Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90129
標題: Effects of Phosphate Solubilizing Microorganisms (PSMs) on Composting and Fertilizer Efficiency of Chicken manures
添加溶磷菌對雞糞堆肥的製作及肥效的影響
作者: Weerachat Pateechob
彭勇俊
關鍵字: phosphate solubilizing microorganisms;chicken manure;溶磷菌;雞糞堆肥
引用: ASAE D384.1.1998. Manure Production and Characteristics. ASAE STANDARDS, ASAE. St. Joseph, MI 49085-9659. Baeta-Hall, L., Saagua, M.C., Bartolomeu, M.L., Anselmo, A.M., Rosa, M.F., 2005. Bio-degradation of olive oil husks in composting aerated piles. Bioresource Technology 96, 69–78. Balser, T.C., D. Wixon, L.K. Moritz, and L. Lipps. 2010. The microbiology of natural soils. p. 27. In G.R. Dixon and E.L. Tilston (ed.) Soil microbiology and sustainable crop production. Springer, London. Barber SA. 1995. Soil nutrient bioavailability. A mechanistic approach, Wiley, New York. Bontemps, C., Elliott G. N., Simon M. F. 2010. Burkholderia species are ancient symbionts of legumes. Molecular Ecology. vol. 19. No 1. pp: 44–52. Bolan NS, Currie LD, Baskaran S. 1996. Assessment of the influence of phosphate fertilizers on the microbial activity of pasture soils. Biol Fertil Soils 21:284–292. Bremner,J.M. and Tabatabai,M.A. 1971. Use of automated combustion techniques for total sulphur analysis of soils andplant tissue. In L.M. Walsh ed. Instrumental methods for analysis of soil and planttissue.soil Science society of America. Chen, Y., Cheng, J. J., & Creamer, K. S. 2008. Inhibition of anaerobic digestion process: a review. Bioresource Technology. 99(10): 4044–4064. Chang, C.H., Wen, C.G., Huang, C.H., Chang, S.P., Lee, C.S., 2008. Nonpoint source pollution loading from an undistributed tropic forest area. Environ. Monitor.Assess. 146, 113–126. Calli, B., Mertoglu, B., Inanc, B., & Yenigun, O. 2005. Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochemistry. 40(3-4): 1285–1292. Canadian Horticultural Council. 2010. Appendices to On-Farm Food Safety Manual, Appendix C, pgs. Version 4.1: 13-16. Chandini TM, Dennis P. 2002. Microbial activity, nutrient dynamics and litter decomposition in a Canadian Rocky Mountain pine forest as affected by N and P fertilizers. For Ecol Manage 159:187–201. Flaig, W., Nagar, B., Sochtig, H. and Tietjen, C. 1977. Organic Materials and Soil Productivity. Soils Bulletin No.35, Food and Agricultural Organization of the United Nations, Rome. Gee, G.W., and J.W. Bauder. 1986. Particle-size analysis. p. 383–411. In A. Klute (ed.) Methods of soil analysis, part 1, physical and mineralogical methods. Agronomy 9, ASA, SSSA, Medison, WI. Glick BR. 1995. The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117. Gyaneshwar P, Naresh KG, Parekh LJ, Poole PS. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93. Havlin J, Beaton J, Tisdale SL, Nelson W. 1999. Soil fertility and fertilizers. An introduction to nutrient management. Prentice Hall, Upper Saddle River, NJ. He ZL, Wu J, O'Donnell AG, Syers JK (1997) Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture. Biol Fertil Soils 24:421–428. Hwangbo, H., Park, R.D., Kim, Y.W., Rim, Y.S., Park, K.H., Kim, T.H., Suh, J.S., Kim, K.Y., 2003. 2-Ketogluconic production and phosphate solubilization by Enterobacter intermedium.Curr. Microbiol. 47, 87–92. Illmer PA, Schinner F. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395. Illmer, P., Schinner, F., 1995. Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol. Biochem. 27, 257–263. Kaiser, D.E., Mallino, A.P. and HAQ, M.U. 2009. Runoff phosphorus loss immediately after poultry manure application as influenced by the application rate and tillage. Journal of Environmental Quality 38: 299-308. Kayhanian M.1999. Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ Technol 20: 355–365. Kelleher, B.P., Leahy, J.J., Henihan, A.M., O'Dwyer, T.F., Sutton, D. and Leahy, M.J. 2002. Advances in poultry litter disposal technology – a review. Bioresource Technology 83: 27-36. Keeney, D.R., and D.W. Nelson. 1982. Nitrogen-inorganic forms. p. 643‒693. In A.L. Page et al., Method of soil analysis, part 2, (2nd edn) chemical and microbiological methods. Agronomy. ASA, SSSA, Madison, WI. Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M. 2009a. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1(1):48–58. Khan MS, Zaidi A, Wani PA. 2009b. Role of phosphate solubilizing microorganisms in sustainable agriculture. In: Lictfouse E et al (eds) Sustainable Agriculture. springer, p 552, DOI: 10.1007/978-90-481-2666-8_34. Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA. 2010. Plant growth promotion by phosphate solubilizing fungi – current perspective. Arch Agron Soil Sci 56:73–98 Kpomblekou, K., Tabatabai, M.A. 1994. Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci. 158, 442–453. Moore Jr, P.A., Joern, B.C., Edwares, D.R., Wood, C.W. and Daneal, T.C. 2006. Effects of manure amendments on environmental and production problems, in: RICE, J.M., Caldwell, D.F., & Humenik, F.J. (Eds) Animal Agriculture and the Environment: National Center for Manure and Animal Waste Management White Papers, Publication No 913C0306, pp. 1-40 (St. Joseph, MI, ASABE). Nautiyal, C.S. 1997. A method for selection and characterization of rhizosphere-competent bacteria of chickpea. Curr.Microbiol. 3: 12-17. National Research Council (NRC), 2001. Assessing the TMDL approach to water quality management. National Academy Press, Washington, DC. Pikovskaya RI. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology 17:362–370. Power, J.F. and Dick, W.A.. 2000. Land Application of Agricultural, Industrial, and Municipal Byproducts. Soil Science Society of America Inc., Madison, WI. Parr, J.F., Papendick, R.I. and Colacicco, D. 1986. Recycling of organic wastes for a sustainable agriculture. Biological Agriculture and Horticulture, 3: 1 1 5- 1 30. Rayment, G.E., and F.R. Higginson. 1992. Australian laboratory handbook of soil and water chemical Methods, vol 3. Inkata Press, Sydney. Richardson AE. 1994. Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doubeand BM, Gupta VVSR (eds) Soil biota: management in sustainable farming systems. CSIRO, Victoria, Australia, pp 50–62. Richardson AE, Hadobas PA, Hayes JE, O'Hara CP, Simpson RJ (2001) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil microorganisms. Plant Soil 229:47–56. Rodriguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339. Saber K, Nahla LD, Chedly A. 2005. Effect of P on nodule formation and N fixation in bean. Agron Sustain Dev 25:389–393. Salminen and Rintala, 2002. Anaerobic digestion of organic solid poultry slaughterhouse waste – a review. Bioresource Technology. 83: 13–26. Sanchez P, Logan T.1992. Myths and science about the chemistry and fertility of soils in the tropics. In: Lal R, Sanchez P (eds) Myths and science of soils of the tropics. Soil Science Society of America, Madison, WI, pp 35–46. Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian SEM. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Natl Acad Sci U S A 105:11254–11258. Sharpley, A.N., Herron, S. and Daniel T. 2007. Overcoming the challenges of phosphorus-based management challenges in poultry farming. Journal of Soil and Water Conservation 58: 30-38. Soni, S.K., D.K. Rahi, and R. Soni. 2007. Microbial ecology and pollution management. In Microbes: a source of energy for 21st century. New India Publishing Agency, New Delhi. p. 134–136. Sonam Sharma., Vijay Kumar and Ram Babu Tripathi. 2011. Isolation of Phosphate Solubilizing Microorganism (PSMs) From Soil. J. Microbiol. Biotech. Res. 1 (2): 90-95. Subba Rao, N.L.S. 1982. Biofertilizers in arriculture. P: 129-136. Sundberg, C., Smars, S., Jonsson, H., 2004. Low pH as an inhibiting factor in the transformation from mesophilic to thermophilic phase in composting. Bioresource Technology 95, 145–150. Szogi, A.A. and Vanotti, M.B. 2009. Prospects for phosphorus recovery from poultry litter. Bioresource Technology 100: 5461-5465. TEPA, 2007. The Eutrophication Index Statistics of Reservoirs for Drinking Water Use in Taiwan. Taiwan Environmental Protection Administration, Retrieved August 13, 2007, from http://wqshow.epa.gov.tw/Epa MapAnalysisResult. aspx?S Waterbody ID=3&QueryType=3&S M Date yy=2007&S M Date ss=0&S Item=0&S ItemPre=. Tilman D, Fargione J, Wolff B, D'Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Wackhamer D. 2001. Forecasting agriculturally driven global environmental change. Science 292:281–284. Uludag-Demirer, S., Demirer, G.N., Frear, C., Chen, S. 2008. Anaerobic digestion of dairy manure with enhanced ammonia removal. J. Environ. Manage. 86: 193–200. Wang, K., Li, W.G., Gong, X.J., Li, Y.B., Wu, C.D., Ren, N.G., 2013a. Spectral study of dissolved organic matter in biosolid during the composting process using inorganic bulking agent: UV–vis, GPC, FTIR and EEM. Int. Biodeterior. Biodegrad. 85, 617–623. Wakelin SA, Warren RA, Harvey PR, Ryder MH. 2004. Phosphate solubilization by Penicillium sp. closely associated with wheat roots. Biol Fertil Soils 40:36–43. Wen, C.G., Kuo, J.T., Chang, S.P., Lee, C.S., Chuang, S.M., 2003. Tseng-Wen Reservoir Water Quality Investigation and Improvement (2nd Year). Technical report. Taiwan Water Resources Agency, Tainan (in Chinese). Wen, C.G., Kuo, J.T., Chang, C.H., Lee, C.S., Chang, S.P., Chuang, S.M., Liu, P.W., 2004. The best management practices of tea farm on high mountain areas. In: World Water & Environmental Resources Congress 2004. ASCE, Salt Lake City, Utah USA. Young, C.C. 2005. Development and application of biofertilizers in Taiwan. Multi-country study mission on business potential for agricultural biotechnology products. The Asia Productivity Organization. 7–67~7–74. Y.P. Chen, P.D. Rekha, A.B. Arun, F.T. Shen, W.-A. Lai and C.C. Young. 2006. phosphate solubilizing bacteria are able to produce organic acid that are the main reason of inorganic phosphate solubilization. Applied Soil Ecology 34 (1): 33–41. Zhou K, Binkley D, Doxtader KG. 1992. A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant Soil 147:243–250. Zaidi A, Khan MS, Ahemad M, Oves M, Wani PA. 2009. Recent Advances in Plant Growth Promotion by Phosphate-Solubilizing Microbes. In: Khan MS et al (eds) Microbial Strategies for Crop Improvement. Springer-Verlag, Berlin Heidelberg, pp 23–50.
摘要: 
The poultry industry is currently facing a number of environmental problems. One of the major problems is the accumulation of large amount of wastes, especially manure and litter, generated by intensive production voided by a layer as Large-scale accumulation of these wastes may pose disposal and pollution problems unless environmentally and economically. Sustainable management technologies are imperative for recycling these wastes (Power and Dick, 2000; Kelleher et al., 2002; Sharpley et al., 2007). Poultry manure contains all 13 of the essential plant nutrients that are used by plants. These include nitrogen (N), phosphorous (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), manganese (Mn), copper (Cu), zinc (Zn), chlorine (Cl), boron (B), iron (Fe) , and molybdenum (Mo). The amount of nutrients provided depends on the nutrient content of the manure and the amount of manure applied. Phosphorus is the most important key element in the nutrition of plants, next to nitrogen (N) and phosphate solubilizing microorganisms (PSMs) are an integral component of the soil P cycle and are important for the transfer of P between different pools of soil P (Khan et al. 2010).
A greenhouse experiment was conducted to determine the effect of PSMs on composting egg chicken manures ECM1 (no PSMs) and ECM2 (add PSMs) and broiler chicken manures BCM1 (no PSMs) and BCM2 (add PSMs) during 14 days of composting process by control moisture at 55% - 60%. The compost sample at 0, 3, 5, 7, 11 and 14 days of composting were used to study their effects on seed germination and plant growth under greenhouse conditions. The results showed more than 80% of seed germination rate using compost extracts form the samples collected at 11 days of composting and more than 85% for those collected at 14 days of composting. PSMs showed survivability colony forming unit (CFU) after the temperature decrease to 45 °C temperature. ECM1 and ECM2 showed PSMs survivability CFU greater than BCM1 and BCM2. The compost samples collected at 0, 7 and 14 days of composting were used grow amaranth plants (Amaranthus mangostanus L.) and compare control1 (no fertilizer) and control2 (fertilizer). Plant grown in soil applied with twelve treatment (E1.0, E2.0, E1.7, E2.7, E1.14 and E2.14 of egg chicken manure composts and B1.0, B2.0, B1.7, B2.7, B1.14 and B2.14 of broiler chicken manure composts) showed better growth than two controls while plants supplied with broiler chicken manure composts showed better growth then those with egg chicken manure composts.
In conclusion, phosphate solubilizing microorganisms (PSMs) survive in egg chicken manure composts better than in broiler chicken manure composts. Broiler chicken manures contain nutrients than egg chicken manures. Moreover, the temperature affects population density of phosphate solubilizing microorganisms (PSMs).

Keywords: Phosphate solubilizing microorganisms, chicken manure compost, seed germination, Amaranthus mangostanus L., nutrient uptake, plant growth promoting phosphate solubilizing microorganisms.

近年來,養雞產業面臨了許多環境問題,其中一個最主要的問題是大量的廢棄物的累積,特別是由集約化生產所產生的大量禽畜糞及墊料廢棄物,這會造成廢棄物處理及及環境汙染的問題,除非改以經濟且對環境友善的方式經營,不然這樣的問題會一直存在,因此對於養雞產業迫切需要的是一個能永續將這些廢棄物回收再利用的方法(Power and Dick, 2000; Kelleher et al., 2002; Sharpley et al., 2007)。在這些禽畜糞中包含了13種植物可利用的必要元素,包括:氮(N)、磷(P)、鉀(K)、鈣(Ca)、鎂(Mg)、硫(S)、錳(Mn)、銅(Cu)、鋅(Zn)、氯(Cl)、硼(B)、鐵(Fe)和鉬(Mo);但元素的提供量要視禽畜糞中各元素的含量及禽畜糞的施用量而定。在植物的組成元素中磷是僅次於氮的中要元素且溶磷菌(phosphate solubilizing microorganisms) (PSMs) 的作用在於土壤中磷元素的循環及土壤中不同磷型態的轉換作用中扮演著極為重要的角色。
此次試驗是有關於溶磷菌在蛋雞糞ECM1(沒加溶磷菌)及ECM2(有加溶磷菌)和肉雞糞BCM1(沒加溶磷菌)及BCM2(有加溶磷菌)在溫室內經過14天的堆肥化且濕度控制在55%~60%的過程中之影響,並在第0、3、5、7及14天採樣,針對在溫室種植狀況下各堆肥處裡對於種子的發芽及植株生長的影響。結果發現在第11天所採的堆肥樣品能讓種子發芽率超過80%,在第14天所採的堆肥樣品能讓種子隻發芽率超過85%; 而在溶磷菌生長狀況方面發現在堆肥溫度降至45℃時才有溶磷菌的生長,且在ECM1及ECM2兩個處理狀況下溶磷菌的生長量較BCM1及BCM2兩個處理狀況下要多。並在取第0、7及14天所採的堆肥樣品與無施肥(control 1)及有施肥(control 2)進行作物栽培試驗,試驗作物為莧菜 (Amaranthus mangostanus L.),並發現植株在使用兩個雞糞堆肥的12個處理(蛋雞: E1.0、E2.0、E1.7、 E2.7、 E1.14及 E2.14;肉雞: B1.0、B2.0、 B1.7、B2.7、B1.14及 B2.14)的生長狀況要比沒加肥料及有加肥料的12個處理生長的要好,且施用肉雞糞堆肥的處理的生長狀況還要比施用蛋雞糞堆肥的處理生長的要好。
結果顯示,溶磷菌在蛋雞糞堆肥中生長要比肉雞糞堆肥中要好,但肉雞糞堆肥中的養分含量要比蛋雞糞堆肥要多;此外,溫度會影響到溶磷菌的族群密度。
URI: http://hdl.handle.net/11455/90129
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-31起公開。
Appears in Collections:土壤環境科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7100039022-1.pdf1.24 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.