Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90134
標題: Effects of different mixtures of pig manure and mushroom culture waste with different pre-composting time on earthworm growth and quality of vermicomposts
不同預堆時間之豬糞與菇類養殖廢棄包的混合物對蚯蚓生長及蚓糞堆肥的影響
作者: Ming-Hong Zhan
詹明泓
關鍵字: pre-composting;mixtures of pig manure and mushroom culture waste;earthworm;growth;reproduction;vermicompost;預堆;豬糞與菇類養殖廢棄包混合物;蚯蚓;生長;生殖;蚓糞堆肥
引用: 行政院農業委員會。2012。肥料種類品目及規格。 行政院農業委員會。2012。畜禽統計調查結果。 袁紹英。1985。堆肥的品質管制「固體廢棄物處理技術研討會論文輯」。行政院衛生署環境保護局編。第1 - 28頁。 梁容鐘。2005。以蚯蚓生長及生殖評估土壤重金屬污染之可行性研究。國立中興大學土壤環境科學系碩士論文。 許芳晴。2007。油脂成份對食品廢棄物堆肥過程之影響。國立高雄第一科技大學環境與安全衛生工程所碩士論文。 陳永仁、劉崑山。1998。「我國垃圾處理課題及政策」。環境教育季刊。第三頁。 陳佑任。2008。不同副資材對食品廢棄物堆肥之影響。國立高雄第一科技大學環境與安全衛生工程所碩士論文。 國立中興大學土壤調查試驗中心。2012。肥料檢驗方法。 黃基森。1998。「有機廢棄物堆肥化處理現況及對策」。第一屆廢棄物清理實務研討會論文集。第489 - 496 頁。 蔡青芬。2011。評估不同組合有機廢棄物對蚯蚓生長及蚓糞堆肥特性的影響。國立中興大學土壤環境科學系碩士論文。 蔡宜峰。2004。有機質肥料製作及應用。有機農產品管理技術講義。 謝宜敏。1989。蚯蚓的利用與養殖。五洲出版社。 簡宣裕。2001。堆肥品質判定。肥料要覽。增訂三版。中華土壤肥料學會印行。第85 - 90頁。 顏偉益。2010。評估有機廢棄物的特性對蚯蚓生長生殖及蚯蚓糞肥的影響。國立中興大學土壤環境科學系碩士論文。 Aalok, A., A.K. Tripathi, and P. Soni. 2008. Vermicomposting: A better option for organic solid waste management. J. Hum. Ecol. 24(1):59-64. Adi, A.J., and Z.M. Noor. 2009. Waste recycling: utilization of coffee grounds and kitchen waste in vermicomposting. Bioresource Technol. 100:1027-1030. Aira, M., and J. Dominguez. 2008. Optimizing vermicomposting of animal wastes: effects of rate of manure application on carbon loss and microbial stabilization. J. Environ. Mangage. 88:1525-1529. Aira, M., F. Monroy, and J. Dominguez. 2006. C to N ratio strongly affects population structure of Eisenia fetida in vermicomposting systems. Eur. J. Soil Bio. 42: 127-131. Aparna, C., P. Saritha, V. Himabindu, and Y. Anjaneyulu. 2007. Techniques for the evaluation of maturity for composts of industrially contaminated lake sediments. Waste Manage. Atiyeh, R.M., N.Q. Arancon, C.A. Edwards, and J.D. Metzger. 2000. Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresource Technol. 75:175-180. Atiyeh, R.M., S. Subler, C.A. Edwards, and J. Metzger. 1999. Growth of tomato plants in horticultural potting media amended with vermicompost. Pedobiologia. 43:1-5. Baffi, C., M.T. Dell'Abate, A. Nassisi, S. Silva, and A. Benedetti. 2007. Determination of biological stability in compost: a comparision of methodlogy. Soil. Biochem. 39:1284-1293. Baraken, F.N., S.H. Salem, A.M. Heggo, and M.A. Bin-Sinha. 1995. Activities of rhizosphere microorganism as affected by application of organic amendments in a calcareous loamy soil 2. nitrogen transformation. Arid Soil Research and Rehabilitation. 9(4):467-480. Basker, A., A.N. Macgregor, and J.H. Kirman. 1993. Exchangeable potassium and other cations in non-ingested soil and casts of two species of pasture earthworms. Soil Biol. Biochem. 25:1673-1677. Beffa, T., M. Blanc, and M. Aragno, 1996. Obligately and Facultatively Autotrophic, Sulfur and Hydrogen Oxidizing Thermophilic Bacteria Isolated from Hot Composts. Arch. Microbiol. 165:34-40. Benitez, E., H. Sainz, and R. Nogales. 2005. Hydrolytic enzyme activities of extracted humic substances during the vermicomposting of a lignocellulosic olive waste. Bioresource Technol. 96:785-790. Benito, M., A. Masaguer, A. Moliner, N. Arrigo, R.M. Palma, and D. Effron. 2005. Evaluation of maturity and stability of pruning waste compost and their effect on carbon and nitrogen mineralization in soil. Soil Sci. 170(5):360-370. Bernal, M.P., J.A. Alburquerque, R. Moral. 2009. Composting of animal measures and chemical criteria for compost maturity assessment. A review. Bioresource Technol. 100: 5444-5453. Borges, S., and M. Alfaro. 1997. The earthworms of Bano De Oro, Luquillo experimental forest. Puerto. Rico. Soil. Biol. Biochem. 29:231-234. Bostrom, U., and A. Lofs. 1996. Annual population dynamics of earthworms and cocoon production by Aporrectodea caliginosa in a meadow fescue ley. Pedobiologia. 40:32-42. Brewer, L.J., and D.M. Sullivan. 2003. Maturity and stability evaluation of composted yard trimmings. Compost Sci. Util. 11:96-112. Buelna, G., R. Dube, and N. Turgeon. 2008. Pig manure treatment by organic bed biofiltration. Desalination. 231:297-304. Butt, K. 1997. Reproduction and growth of the earthworm Allobophora chlorotica (Savigny, 1826) in controlled environments. Pedobiologia. 41:369-374. Butt, K.R. 1991. The effects of temperature on the intensive production of Lumbricus terrestris (Oligochaeta: Lumbricidae). Pedobiologia. 35:257-264. Butt, K.R., J. Frederickson, and R.M. Morris. 1992. The intensive production of Lumbricus terrestris L. for soil amelioration. Soil Biol. Biochem. 24:1321-1325. Cangialosi, F., G. Intini, L. Liberti, M. Notarnicola, and P. Stellacci. 2008. Health risk assessment of air emissions from a municipal solid wastenext term incineration plant -A case study. Waste Manage. 28:885-895. Cayuela, M.L., M.A. Sanchez-Monedero, and A. Roig. 2006. Evaluation of two different aeration systems for composting two-phase olive mill wastes. Process Biochem. 41:616-623. Chanyasak, V., M. Hirai, and H. Kubota. 1982. Changes of chemical components and nitrogen transformation in water extracts during composting of garbage. J. Ferment. Technol. 60:439-446. Chaoui, H.I., L.M. Zibilske, and T. Ohno. 2003. Effect of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol Biochem. 35:295-302. Chaudhuri, P.S. 2005. Vermiculture and vermicomposting as biotechnology for conversion of organic wastes into animal protein and organic fertilizer. Asian J. Microbial. Environment. Sci. 7:359-370. Chaudhuri, P.S., and G. Bhattacharjee. 2002. Capacity of various experimental diets to support biomass and reproduction of Perionyx excavatus. Bioresource. Technol. 82:147-150. Chefetz, B., P. G. Hatcher, Y. Hadar, and Y. Chen. 1996. Chemical and biological characterization of organic matter during composting of municipal solid waste. J. Environ. Qual. 25:776-785. Chikae, M., R. Ikeda, K. Kerman, Y. Morita, and E. Tamiya. 2006. Estimation of maturity of compost from food waste and agro-residues by multiple regression analysis. Bioresource Technol. 97:1979-1985. Daniel, O., and J.M. Anderson. 1992. Microbial biomass and activity in contrasting soil materials after passage through the gut of the earthworm Lumbricus rubellus Hoffmeister. Soil Biol. Biochem. 24:465-470. Dominguez, J., C.A. Edwards, and J. Ashby. 2001. The biology and population dynamics of Eudrilus eugeniae (Kinberg) (Oilgochaeta) in cattle waste solid. Pedobiologia 45:341-353. Droffner, M.L., and W.F. Brinton. 1995. Survival of E.coli and Salmonella population in aerobic thermophilic composts as measured with DNA gene probes. Zentralbl Hygiene. 197:387-397. Eastman, B.R., P.N. Kane, C.A. Edwards, L. Trytek, B. Gunadi, A.L. Stermer, and J.R. Mobley. 2001. The effectiveness of vermiculture in human pathogen reduction for USEPA biosolids stabilization. Compost Sci. Util. 9(1):38-49. Edwards, C.A. 1988. Breakdown of animal, vegetable and industrial organic wastes by earthworms. Waste Environ. Manage. 21-31. Edwards, C.A. 1998. The use of earthworms in the breakdown and management of organic wastes. Earthworm ecol. 327-354. Edwards, C.A. 1995. Historical overview of vermicomposting. Biocycle. 36:56-58. Edwards, C.A., and P.J. Bohlen. 1996. Biology and Ecology of earthworms. Chapman and Hall, 2-6 Boundary Row, London SE1 8HN, UK. Eggen, T., and O. Vethe. 2001. Stability indices of different composts. Compost. Sci. Util. 4:6-12. Eghball, B., J.F. Power, J.E. Gilley, and J.W. Doran. 1997. Nutrient, carbon, and mass loss during composting of beef cattle feedlot manure. J. Environ Qual. 26:189-193. Fitzpatrick, L.C., J.F. Muratti-Ortiz, B.J. Venables, and A.J. Goven. 1996. Comparative toxicity in earthworms Eisenia fetida and Lumbricus terrestris exposed to cadmium nitrate using artificial soil and filter paper protocols. Bull. Environ. Contam. Toxicol. 57:63-68. Follet, R., R. Danahue, and L. Murphy. 1981. Soil and Soil Amendments. Prentice- Hall. Inc. New Jersey. Fragoso, C., and P. Lavelle. 1987. The earthworm community of a Mexican tropical main forest (Chajul, Chiaspas). Earthworms. 281-295. Frederickson, J., G. Howell, and A.M. Hobson. 2007. Effect of pre-composting and vermicomposting on compost characteristics. Eur. J. Soil Biol. 43: 320-326. Fuchs, J.G. 2002. Practical use of quality compost for plant health and viability improvement. Microbiol. of Composting. 435-444. Gajalakshmi, S., E.V. Ramasamy, and S.A. Abbasi. 2001. Potential of two epigeic and two anecic earthworms species in vermicomposting of water hyacinth. Bioresource Technol. 100:6422-6427. Gajalakshmi, S., E.V. Ramasamy, and S.A. Abbasi. 2002. Vermicomposting of paper waste with the anecic earthworm Lampito mauritii Kingburg. Indian J. Chem. Technol. 9:306-311. Garg, V.K., and P. Kaushik. 2005. Vermistabilization of textile mill sludge spiked with poultry droppings by an epigeic earthworm Eisenia fetida. Bioresource Technol. 96:1063-1071. Garg, V.K., and R. Gupta. 2009. Vermicomposting of agro-industrial processing waste. Biotechnol. Agro-Indust. Residues Util. 432-454. Garg, V.K., R. Gupta, and A. Yadav. 2006. Vermicomposting technology for solid waste management. J. Environ. Sci. Eng. 48:1-15. Garg, V.K., Y.K. Yadav, A. Sheoran, S. Chand, P. Kaushik. 2006. Livestock excreta management through vermicomposting using an epigeic earthworm Eisenia fetida. Environmentalist. 26:269-276. Gay, S.W., D.R. Schmidt, C.J. Clanton, K.A. Janni, L.D. Jacobson, and S. Weisberg. 2003. Odor, total reduced sulfur and ammonia emissions from animal housing facilities and manures storage units in Minnesota. Appl. Eng. Agric. 19(3):347-360. Giusti, L., 2009. A review of waste management practices and their impact on human health. Waste Manage. 29 :2227–2239 Godden, B., M.J. Penninckx, and C. Castille. 1986. On the use of biological and chemical indexs for determining agricultural compost maturity: extension to the field scale. Agric. Wastes. 15:169-178. Golueke, C. G. 1977. Biological reclamation of solid Waste. Rodale. Press, Emmaus, PA, USA. Goyal, S., S.K. Dhull, and K.K. Kapoor. 2005. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresource Technol. 96:1584-1591. Gunadi, B., and C.A. Edwards. 2003. The effect of multiple applications of different organic wastes on the growth, fecundity and survival of Eisenia foetida (Savigny) (Lumbricidae). Pedobiologia. 47(4):321-330. Gupta, R., and V.K. Garg. 2008. Stabilization of primary sewage sludge during vermicomposting. J. Hazard. Matter. 153:1023-1030. Gupta, R., P.K. Mutiyar, N.K. Rawat, M.S. Saini, and V.K. Garg. 2007. Development of water hyacinth based vermireactor using an epigeic earthworm Eisenia foetida. Bioresour. Technol. 98:2605-2610. Hait, S., and V. Tare. 2012. Transformation and availability of nutrients and heavy metals during integrated composting–vermicomposting of sewage sludges. Ecotox. Environ. Safe. 79: 214-224. Hand, P., W.A. Hayes, J.C. Frankland, and J.E. Satchell. 1988. The vermicomposting of cow slurry. Pedobiologia. 31:199-209. Haga, K. 1991. Production of compost from organic wastes. ASPAC/FFTC Extension Bulletion.311:1-18. Hartenstein, R., E.F. Neuhauser, and J. Collier, 1980. Accumulation of heavy metal in the earthworm Eisenia fetida. J. Environ. Qual. 9:23-26. Holmstrup, M., I.K. Ostergaard, A. Nielsen, and B.T. Hansen. 1996. Note on the incubation of earthworm cocoons at three constant temperatures. Pedobiologia. 40:477-478. Hunter, B.A., and M.S. Johnson. 1982. Food chain relationships of copper and cadmium in contaminated grassland ecosystems. Oikos. 38:108-117. Hutchison, M.L., L.D. Walters, S.M. Avery, F. Munro, and A. Moore. 2005.Analysis of livestock production waste storage, and pathogen levels and prevalences in farm manures. Appl. Environ. Microb. 71:1231-1236. Iannotti, D.A., M.E. Grebus, B.L. Toth, L.V. Madden, and H.A.J. Hoitink. 1994. Oxygen respirometry to assess stability and maturity of composted municipal solid waste. J. Environ. Qual. 23:1177-1183. Inbar, Y., Y. Hadar, and Y. Chen. 1993. Recycling of cattle manure: the composting process and characterization of maturity. J. Environ. Qual. 22:857-863. Ismail, S.A. 1998. The contribution of soil fauna especially the earthworms to soil fertility. Soil Biol. Biotechnol. 9-16. Jimenez, E.J., and V.P. Garcia. 1989. Evaluation of city refuse compost maturity-a review. Biol. Wastes 27:115-142. Jin, J., Z. Wang, and S. Ran. 2006. Solid waste management in Macao: Practices and challenges. Waste Manage. 26:1045-1051. Kansal, A. 2002. Solid waste management strategies for India. Indian J. Environ. Prot. 22:444-448. Kaushik, P., and V.K. Garg. 2004. Dynamics of biological and chemical parameters during vermicomposting of solid textile mill sludge mixed with cow dung and agricultural residues. Bioresource Technol. 94:203-209. Kaushik, P., and V.K. Garg. 2003. Vermicomposting of mixed solid textile mill sludge and cow dung with the epigeic earthworm Eisenia fetida. Bioresource Technol. 90:311-316. Kaviraj., and S. Sharma. 2003 Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresource Technol. 90:169–173. Keener, H.M., W.A. Dick, H.A.J. Hoitink. 2000. Composting and benefical utilization of composted by-product materials. Soil Sci. Soc. Am. J. 315-341. Khalil, M.A., H.M. Abdel-Lateif, B.M. Bayoumi, and N.M. Van-Straalen. 1996. Analysis of separate and combined effects of heavy metals on the growth of Aporrectodea caliginosa (Oligochaeta;Annelida), using the toxic approach. Appl. Soil Ecol. 4:213-219. Khwairakpam, M., and R. Bhargava. 2009. Bioconversion of filter mud using vermicomposting employing two exotic and one local earthworm species. Bioresource Technol. 100:5846-5852. Kladivko, E.J. 2001. Tillage systems and soil ecology. Soil Till. Res. 61:61-76. Ko, H.J., K.Y. Kim, H.T. Kim, C.N. Kim, and M. Umeda. 2008. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Manage. 28:813-820. Komilis, D.P. 2006. A kinetic analysis of solid waste composting at optimal condition. Waste manage. 26: 82-91. Krishnamoorty, R.V., and S.N. Vajrabhian. 1986. Biological activity of earthworm casts: an assessment of plant growth promoter levels in casts. Proceedings of the Indian academy of sciences (animal science). 95:341-351. Kula, H., and O. Larink. 1997. Development and standardization of test methods for the reproduction of sublethal effects of chemicals on earthworms. Soil Biol. Biochem. 29: 635-639. Langmaack, M., S. Schrader, U. Rapp-Bernhardt, and K. Kotzke. 2002. Soil structure rehabilitation of arable soil degraded by compaction. Geoderma. 105:141-152. Lavelle, P., G. Melendez, B. Pashanasi, and R. Schaefer. 1992. Nitrogen mineralization and reorganization in casts of the geophagous tropical earthworm Pontoscolex corethrurus (Glossoscolecidae). Biol. Fertil. Soils. 14:49-53. Lazcano, C., M. Gomez-Brandon, and J. Dominguez. 2008. Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere. 72:1013-1019. Legros, J.P., and G. Petruzzelli. 2001. The status of Mediterranean soils. Int.Conf. Soil and Biowaste in Southern Europe, Rome, Italy. Lock, K., and C.R. Janssen. 2002. Ecotoxicity of chromium(Ⅲ) to Eisenia fetida, Enchytraeus albidus and Folsomia candida. Ecotoxicol. Environ. Saf. 51:203-205. Logsdon, G. 1994. Worldwide progress in vermicomposting. Biocycle. 35:63-65. Loh, T.C., Y.C. Lee, J.B. Liang, and D. Tan. 2005 Vermicomposting of cattle and goat manures by Eisenia foetida and their growth and reproduction performance. Bioresource Technol. 96:111-114. Lui, S.X., D.Z. Xiong, and D.B. Wu. 1991. Studies on the effect of earthworms on the fertility of red-arid soil. Advances in management and conservation of soil fauna. Proceedings of the 10th International Soil Biology Colloquium, held at Banglador, India, August 7-13. Ma, W.C. 1988. Toxicity of copper to lumbricid earthworms in sandy agricultural soils amended with Cu-enriched organic waste materials. Ecol. Bull. 39:53-56. Maboeta, M.S., S.A. Reinecke, A.J. Reinecke. 2004. The relationship between lysosomal biomarker and organismal responese in an acute toxicity test with Eisenia fetida (Oligochaeta) exposed to the fungicide copper oxychloride. Environ. Research. 96:95-101. Mainoo, N.O.K., S. Barrington, J.K. Whalen, and L. Sampedro. 2009. Pilot-scale vermicomposting of pineapple wastes with earthworms native to Accra, Ghana. Bioresource Technol. 100:5872-5875. Manna, M.C., S. Jha, P.K. Ghosh, and C.L. Acharya. 2003. Comparative efficacy of three epigeic earthworms under different deciduous forest litters decomposition. Bioresource Technol. 88:197-206. Martinez, J., P. Dabert, S. Barrington, and C. Burton. 2009. Livestock waste treatment systems for environmental quality, food safety, and sustainability. Bioresource Technol. 100:5527-5536. Masciandaro, G., B. Ceccanti, and C. Garcio. 1997. Soil agro-ecological management: fertirrigation and vermicompost treatments. Bioresource Technol. 59:199-206. Mathur, S.P., G. Owen, H. Dinel, and M. Schnitzer. 1993. Determination of compost biomaturity. I. Literature review. Bio. Agric. Hortic. 10:65-85. Mickinley, V.L., and J.R. Vestal. 1985. Microbial activity in composting. Biocycle. 26:39-43. Miller, D.M., and W.P. Miller. 1999. Land application of wastes. Handbook soil sci. 9-217. Moldes, A., Y. Cendon, and M.T. Barral. 2007. Evaluation of municipal solid waste compost as a plant growing media component, by applying mixture design. Bioresource Technol. 98:3069-3075. Mondini, C., M.T. Dell-Abate, L. Leita, A. Benedetti. 2003. An integrated chemical, thermal, and microbiological approach to compost stability evaluation. J. Environ. Qual. 32(6):2379-2386. Mor, S., K. Ravindra, A. Visscher, R.P. Dahiya, and A. Chandra. 2006. Municipal solid waste characterization and its assessment for potential methane generation: A case study. Sci. Total Environ. 371:1-10. Mupondi, L.T., P.NS. Mnkeni, and P. Muchaonyerwa. 2011. Effects of a precomposting step on the vermicomposting of dairy manure-waste paper mixtures. Waste Manage. 29(2): 219-228. Muscolo, A., F. Bovalo, F. Giorfriddo, and S. Nardi. 1999. Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism. Soil Biol. Biochem. 31:1303-1311. Nair, J., and K. Okamitsu. 2010. Microbial inoculants for small scale composting of putrescible kitchen wastes. Waste Manage. 30:977-982. Nair, J., V. Sekiozoic, and M. Anda. 2006. Effect of the pre-composting on vermicompossting of kitchen waste. Bioresource Technol. 97:2091-2095. Ndegwa, P.M., and S.A. Thompson. 2001. Integrating composting and vermicomposting the treatment and bioconversion of biosolids. Bioresource Technol. 76:107-112. Ndegwa, P.M., S.A. Thompson, and K.C. Das. 2000. Effects of stocking density and feeding rate on vermicomposting of biosolids. Bioresource Technol. 71:5-12. Nelson, D.W., and L.E. Sommers. 1982. Total carbon, organic carbon, and organic matter. Meth. Soil Anal. 539-579. Neuhauser, E.F., R.C. Loehr, D.L. Milligan, and M.R. Malecki. 1985. Toxicity of metals to the earthworm Eisenia fetida. Biol. Fertil. Soils. 1:149-152. Neuhauser, E.F., R.C. Loehr, and M.R. Malecki. 1998. The potential of earthworms for managing sewage sludge. Earthworms Waste Environ. Manage. 9-20 Nogales, R., C. Cifuents, and E. Benitez. 2005. Vermicomposting of winery wastes: a laboratory study. J. Environ. Sci. 40: 659-673. Orozeo, F.H., J. Cegarra, L.M. Trvjillo, and A. Roig. 1996. Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents and the availability of nutrients. Biol. Fertil. Soil. 22:162-166. Owojori, O.J., A.J. Reinecke, P. Voua-Otomo, S.A. Reinecke. 2009. Comparative study of the effects of salinity on life-cycle parameters of four soil-dwelling species (Folsomia candida, Enchytraeus doerjesi, Eisenia fetida and Aporrectodea caliginosa). Pedobiologia. 52:351-360. Perreault, M.J., and J.K. Whalen. 2006. Earthworm burrowing in laboratory microcosms as influenced by soil temperature and moisture. Pedobiologia. 50:397-403. Pramanik, P., G.K. Ghosh, P.K. Ghosal, and P. Banik. 2007. Changes in organic-C,N,P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants. Provenzano, M.R., S.C. De-Oliveria, M.R.S. Sliva, and N. Senesi. 2001. Assessment of maturity degree of composts from domestic solid wastes by fluorescence and fourier transform infrared spectroscopies. J. Agric. Food Chem. 49(12):5874-5879. Qureshi, A., K.V. Lo, P.H. Lian, D.S. Mavinic. 2008. Real-time treatment of dairy manure: implications of oxidation reduction potential regimes to nutrient management strategies. Bioresource Technol. 99:1169-1176. Raymond, C.L., J. Martin, and E.F. Neuhauser. 1988. Stabilization of liquid municipal sludge using earthworms. Earthworms Waste Environ. Manage. 95-110. Rynk, R. 2003. The art in the science of compost maturity. Compost Sci. Util. 11(2):94-95. Said-Pullicino, D., and G. Gigliotti. 2007. Oxidative biodegradation of dissolved organic matter during composting. Chemosphere. 68:1030-1040. Salazar, F.J., D. Chadwick, B.F. Pain, D. Hatch, and E. Owen. 2005. Nitrogen budgets for three cropping systems fertilized with cattle manure. Bioresource Technol. 96:235-245. Sandifer, R.D., and S.P. Hopkin. 1996. Effects of pH on the toxicity of cadmium, copper, lead and zinc to folsomia candida willem, 1992(Collembola) in a standard laboratory test system. Chemosphere. 33:2475-2486. Sangwan P., C.P. Kaushik, and V.K. Garg. 2008. Feasibility of utilization of horse dung spiked filter cake in vermicomposters using exotic earthworm Eisenia fetida. Bioresource Technol. 99:2442-2448. Sangwan P., C.P. Kaushik, and V.K. Garg. 2008. Vermiconversion of industrial sludge for recycling the nutrients. Bioresource Technol. 99:8699-8704. Sharholy, M., K. Ahmad, G. Mahmood, and R.C. Trivedi. 2008. Municipal solid waste management in Indian cities-A review. Waste Manage. 28:459-467. Sharon, Z.N., O. Markovitch, J. Tarchitzky, and Y. Chen. 2005. Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biol. Biochem. 37:2109-2116. Shi-wei, Z., and H. Fu-Zhen. 1991.The nireogen uptake efficiency from 15N labeled chemical fertilizer in the presence of earthworm manure (cast). Manage. Conserv. Soil Funga. 539-542. Singh, J., A. Kaur, A.P. Vig, and P.J. Rup. 2010. Role of Eisenia fetida in rapid recycling of nutrients from bio sludge of beverage industry. Ecotoxicol. Environ. Saf. 73:430-435. Sinha, R.K. 2009. Earthworm:the miracle of nature (Charle's Darwins unheralded soliders of markind & farmer's friends) Environmentlist. Published online. 05 August 2009. Springer. Som, M.P., L. Lemee, and A. Ambles. 2009. Stability and maturity of a green waste and biowaste compost assessed on the basis of a molecular study using spectroscopy, thermal analysis, thermodesorption and thermochemolysis. Bioresource Technol. 100:4404-4416. Sonia, M.T., and F.Y.T.Nora. 2002. Characterization and composting of poultry litter in forced-aeration piles. Process Biochem. 37:869-880. Spurgeon, D.J., C. Svendsen, V.R. Rimmer, S.P. Hopkin, and J.M. Weeks. 2000. Relative sensitivity of life-cycle and biomarker responses in four earthworm species exposed to zinc. Environ. Toxicol. Chem. 19:1800-1808. Spurgeon, D.J., and S.P. Hopkin. 1995. Extrapolation of the laboratory based OECD earthworm toxicity test to metal-contaminated field sites. Ecotoxicol. 4:190-205. Spurgeon, D.J., and S.P. Hopkin. 1996. Effects of metal-contaminated soils on the growth, sexual development, and early cocoon production of the earthworm Eisenia fetida, with particular reference to zinc. Ecotoxicol. Environ. Saf. 35:86-95. Spurgeon, D.J., S.P. Hopkin, and D.T. Jones. 1994. Effect of cadmium, lead and zinc on growth and survival of the earthworm Eisenia fetida (Savigny): Assessing the environmental impact of point-source metal contamination in terrestrial ecosystem. Enviorn. Pollut. 84:123-130. Spurgeon, D.J., S.R. Sturzenbaum, C. Svendsen, P.K. Hankard, A.J. Morgan, J.M. Weeks, and P. Kille. 2004a. Toxicologial, cellular and gene expression responses in earthworms exposed to copper and cadmium. Comp. Biochem. Physiol. 138: 11-21. Sugahara, K., Y. Harada, and A. Inoko. 1979. Color change of city refuse during composting process. Soil Sci. Plant Nutri. 25:197-208. Suthar, S. 2008. Bioconversion of post harvest crop residues and cattle shed manure into value-added products using earthworms Eudrilus eugeniae Kinberg. Ecol. Eng. 32:206-214. Suthar, S. 2009a. Vermicomposting of vegetable market solid waste using Eisenia fetida: impact of bulking material on earthworm growth and decomposition rate. Ecol. Eng. 35:914-920. Suthar, S. 2009b. Vermistabilization of municipal sewage sludge amended with sugarcane trash using epigeic Eisenia fetida (Oligochaeta). J. Hazard. Mater. 163:199-206. Suthar, S. 2009c. Potential of Allolobophora parva (Oligochaeta) in vermicomposting. Bioresource Technol. 100:6422-6427. Suthar, S. 2010a. Pilot-scale vermireactors for sewage sludge stabilization and metal remediation process: comparison with small-scale vermireactors. Ecol. Eng. Suthar, S. 2010b. Potential of domestic biogas digester slurry in vermitechnology. Bioresource Technol. 101:5419-5425. Suthar, S. 2010c. Recycling of agro-industrial sludge through vermitechnology. Ecol. Eng. 36:1028-1036. Suthar, S., and S.Singh. 2008a. Comparison of some novel polyculture and traditional monoculture vermicomposting reactors to decompose organic wastes. Ecol. Eng. 33:210-219. Suthar, S., and S.Singh. 2008b. Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus). Int. J. Environ. Sci. Technol. 5(1):99-106. Szegi, J. 1988. Cellulose decomposition and soil fertility. Chapt. VI. The acticity of cellulolytic microorganisms under different environmental conditions. 86-125. Tajbakhsh, J., M.A. Abdoli, E. M. Goltapeh, I. Alahdadi, and M.J. Malakouti. 2008. Recycling of spent mushroom compost using earthworms Eisenia foetida and Eisenia Andrei. Environmentalist. 28:476-482. Talashilkar, S.C., P.P. Bhangrath, and V.P. Mehta. 1999. Changes in chemical properties during composting of organic residues as influenced by earthworm activity. J. Indian Soc. Soil Sci. 47:50-53. Talyan, V., R.P. Dahiya, and T.R. Sreekrishnan. 2008. State of municipal solid waste management in Delhi, the capital of India. Waste Manage. 28:1276-1287. Tang, J.C., N. Maie, Y. Tada, and A. Katayama. 2006. Characterization of maturing process of cattle manure compost. Process Biochem. 41:380-389. Taylor, M., W.P. Clarke, and P.F. Greenfield. 2003. The treatment of domestic wastewater using small-scale vermicompost filter beds. Ecol. Eng. 21(2-3):197-203. Tittarelli, F., G. Petruzzelli, B. Pezzarossa, M. Civilini, A. Benedetti, and P. Sequi. 2007. Chapter 7 Quality and agronomic use of compost. Comp. Sci.Technol. 8:119-157. Tomati, U., E. Galli, L. Pasetti, and E. Volterra. 1995. Bioremediation of olive mill waste waters by composting. Waste Manage. 13: 509-518. Tripathi, G., and P. Bhardwaj. 2004. Comparative studies on biomass production, life cycles and composting efficiency of Eisenia fetida (Savigny) and Lampito mauritii (Kinberg). Bioresource Technol. 92:275-283. Van-Gestal, C.A.M., R. Baerselman, H.J.B. Emans, R. Posthuma, and P.J.M. Van-Vliet. 1992. Comparison of sublethal amd lethal criteria of nine different chemicals in standardized toxicity tests using earthworm Eisenia Andrei. Ecotoxicol. Environ. Saf. 23:206-220. Van Rhee, J.A. 1977. Effects of soil pollution on earthworms. Pedobiologia. 17:208-210. Venkatesh, R.M., and T. Eevera. 2007. Mass reduction and recovery of nutrients through vermicomposting of fly ash. Appl Ecol Environ Res. 6(1):77-84. Vivas, A., B. Moreno, S. Garcia-Rodriguez, and E. Benitez. 2009. Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste. Bioresource Technol. 100:1319-1326. Wang, P., C.M. Changa, M.E. Watson, W.A. Dick, Y. Chen, and H.A.J. Hoitink. 2004. Maturity indices for composted dairy and pig manures. Soil Biol. Biochem. 36:767-776. Weppen, P. 2002. Determining compost maturity: evaluation of analytical properties. Compost Sci. Util. 10, 6-15. Wever, L.A., T.J. Lysyk, and M.J. Clapperton. 2001. The influence of soil moisture and temperature on the survival, aestivation, growth and development of juvenile Aporrectodea tuberculata (Eisen) (Lumbricdae). Pedobiologia. 45:121-133. Wu, L., L.Q. Ma, and G.A. Martinez. 2000. Comparison of methods for evaluating stability and maturity of biosolid compost. J. Environ. Qual. 29:424-429. Yadav, A., and V.K. Garg. 2009. Feasibility of nutrient recovery from industrial sludge by vermicomposting technology. J. Hazard. Mater. 168:262-268. Yadav A., and V.K. Garg. 2011. Recycling of organic wastes by employing Eisenia fetida. Bioresource Technol. 102: 2874-2880. Yang, S.S. 1997. Preparation of compost and evaluating its maturity. Extension Bulletin No. 408. Food and Fertilizer Technology Center for the Asian and Pacific Region, Taipei, Taiwan, ROC. Zmora-Nahum, S., O. Markovitch, J. Tarchitzky, and Y. Chen. 2005. Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biol. Biochem. 37:2019-2116. Zubillaga, M.S., and R.S. Lavado. 2006. Phytotoxicity of biosolids compost at different degrees of maturity compared to biosolids and animal manures. Compost Sci. Util. 14(4):267-270. Zucconi, F., A. Pera, M. Forte, and M. de Bertoldi. 1981. Evaluating toxicity of immature compost. Biocycle. 22:54-57.
摘要: 
The production of livestock manure was increased with increasing livestock industrial development and people population, therefore, more environmental crisis were caused. Thermocomposting has been adopted as a good way for reduction and recycle of wastes. Vermicomposting is emerging as a appropriate alternative to thermocomposting, this process is not only easily controllable, cost effective, energy saving, and no waste process, but also accomplishes most efficient recycling of organics and nutrients. The pathogens and weed seeds couldn't be eliminated, and the content of ammonia in the livestock manure couldn't be decreased effectively by vermicomposting due to the temperature during the vermicomposting was at 10 ~ 35℃ for earthworm growth, however, these problems could be resolved by pre-composting. The nutrient availabilities of raw materials and the growth and reproduction of earthworm may be reduced after pre-composting and then the quality of vermicompost will be affected. The aims of this study were to evaluate the effect of the mixtures of pig manure and mushroom culture wastes with different pre-composting time on earthworm growth and reproduction and the characteristic and quality of vermicomposts after vermicomposting. The earthworms were feed in different treatments, and the survival, mature worm biomass, cocoon production, reproduction of the earthworm were determined over experimental period. Another experiment was conducted to compare the properties of end product of composting with and without earthworm using those mixtures. Vermicomposts produced from each treatment were analyzed and their qualities were evaluated. Result showed that the mature worm biomass was higher in the treatment without pre-composting, due to the lower C/N ratio, and the number of immature worm was higher in the treatment with 3-week pre-composting, because of lower toxicity existed. The pH, the contents of organic matter and organic carbon were decreased, and the contents of nutrients and heavy metals were increased for all treatments after experiment. In addition, the changes in these contents of all treatments were stable after 28-day vermicomposting. Based on the results of C/N, seed germination and ingredient analysis, vermicomposts obtained from all treatments were found to meet the standards of compost announced by the Agriculture Council of ROC.

由於人口的增加,肉品的需求大增,帶動畜牧業的發展,但同時也造成大量禽畜糞的產出,常會造成土壤、地下水及空氣相等環境汙染。堆肥化是廢棄物減量和廢棄物資源再利用的最佳處理方式,而蚓糞堆肥化近年來被認為可部分取代傳統堆肥法,其不僅可有效地利用有機廢棄物之養分,並具有易於操作、低成本及不會產生任何廢棄物之優點。然蚓糞堆肥化過程中的溫度須維持在10 - 35℃以適合蚯蚓生長,致無法有效消除禽畜糞中的病原菌、雜草種子及降低過高的氨對蚯蚓的傷害,而預堆可解決這些問題。隨預堆時間的增加,原料中的養分可能會降低,致蚯蚓的生長生殖能力降低,進而影響產出的蚓糞堆肥之品質。本研究評估不同預堆時間的豬糞與廢菇包混合物對於蚯蚓生長生殖及產出的蚓糞堆肥成分特性的變化與品質的影響。本研究以不同預堆時間 (0、1、2、3週) 豬糞與廢菇包混合物飼養蚯蚓 (Eisenia fetida) 12週,並定期測定成蚓生質量、存活隻數、卵囊數目及幼蚯蚓隻數。另,設置有無添加蚯蚓於不同預堆期之豬糞與廢菇包混合物,在八週內定期測定各處理成分特性變化與評估產出的蚓糞堆肥品質。試驗結果顯示,未預堆的豬糞與廢菇包混合物處理有較高的成蚓生質量,此與其碳氮比較低有關;預堆三週的豬糞與廢菇包混合物之處理有較高的幼蚯蚓數,此乃因其有害幼蚯蚓生長的物質較少所致。在蚓糞堆肥過程中,各處理的pH、有機質含量、有機碳含量及碳氮比皆下降,而養分及重金屬含量均上升,且在試驗28天後趨於穩定。利用碳氮比及相對種子發芽率等指標及成分之檢測,顯示本試驗之豬糞與廢菇包混合物藉由蚓糞堆肥化作用後,所產出之蚓糞堆肥均符合農委會公告之雜項堆肥品目標準。
URI: http://hdl.handle.net/11455/90134
Rights: 同意授權瀏覽/列印電子全文服務,2017-02-17起公開。
Appears in Collections:土壤環境科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7100039009-1.pdf486.82 kBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.