ganal 2002. The tomato fer gene encoding a bHLH protein controls iron uptake responses in roots. Proceedings of the National Academy of Sciences USA. 99: 13938-13943. Liu L., X. Cheng, H. Q. Ling. 2004. Isolation and characterization of Fe (III)-chelate reductase gene LeFRO1 in tomato. Plant Molecular Biology. 54: 125-136. Liu, H., J. Zhang, P. Christie, F. Zhang. 2008. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Sci. Total Environ. 394: 361-368. Liu, W. J., Y. G. Zhu, Y. Hu, P. N. Williams, A. G. Gault, A. A. Meharg, J. M. Charnock and F. A. Smith. 2006. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ. Sci. Technol. 40: 5730-5736. Lukasz, K. and R. Kosala. 2009. Functional and chemical comparison of apoplastic barriers toradial oxygen loss in roots of rice (Oryza sativa L.) grown inaerated or deoxygenated solution. Experimental Botany 60(7): 2155-2167. Lukasz, K. and S. Ernst. 2009. Measurements of oxygen permeability coefficients of rice(Oryza sativa L.) roots using a new perfusion technique. Experimental Botany 60(2): 567-580. Ma, J.F. and K. Nomoto. 1996. Effective regulation of iron acquisition in graminaceous plants: The role of mugenic acids as phytosidrophores. Physiologia Plantarum. 97: 607-617. Macfie, S. M. and Crowder, A. A. 1987. Soil factors influencing ferric hydroxide plaque formation on roots of Typha latifolia L. Plant and Soil. 102: 177-184. Malik, A. I., T. D. Colmer, H. Lambers, M. Schortemeyer. 2003.Aerenchyma formation and radial O2 loss along adventitious roots of wheat with only the apical root portion exposed to O2 deficiency. Plant, Cell and Environment. 26: 1713-1722. Marschner, H. and V. Romheld. 1986. Different strategies in higher plants in mobilization and uptake of iron. Journal of plant nutrition. 9: 695-713. Mattina, M. J. I., W. Lannucci-Berger, C. Musante, J.C. White. 2003. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ. Pollut. 124: 375-378. Maurice, P. A., Y. J. Lee and L. E. Hersman. 2000. Dissolution of Al-substituted goethites by an aerobic Pseudomonas mendocina var. bacteria. Geochim. Cosmochim. Acta 64:1363-1374. Morrissey, J. and M. L. Guerinot. 2010. Iron uptake and transport in plants: The good, the bad, and the ionome. Chem. Rev. 109:4553-4567. Murata, Y., J. F. Ma, N. Yamaji, D. Ueno, K. Nomoto, T. Iwashita. 2006. A specific transporter for iron (III)- phytosiderophore in barely roots. The Plant Journal. 46: 563-572. Nakada, M. and M. Komatsu. 2006. Isolation of MaDEF from Muscari armeniacum and analysis of its expression using laser microdissection. Plant Science 170 (1): 143-150. Negishi T., H. Nakanishi, J. Yazaki, N. Kishimoko, F. Fujii, K. Shimbo, K.Yamamoto, K. Sakata, T. Sascki, S. Kikuchi, S. Mori, N. K. Nishizawa. 2002a. cDNA micoarray analysis of gene expression during Fe- deficiency stress in barely suggests that polar transport of vesicles is implicated in phytosiderophores secrtetion in Fe- deficient barely roots. The Plant Journal. 30: 83-94. Neill, S. J., R. Desikan, and J. T. Hancock. 2002. Hydrogen peroxide signaling. Current Opinion in Plant Biology. 5: 388–395. Ogo Y., N. l. Reiko, N. Hiromi, l. Haruhiko, K. Takanori, S. Motofumi, T. Michiko, M. Satoshi and K. N. Naoko. 2006. Isolation and characterization of IRO2, a novel iron- regulated bHLH transcription factor in graminaceous plants. Journal of Experimental Botany. 57 (11): 2867-2878. Olson, R. V. 1965. Iron. In C. A. Black et al. (ed.) Methods of soil analysis, Part 2. Agronomy 9: 966-967. Am. Soc. of Agron., Madison, Wis. Otte M. L. 1991. Heavy metal and arsenic in vegetation of salt marshes and floodplains. Doctoral Thesis, Vrije University, Amsterdam, The Neverlands. Otte M. L., Dekkers M. J. Rozema J and Broekman R. A. 1991. Uptake of arsenic by Aster tripolium in relation to rhizosphere oxidation. Canadian Journal of Botany. 69: 2670-2677. Otte, M. L., J. Rozema, L. Koster, M. S. Haarsma and R. A. Broekman. 1989. Iron plaque on roots of Aster tripolium L.: interaction with zinc uptake. New Phytologist 111 (2): 309-317. Orera, I., J. A. Rodriguez-Castrillon, M. Moldovan, J. I. Garcia-Alonso, A. Abadia, J. Abadia, A. Alvarez-Fernandez. 2010. Using a dual-stable isotope tracer method to study the uptake, xylem transport and distribution of Fe and its chelating agent from stereoisomers of an Fe(III)-chelate used as fertilizer in Fe-deficient Strategy I plants. Metal-lomics 2:646 – 657. Patrick, W. H. and A. Jugsujinda. 1992. Sequential reduction and oxidation of inorganic nitrogen, manganese, and iron in flooded soil. Soil Science Society of America Journal 56: 1071-1073. Patrick, W. H. and C. N. Reddy. 1978. Chemical changes in rice soils. In Soil and Rice. International Rice Research Institue, Los Banos, Philippines. pp 361-379. Patrick, W. H., Jr. and I. C. Mahapatra. 1968. Transformation and availability to rice of nitrogen and phosphorous in waterlogged soils. Adv. Agron. 20: 323-359. Ponnamperuma, F. N. 1972. The chemistry of submerged soils. Adv. Agron. 24: 29-96. Ponnamperuma, C., F. R. Eirich. 1984. The role of caly, as an adsorbent and catalyst in prebiotic chemistry. American Chemical Society. 188: 21-26. Raju, V. 1972. Infinite Dimensional Matrix for Design of Sampled Data Systems. Int J Control 16: 201-212. Ratering, S. and S. Schnell. 2000. Localization of iron-reducing activity in paddy soil by profile studies. Biogeochemistry 48: 341-365. Rhyu, D.Y., J. Park, B.R. Sharma and H. Ha. 2012. Role of Reactive Oxygen Species in Transforming Growth Factor-Betal-Induced Extracellular Matrix Accumulation in Renal Tubular Epithelial Cells. Transpl P 44: 625-628. Ro mheld, V. 1987. Different strategies for iron acquisition in higher plants. Physiol Plant. 70:231-234. Robinson N., C. Procter, E. L. Connolly, M. Guerinot. 1999. A ferric-chelate reductase for iron uptake from soils. Nature. 397: 694-697. Romheld, V. and H. Marschner. 1983. Mechanism of iron uptake by peanut plants. Plant Physiology. 71: 949-954. Rosman, K. J. R., P.D.P. Taylor. 1998. Isotopic compositions of the element. J Anal Atom Spectrom. 13: 45-55. Sahrawat, K. L. 2004. Iron toxicity in wetland rice and the role of other nutrients Journal of plant Nutrition. 27: 1471-1504. Sahrawat, K.L. 2010. Reducing Iron Toxicity in Lowland Rice with Tolerant Genotypes and Plant Nutrition. Plant Stress. 4 (2): 70-75. Sahu, B. N. 1968. Brozing disease of rice in Orissa as influence by soil types and manuring and its control. Journal of Indian Society of Soil Science. 16: 41-54. Seyfferth, A. L., S. M. Webb, J. C. Anderews and S. Fendorf. 2010. Arsenic localization, speciation and co- occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings. Environ. Sci. Technol. 44: 8108-8113. Shiono, K., S. Ogawa, S. Yamazaki, H. Isoda, T. Fujimura, M. Nakazono, et al. 2011. Contrasting dynamics of radial O-2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Annals of botany 107: 89-99. Shuman, L.M. 1977. Adsorption of Zn by Fe and Al Hydrous Oxides as Influenced by Aging and Ph. Soil Sci. Soc. Am. J. 41: 703-706. Siqueira-Silva, A. I., L. C. da Silva, A. A. Azevedo, M. A. Oliva. 2012. Iron plaque formation and morpho natomy of roots from species of restinga subjected to excess iron. Ecotoxicology and Environmental Safety. 78: 265-275. Skulan, J. L., B. L. Beard, C. M. Johnson. 2002. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe (III) and hematite. Geochim. Cosmochim. Acta. 66 (17):2995-3015. St-Cyr, L. and A. A. Crowder. 1990. Manganese and Copper in the root plaque of Phragmites australis (Cav.) Trin ex Steudel. Soil Science 149 (4): 191-198. Straubwasser M., F. von Blanckenburg and R. Schoenberg. 2006. Iron isotopes in the early marine diagenetic iron cycle. Geological Society of America. 34 (8): 629-632. Stumm, W. and G.F. Lee. 1961. Oxygenation of Ferrous Iron. Ind Eng Chem 53: 143-146. Sunilda, T. F. 2009. Effects of Rhizobacteria on iron uptake and root iron plaque formation in lowland rice under conditions of iron toxicity (master thesis). Master of science of Rheinisch Friedrich-Wilhelms-Universitat zu Bonn. 1-78. Takagi, S. I. 1976. Naturally occurring iron-chelating compounds in oat- and rice-root washing. I. Activity measurement and preliminary characterization. Soil Science and Plant Nutrition 22 (4): 423-433. Takagi, S., K. Nomoto, T. Tsunematsu. 1984. Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. Journal of Plant Nutrition 7 (1-5): 469-477. Takashi, M., H. Yamaguchi, H. Nakanishi, T. Shioiri, N. K. Nishizawa, S. Mori 1999.Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physicology. 121: 947-956. Takanori, K and N. K. Nishizawa. 2012. Iron uptake, translocation, and regulation in higher plants. Annu. Rev. Plant Biol. 63: 131-152. Takizawa R., N. K. Nishizawa, H. Nakanishi, S. Mori. 1996. Effects of iron deficiency on S- adenosylmethionine synthetase in barely roots. Journal of Plant Nutrition. 19: 1189-1200. Tanaka, A., R. Loe and S. A. Navasero. 1996. Some mechanisms involved the development of iron toxitity symptoms in the rice plant. Soil Science and Plant Nutrition. 12: 32-38. Tanaka, A., S. A. Navasero. 1966. Managanese content of the rice plant under water culture conditions. Soil Sci. Plant Nutr. 12: 67-72. Tangalos, G. E., B. L. Beard, C. M. Johnson, C. N. Alpers, E. S. Shelobolina, H. Xu, H. Konishi, E. E. Roden. 2010. Microbial Production of isotopically light iron (II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks. Geobiology. 8 (3): 197-208. Taylor G. T. and A. A. Crowder 1983. Use of DCB technique for extraction of hydrous iron oxides from roots of wetland plant. Amer. J. Bot. 70: 1254-1257. Taylor, G. J., A. A. Crowder, R. Rodden. 1984. Formation and morphology of an iron plaque on the roots of Typha latifolia L. grown in solution culture. American Journal of Botany. 71(5): 666-675. Teal, J. M. and J. W. Kanwishe. 1966. Gas transport in the marsh grass spartina alterniflora. Journal of Experimental Botany 17 (51): 355-361. Thomas, D. B., F. W. Arthur, W. C. Cyril, V. V. Davisson and M. S. Marjorie. 2001. Demonstration of significant abiotic iron isotope fractionation in nature. Geology. 29 (8): 699-702. van Breemen, N., F. R. Moormann. 1978. Iron- toxic soils. In: Soils and rice. Manila (Philipines): International Rice Research Institue. P 781-800. Venkat, R. K., H. Marschner. 1972. Regulation of iron uptake from relatively insoluble iron compounds by sunflower plants. Plenum Press. 132: 177-190. Vert, G., N. Grotz, F. Dedaldechamp, F. Gaymard, M.L. Guerinot, J.F. Briat, et al. 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14: 1223-1233. Walker, E.L. and E.L. Connolly. 2008. Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Curr Opin Plant Biol 11: 530-535. Wang, T. G. and J. H. Peverly. 1996. Oxidation states and fractionation of plaque iron on roots of common reeds. Soil Science Society of America Journal. 60(1): 323-329. Weiss, D. J., M. Rehkamper, R. Schoenberg, M. McLaughlin, J. Kirby, P. G. C. Campbell, T. Arnold, J. Chapman, K. Peel, S. Gioa. 2008. Application of nontraditional stable-isotope systems to the study of sources and fate of metals in the environment. Environmental Science and Technology. 42 (3): 655-664. Welch, S. A., B. L. Beard, C. M. Johnson, P. S. Braterman. 2003. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe (II) and Fe (III). Geochim. Cosmochim. Acta. 67 (22):4231-4250. Wells, K.L., G. Henson and G. Kelley. 1993. Content of Some Heavy-Metals in Soil and Corn Grain. Communications in Soil Science and Plant Analysis 24: 2617-2628. Weyer, S. and J. Schwieters. 2003. High precision Fe isotope measurements with high mass resolution MC-ICPMS. Int J Mass Spectrom 226: 355-368. Wiederhold, J. G., S. M. Kraemer, N. Teutsch, P. M. Borer and A. N. Halliday. 2006. Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of goethite.Environmental science and technology. 40 (12): 3787-3793. Wu H., Li L., J. Du, Y. Yuan, X. Cheng, H. Q. Ling. 2005. Molecular and biochemical characterization of the Fe (III) chelate reductase gene family in Arabidopsis thaliana. Plant and Cell Physiology. 46:1505-1514. Wu, L., B. L. Beard, E. R. Roden and C. M. Johnson. 2011. Stable iron isotope fractionation between aqueous Fe (II) and hydrous ferric oxide. Environmental Science and Technology. 45: 1847-1852. Yoshida, S. 1976. Routine procedure for growing rice plants in culture solution. p. 61-66. in laboratory Manual for Physiological Studies of Rice. (Yoshida S., D. A. Forno, J. H. Cook, and K. A. Gomez, eds.) International Rice Research Institue, Manilla, Philipines. Yasuo, O. 1970. Diagnostic methods for the measurement of root activity in rice plant. Jpn. Agr. Quart. 5: 1-6. Yu, T.R. 1985. Application of Ion-Selective Electrodes in Soil Science. Ion Sel Electrode R 7: 165-202. Zhang X. K., F. S. Zhang and D. R. Mao. 1996. Effect of root iron plaque on zinc uptake by rice plant. Chinese Acta Appl. Ecol. 7: 262-266. Zhang X., Z. Fusuo and M. Daru. 1998. Effects of iron plaque outside roots on nutrients uptake by rice (Oryza sativa L.) Zinc uptake by Fe-deficient rice. Plant and Soil. 202: 33-39.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/90126-
dc.description.abstractRice (Oryza sative L.), a graminaceous plants, uses the Strategy II mechanism to absorb Fe from soil, but previous studies also demonstrated that rice can take up Fe (II) directly through OsIRT1 and OsIRT2. During rice growing season, paddy soil is submerged. The submerging conditions result in the temperal and spatial variations in the concentrations of Fe (II) and Fe (III) in the soils. Therefore, we hypothesized that rice might be able to regulate the uptake of Fe from paddy soil. Accordingly, Fe uptakes of rice seedlings in different Fe (II)/Fe (III) conditions were investigated. Rice plants were grown in hydroponic solutions with different concentrations of Fe (II)/ Fe (III), ranging from deficient conditions to toxic conditions. FeSO4:NH2OH=1:1and Fe (III)-EDTA was used as the sources of Fe (II) and Fe (III), respectively. In the treatments of lower Fe concentrations (0.17~1.7 mg Fe L-1), the result showed that rice can take up Fe more efficiency in Fe (II) system than the Fe (III) counterparts. Therefore the OsIRO2 gene expression in the Fe (II) system is lower than that in the Fe (III) system. In the treatments of higher Fe concentrations (17~85 mg Fe L-1), Fe concentrations in rice plants increased with increasing Fe concentration in hydroponic solution, especially in the Fe (II) system. Moreover, the Fe concentrations of plants in the Fe (II) system are much higher than their Fe (III) counterparts. The Fe concentrations in iron plaque and in shoot are highly correlated and the formation of iron plaque changed with increasing Fe concentration in the solution. The content of ferrihydrite in the iron plaque is also increased. These results indicated that the concentration of Fe in iron plaque and the formation of iron plaque determine the iron uptake of rice. Nonetherless, the Fe concentration in iron plaque was not correlated to root oxidative capacity/ hydrogen peroxide content. The results of stable Fe isotope fractionation showed that Fe (II) undergoes an oxidative precipitation mechanism on rice root surface but can also be taken up directly by rice root. Thus, Fe (II) is oxidized to Fe (III), which is then bound to phytosiderophores and the resultant Fe (III)-PS complexes were taken by rice root. In the Fe (II) system, rice can use more than one uptake strategies and therefore exhibits a higher Fe uptake efficiency.en_US
dc.description.abstract水稻 (Oryza sative L.)屬於禾本科植物,主要是利用策略II吸收Fe (III),但水稻也被證實能透過OsIRT1和OsIRT2的載鐵蛋白,直接的吸收Fe (II)。由於水田土壤中Fe (II)/ Fe (III)的濃度為一動態變化,水稻為適應此土壤環境,應有一套調控鐵吸收的機制,因此本研究為探討水稻幼苗在不同Fe (II)/ Fe (III)濃度 (包含鐵缺乏到鐵毒害) 的水耕條件下對鐵的吸收機制,所使用的水稻品種為台梗九號 (Tai- keng 9),並分別使用FeSO4:NH2OH=1:1和Fe (III)-EDTA做為水耕液中的Fe(II)和Fe(III)來源。其結果顯示在低濃度 (0.17~1.7 mg Fe L-1)處理下,水稻在Fe (II)系統中有較好的吸收效率,OsIRO2的基因表現量較Fe (III)系統低;在高濃度 (17~85 mg Fe L-1)處理下,Fe (II)/ Fe (III)系統水稻植體中的鐵濃度皆隨水耕液鐵濃度的增加而增加,尤以Fe (II)系統中植體莖部的鐵濃度為最。然而,在各濃度處理下,Fe (II)系統植體中的鐵濃度卻大於Fe (III)系統。從水稻根表鐵膜的生成與水耕液的鐵濃度有顯著的正相關、鐵膜的鐵濃度和莖部鐵濃度顯著正相關,以及Fe (II)系統中鐵膜的水鐵礦組成會隨鐵濃度的增加而增加的結果,此皆顯示鐵膜的鐵濃度和礦物組成會影響水稻對鐵的吸收。不過,鐵膜的生成量與根部的總氧化力和H2O2的含量卻無顯著的相關性。以鐵的穩定同位素來探討水稻對鐵的吸收機制上發現,在根部除了有鐵的氧化沉澱外,在Fe (II)系統中也發現有Fe (II)直接吸收的現象。在莖部則顯示鐵膜中的鐵會與載鐵物質 (phytosiderophores)鉗合後,形成Fe (III)-PS的鉗合物再吸收,以及鐵膜還原溶解後再吸收的機制,但隨水耕液中的鐵濃度增加,則顯示鐵會直接進入水稻植體中。相較於Fe(III)系統,生長於Fe (II)系統的水稻具有較多的鐵吸收策略,因此在低鐵濃度的情況下鐵的吸收效率較高;但隨鐵濃度的增加,無論是在Fe (II)/ Fe (III)系統,皆有大量的鐵被吸收進入水稻植體當中。zh_TW
dc.description.tableofcontents摘要 I Abstract III 目錄 V 圖次 IX 表次 XII 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 3 第二章 文獻回顧 4 2.1鐵 4 2.1.1 土壤中的鐵 4 2.1.2 植物中的鐵 5 2.2 水田土壤鐵化學 6 2.2.1 浸水土壤氧化還原 6 2.3植物鐵缺乏和鐵毒害的相關機制 9 2.3.1 鐵缺乏 9 2.3.2 水稻鐵吸收機制 9 2.3.3水稻缺鐵診斷-缺鐵基因 (OsIRO2)分析 12 2.3.4 鐵毒害 14 2.3.5活性氧化物質(Reactive Oxygen Stress, ROS) 15 2.4 水稻根部的氧化能力 18 2.5 水稻根表鐵膜的生成 19 2.6 鐵同位素組成和分化作用 20 第三章 材料方法 23 3.1 水稻幼苗生長試驗 23 3.1.1育苗方法 23 3.2 試驗方法 26 3.2.1 前置實驗 26 試驗一:不同還原劑 (FeSO4:還原劑=1:90)添加抑制水耕液Fe (II)氧化 26 試驗二: 還原劑 (NH2OH)的添加對水稻生理的影響 27 試驗三: 不同濃度Fe (II)水耕液配置 28 試驗四: 缺鐵處理時間和缺鐵基因 (OsIRO2)表現時間 29 試驗五: 不同Fe (III)濃度下,誘導水稻缺鐵基因表現時間和濃度 30 3.3水稻在不同Fe (II)和Fe (III)濃度下,對鐵的吸收和運輸機制 31 3.4實驗分析方法 32 3.4.1 水耕液收集和Fe (II)比色法 32 3.4.2 植體採收和量測 32 3.4.2.1根表鐵膜鐵含量測定:DCB萃取法 33 3.4.2.2 植體鐵含量分析 33 3.4.3統計分析 34 3.4.4 鐵穩定同位素分析 34 3.4.4.1 水稻樣品前處理 34 3.4.4.2 鐵穩定同位素純化分析 35 3.4.5 根部總氧化力分析 35 3.4.6 H2O2定量分析 37 3.4.7 基因分析 37 3.4.7.1 RNA萃取 37 3.4.7.2 RNA定量 38 3.4.7.3 DNAase處理 38 3.4.7.4 合成cDNA 39 3.4.7.5 Real Time PCR 39 3.4.8水稻切片製成、鐵膜分佈分析和穿透式X光顯微鏡分析 40 3.4.8.1 鐵膜礦物組成分析 40 3.4.9轉移因子 (Translocation Factor, TF)以及生物濃度係數 (Bioconcentration Factor, BCF) 41 第四章 實驗結果 42 4.1前置實驗 42 試驗一: 不同還原劑(FeSO4:還原劑=1:90)添加抑制水耕液Fe (II)氧化 42 試驗二: 還原劑 (NH2OH)的添加對水稻生理的影響 46 試驗三: 不同濃度Fe (II)水耕液配置 55 試驗四: 缺鐵處理時間和缺鐵基因 (OsIRO2)表現時間 57 試驗五: 不同鐵濃度處理下誘導水稻缺鐵基因 (OsIRO2)表現時間 59 4.2 水稻在不同Fe (II)和Fe (III)濃度下,對鐵的吸收和運輸機制 61 4.2.1 Fe (II)/ Fe (III)水耕液殘留和移除之總鐵濃度 61 4.2.2 以不同濃度Fe (II)/ Fe (III)水耕液處理之水稻生長情形 64 4.2.3 水稻植體對鐵的累積與轉移 71 4.2.4水稻植體內的鐵含量及其分佈百分比 80 4.2.5 水稻缺鐵基因 (OsIRO2)表現 85 4.2.6 水稻幼苗根部IRT1、YSL15和TOM1的基因表現 87 4.2.7 水稻鐵膜分布和鐵膜的礦物組成 90 4.2.8 鐵膜生成與地上部鐵濃度累積之關係 97 4.2.9 水稻根部氧化力和H2O2與鐵膜生成之影響 101 4.2.10 水稻根部和莖部H2O2生成 104 4.2.11 水稻同位素變化 106 第五章 討論 110 第六章 結論 126 第七章 參考文獻 128zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2018-01-21起公開。zh_TW
dc.subjectRice (Oryza sative L.)en_US
dc.subjectIron uptakeen_US
dc.subjectIron redoxen_US
dc.subjectRoot oxidative activityen_US
dc.subjectFe stable isotopeen_US
dc.subject水稻 (Oryza sative L.)zh_TW
dc.subject鐵吸收zh_TW
dc.subject鐵氧化還原zh_TW
dc.subject根部氧化能力zh_TW
dc.subject鐵穩定同位素分化zh_TW
dc.titleIron Uptake Mechanisms in Rice Seedlingsen_US
dc.title水稻幼苗對鐵吸收機制之探討zh_TW
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2018-01-21zh_TW
dc.date.openaccess2018-01-21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
Appears in Collections:土壤環境科學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7101039013-1.pdf6.11 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.