Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90135
標題: Evaluation of the inoculation effects of endophytic bacteria isolated from maize (Zea mays L.) roots on plant growth
評估自玉米根部分離之內生細菌對於植物生長的影響
作者: Chia-Fang Tsai
蔡佳芳
關鍵字: Zea mays L.;endophytic bacteria;玉米;內生細菌
引用: 王巧貞。2013。不同施肥下玉米根內生菌群落變化之研究。國立中興大學土壤環境科學系碩士論文。 吳正宗。2010。無土栽培的營養管理。國立中興大學土壤環境科學系。 何千里,謝光熙,盧煌勝。1990。台農一號之栽培要點。台灣省農業試驗所技術服務季刊。 吳昇晏。2011。香蕉內生細菌對鐮胞菌之拮抗特性研究。國立中興大學土壤環境科學系碩士論文。 林詩耀。2011。碳氫化合物降解與植物生長促進細菌之系統分類及分子生物偵測技術建立。國立中興大學土壤環境科學系博士論文。 楊秋忠。2011。土壤與肥料 (第九版)。農世股份有限公司。台中。 陳仁炫、鄒裕民。2008。土壤與肥料分析手冊 (ㄧ) 土壤化學性質分析。中華土壤肥料學會。 劉祐誠。2010。絕對厭氧異化性鐵還原微生物新種特性之研究。國立中興大學土壤環境科學系碩士論文。 謝于婷。2014。不同水稻品種及土壤種類對植體內生菌群落組成之研究。國立中興大學土壤環境科學系碩士論文。 張鈞?。2015。促進植物生長之內生菌對玉米生長之效應。國立中興大學土壤環境科學系碩士論文。 羅秋雄。2005。作物施肥手冊。行政院農業委員會農糧暑。 經濟部標準檢驗局,CNS網路服務系統檢所。2009。微生物肥料檢驗法- CNS 15301-3, N 4201-3。 Afzal, A., and A. Bano. 2008. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int. J. Agric. Biol. 10: 85-88. Ali, N., N. Sorkhoh, S. Salamah, M. Eliyas, and S. Radwan. 2012. The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants. J. Environ. Manage. 93: 113-120. Amann, R.I., W. Ludwig, and K.-H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169. Ashrafuzzaman, M., F.A. Hossen, M.R. Ismail, A. Hoque, M.Z. Islam, S. Shahidullah, et al. 2009. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr. J. Biotechnol. 8: 1247-1252. Bal, H.B., S. Das, T.K. Dangar, and T.K. Adhya. 2013. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J. Basic Microbiol. 53: 972-984. Basra, A.S. 2006. Handbook of seed science and technologyFood Products Press. Beneduzi, A., A. Ambrosini, and L.M. Passaglia. 2012. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35: 1044-1051. Bertalan, M., R. Albano, V. de Pádua, L. Rouws, C. Rojas, A. Hemerly, et al. 2009. Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics. 10: 450. Bhattacharyya, P., and D. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28: 1327-1350. Bremner, J., and G.A. Breitenbeck. 1983. A simple method for determination of ammonium in semimicro‐Kjeldahl analysis of soils and plant materials using a block digester 1. Commun. Soil Sci. Plant Anal. 14: 905-913. Brooking, I. 1976. Soilless potting media for controlled-environment facilities. N. Z. J. Exp. Agric. 4: 203-208. Cassan, F., D. Perrig, V. Sgroy, O. Masciarelli, C. Penna, and V. Luna. 2009. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur. J. Soil Biol. 45: 28-35. Chelius, M., and E. Triplett. 2001. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb. Ecol. 41: 252-263. Chen, Y., P. Rekha, A. Arun, F. Shen, W.-A. Lai, and C. Young. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34: 33-41. Compant, S., C. Clément, and A. Sessitsch. 2010. Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42: 669-678. Compant, S., B. Duffy, J. Nowak, C. Clément, and E.A. Barka. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959. Compant, S., B. Reiter, A. Sessitsch, J. Nowak, C. Clément, and E.A. Barka. 2005. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71: 1685-1693. Das, A., M. Kumar, and R. Kumar. 2013. Plant growth promoting rhizobacteria (PGPR): an alternative of chemical fertilizer for sustainable, environment friendly agriculture. Res. J. Agric. For. Sci. 1: 21-23. de los Santos, M.C., C. Taulé, C. Mareque, M. Beracochea, and F. Battistoni. 2015. Identification and characterization of the part of the bacterial community associated with field-grown tall fescue (Festuca arundinacea) cv. SFRO Don Tomás in Uruguay. Ann. Microbiol.: 1-14. Deng, Y., Y. Zhu, P. Wang, L. Zhu, J. Zheng, R. Li, et al. 2011. Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora. J. Bacteriol. 193: 2070-2071. Egamberdiyeva, D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36: 184-189. El-Komy, H. 2005. Coimmobilization of Azospirillum lipoferum and Bacillus megaterium for successful phosphorus and nitrogen nutrition of wheat plants. Food Technol. Biotechnol. 43: 19-27. Elbeltagy, A., K. Nishioka, H. Suzuki, T. Sato, Y.-I. Sato, H. Morisaki, et al. 2000. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci. Plant Nutr. 46: 617-629. Etesami, H., H.A. Alikhani, and H.M. Hosseini. 2015. Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX. 2: 72-78. Etesami, H., H.M. Hosseini, H.A. Alikhani, and L. Mohammadi. 2014. Bacterial biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) as endophytic preferential selection traits by rice plant seedlings. J. Plant Growth Regul. 33: 654-670. Farina, R., A. Beneduzi, A. Ambrosini, S.B. de Campos, B.B. Lisboa, V. Wendisch, et al. 2012. Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth. Appl. Soil Ecol. 55: 44-52. Fernando, W.D., S. Nakkeeran, and Y. Zhang. 2006. Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. PGPR: Biocontrol and biofertilization. Springer. p. 67-109. Fuentes-Ramirez, L.E., and J. Caballero-Mellado. 2006. Bacterial biofertilizers. PGPR: Biocontrol and biofertilization. Springer. p. 143-172. Gasser, I., M. Cardinale, H. Müller, S. Heller, L. Eberl, N. Lindenkamp, et al. 2011. Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12. Plant Soil. 347: 125-136. Glick, B.R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica. 2012: 963401. Goswami, D., J.N. Thakker, and P.C. Dhandhukia. 2015. Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from l-tryptophan (Trp) using HPTLC. J. Microbiol. Methods. 110: 7-14. Gravel, V., H. Antoun, and R.J. Tweddell. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol. Biochem. 39: 1968-1977. Grigoryeva, T.V., A.V. Laikov, R.P. Naumova, A.I. Manolov, A.K. Larin, I.Y. Karpova, et al. 2013. Draft genome of the nitrogen-fixing bacterium Pseudomonas stutzeri strain KOS6 isolated from industrial hydrocarbon sludge. Genome Announce. 1: 1-2. Gupta, M., S. Kiran, A. Gulati, B. Singh, and R. Tewari. 2012. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiol. Res. 167: 358-363. Gutierrez-Zamora, M., and E. Martınez-Romero. 2001. Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J. Biotechnol. 91: 117-126. Hallmann, J., and G. Berg. 2006. Spectrum and population dynamics of bacterial root endophytes. Soil Biol. Springer. p. 15-31. Han, H., and K. Lee. 2005. Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res. J. Agric. Biol. Sci. 1: 176-180. Hardoim, P., R. Nissinen, and J.D. van Elsas. 2012. Ecology of bacterial endophytes in sustainable agriculture. Bact. Agrobiol. Plant Probiotics. Springer. p. 97-126. Hentrich, M., C. Böttcher, P. Düchting, Y. Cheng, Y. Zhao, O. Berkowitz, et al. 2013. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J. 74: 626-637. Hoagland, D.R., and D.I. Arnon. 1950. The water-culture method for growing plants without soil. Circ. - Calif. Agric. Exp. Stn. 347. Hochholdinger, F., K. Woll, M. Sauer, and D. Dembinsky. 2004. Genetic dissection of root formation in maize (Zea mays) reveals root‐type specific developmental programmes. Ann. Bot. . 93: 359-368. Iniguez, A.L., Y. Dong, H.D. Carter, B.M. Ahmer, J.M. Stone, and E.W. Triplett. 2005. Regulation of enteric endophytic bacterial colonization by plant defenses. Mol. Plant-Microbe Interact. 18: 169-178. Jha, P.N., G. Gupta, P. Jha, and R. Mehrotra. 2013. Association of rhizospheric/endophytic bacteria with plants: a potential gateway to sustainable agriculture. Greener J. Agric. Sci. 3: 73-84. Jones Jr, J.B. 1990. Universal soil extractants: their composition and use. Commun. Soil Sci. Plant Anal. 21: 1091-1101. Kanchana, D., M. Jayanthi, G. Usharani, P. Saranraj, and D. Sujitha. 2013. Evaluation of Plant growth promoting substance production by Azospirillum sp. isolated from rhizosphere of Chilli (Capsicum annuum L.). Int. J. Microbiol. Res. 4: 300-304. Khan, A.A., G. Jilani, M.S. Akhtar, S.M.S. Naqvi, and M. Rasheed. 2009. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 1: 48-58. Kim, J., and D.C. Rees. 1994. Nitrogenase and biological nitrogen fixation. Biochem. 33: 389-397. Kozdroj, J., and J.D. van Elsas. 2001. Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. J. Microbiol. Methods. 43: 197-212. Krause, A., A. Ramakumar, D. Bartels, F. Battistoni, T. Bekel, J. Boch, et al. 2006. Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat. Biotechnol. 24. Langella, F., A. Grawunder, R. Stark, A. Weist, D. Merten, G. Haferburg, et al. 2014. Microbially assisted phytoremediation approaches for two multi-element contaminated sites. Environ. Sci. Pollut. Res. 21: 6845-6858. Lin, T.-F., and C.-C. Young. 2005. Effect of soluble phosphate in the medium on phosphate-solubilizing activity of Burkholderia cepacia CC-A174. Taiwanese J. Agric. Chem. Food Sci. 43: 261-270. Liu, Y., S. Zuo, L. Xu, Y. Zou, and W. Song. 2012. Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines. Arch. Microbiol. 194: 1001-1012. Lugtenberg, B., and F. Kamilova. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556. Maas, E.F., and R. Adamson. 1978. Soilless culture of commercial greenhouse tomatoes. Agriculture Canada. Malboobi, M.A., P. Owlia, M. Behbahani, E. Sarokhani, S. Moradi, B. Yakhchali, et al. 2009. Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World J. Microbiol. Biotechnol. 25: 1471-1477. Malfanova, N., F. Kamilova, S. Validov, A. Shcherbakov, V. Chebotar, I. Tikhonovich, et al. 2011. Characterization of Bacillus subtilis HC8, a novel plant‐beneficial endophytic strain from giant hogweed. Microb. Biotechnol. 4: 523-532. Malfanova, N., B. Lugtenberg, and G. Berg. 2013. Endophytic bacteria with plant growth promoting and biocontrol abilities. Inst. Biol. Leiden. 15. Mandels, M., and E.T. Reese. 1960. Induction of cellulase in fungi by cellobiose. J. Bacteriol. 79: 816. Martínez-de la Cruz, E., E. García-Ramírez, J.M. Vázquez-Ramos, H.R. de la Cruz, and J. López-Bucio. 2015. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings. J. Plant Physiol. 176: 147-156. Mohammadi, K., and Y. Sohrabi. 2012. Bacterial biofertilizers for sustainable crop production: a review. J. Agric. Biol. Sci. 7: 307-316. Neilands, J. 1995. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270: 26723-26726. Ohta, H., and T. Hattori. 1980. Bacteria sensitive to nutrient broth medium in terrestrial environments. Soil Sci. Plant Nutr. 26: 99-107. Okon, Y. 1985. Azospirillum as a potential inoculant for agriculture. Trends Biotechnol. 3: 223-228. Pankievicz, V., F.P. Amaral, K.F. Santos, B. Agtuca, Y. Xu, M.J. Schueller, et al. 2015. Robust biological nitrogen fixation in a model grass–bacterial association. Plant J. 81: 907-919. Patten, C.L., and B.R. Glick. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42: 207-220. Patten, C.L., and B.R. Glick. 2002. Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can. J. Microbiol. 48: 635-642. Patten, C.L., and B.R. Glick. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68: 3795-3801. Pedrosa, F.O., R.A. Monteiro, R. Wassem, L.M. Cruz, R.A. Ayub, N.B. Colauto, et al. 2011. Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet. 7: e1002064. Pereira, P., F. Ibáñez, M. Rosenblueth, M. Etcheverry, and E. Martínez-Romero. 2011. Analysis of the bacterial diversity associated with the roots of maize (Zea mays L.) through culture-dependent and culture-independent methods. ISRN Ecol. 2011. Pereira, S.I.A., and P.M.L. Castro. 2014. Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecol. Eng. 73: 526-535. Perrot-Rechenmann, C. 2010. Cellular responses to auxin: division versus expansion. Cold Spring Harbor Perspect. Biol. 2: a001446. Pires, A.C., D.F. Cleary, A. Almeida, Â. Cunha, S. Dealtry, L.C. Mendonça-Hagler, et al. 2012. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples. Appl. Environ. Microbiol. 78: 5520-5528. Ponmurugan, P., and C. Gopi. 2006. In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. Afr. J. Biotechnol. 5: 348-350. Prakamhang, J., K. Minamisawa, K. Teamtaisong, N. Boonkerd, and N. Teaumroong. 2009. The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Appl. Soil Ecol. 42: 141-149. Rajkumar, M., N. Ae, M.N.V. Prasad, and H. Freitas. 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 28: 142-149. Rajkumar, M., M.N. Vara Prasad, H. Freitas, and N. Ae. 2009. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit. Rev. Biotechnol. 29: 120-130. Ramette, A., M. Frapolli, G. Défago, and Y. Moënne-Loccoz. 2003. Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Mol. Plant-Microbe Interact. 16: 525-535. Raymond, J., J.L. Siefert, C.R. Staples, and R.E. Blankenship. 2004. The natural history of nitrogen fixation. Mol. Biol. Evol. 21: 541-554. Reinhold-Hurek, B., T. Maes, S. Gemmer, M. Van Montagu, and T. Hurek. 2006. An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. Mol. Plant-Microbe Interact. 19: 181-188. Riggs, P.J., M.K. Chelius, A.L. Iniguez, S.M. Kaeppler, and E.W. Triplett. 2001. Enhanced maize productivity by inoculation with diazotrophic bacteria. Funct. Plant Biol. 28: 829-836. Rijavec, T., A. Lapanje, M. Dermastia, and M. Rupnik. 2007. Isolation of bacterial endophytes from germinated maize kernels. Can. J. Microbiol. 53: 802-808. Rivas, R., M.E. Trujillo, M. Sánchez, P.F. Mateos, E. Martínez-Molina, and E. Velázquez. 2004. Microbacterium ulmi sp. nov., a xylanolytic, phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra. Int. J. Syst. Evol. Microbiol. 54: 513-517. Rocha, F.R., F.S. Papini-Terzi, M.Y. Nishiyama, R.Z. Vêncio, R. Vicentini, R.D. Duarte, et al. 2007. Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics. 8: 71. Rodrı́guez, H., and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339. Roesch, L.F.W., L.M.P. Passaglia, F.M. Bento, E.W. Triplett, and F.A.O. Camargo. 2007. Diversity of diazotrophic endophytic bacteria associated with maize plants. Rev. Bras. Cienc. Solo. 31: 1367-1380. Ryan, R.P., K. Germaine, A. Franks, D.J. Ryan, and D.N. Dowling. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278: 1-9. Ryan, R.P., S. Monchy, M. Cardinale, S. Taghavi, L. Crossman, M.B. Avison, et al. 2009. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Rev. Microbiol. 7: 514-525. Ryu, R.J., and C.L. Patten. 2008. Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. J. Bacteriol. 190: 7200-7208. Sadhu, S., P. Saha, S. Mayilraj, and T.K. Maiti. 2011. Lactose-enhanced cellulase production by Microbacterium sp. isolated from fecal matter of zebra (Equus zebra). Curr. Microbiol. 62: 1050-1055. Samish, Z., and D. Dimant. 1959. Bacterial population in fresh, healthy cucumbers. Food Manuf. 34: 17-20. Schmidt, M., E. Souza, V. Baura, R. Wassem, M. Yates, F. Pedrosa, et al. 2011. Evidence for the endophytic colonization of Phaseolus vulgaris (common bean) roots by the diazotroph Herbaspirillum seropedicae. Braz. J. Med. Biol. Res. 44: 182-185. Schwyn, B., and J. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. Seghers, D., L. Wittebolle, E.M. Top, W. Verstraete, and S.D. Siciliano. 2004. Impact of agricultural practices on the Zea mays L. endophytic community. Appl. Environ. Microbiol. 70: 1475-1482. Shaharoona, B., M. Arshad, and A. Khalid. 2007. Differential response of etiolated pea seedlings to inoculation with rhizobacteria capable of utilizing 1-aminocyclopropane-1-carboxylate or L-methionine. J. Microbiol. 45: 15. Shaharoona, B., M. Arshad, and Z. Zahir. 2006. Effect of plant growth promoting rhizobacteria containing ACC‐deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett. Appl. Microbiol. 42: 155-159. Shaharoona, B., G. Jamro, Z. Zahir, M. Arshad, and K. Memon. 2007. Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum I.). J. Microbiol. Biotechnol. 17: 1300. Shen, F.-T., and C.-C. Young. 2005. Rapid detection and identification of the metabolically diverse genus Gordonia by 16S rRNA-gene-targeted genus-specific primers. FEMS Microbiol. Lett. 250: 221-227. Shime–Hattori, A., S. Kobayashi, S. Ikeda, R. Asano, H. Shime, and T. Shinano. 2011. A rapid and simple PCR method for identifying isolates of the genus Azospirillum within populations of rhizosphere bacteria. J. Appl. Microbiol. 111: 915-924. Siddikee, M.A., B.R. Glick, P.S. Chauhan, W. jong Yim, and T. Sa. 2011. Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol. Biochem. 49: 427-434. Singh, M.K., D.P. Singh, S. Mesapogu, B.K. Babu, and C. Bontemps. 2011. Concomitant colonization of nifH positive endophytic Burkholderia sp. in rice (Oryza sativa L.) promotes plant growth. World J. Microbiol. Biotechnol. 27: 2023-2031. Singh, R.K., N. Malik, and S. Singh. 2013. Improved nutrient use efficiency increases plant growth of rice with the use of IAA-overproducing strains of endophytic Burkholderia cepacia strain RRE25. Microb. Ecol. 66: 375-384. Strable, J., and M.J. Scanlon. 2009. Maize (Zea mays): a model organism for basic and applied research in plant biology. Cold Spring Harbor Protoc. 2009: pdb. emo132. Sturz, A., B. Christie, and J. Nowak. 2000. Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci. 19: 1-30. Suzuki, T., M. Shimizu, A. Meguro, S. Hasegawa, T. Nishimura, and H. Kunoh. 2005. Visualization of infection of an endophytic actinomycete Streptomyces galbus in leaves of tissue-cultured rhododendron. 19: 7-12. Syamsia, T. Kuswinanti, E. Syam'un, and A. Masniawati. 2015. The potency of endophytic fungal isolates collected from local aromatic rice as indole acetic acid (IAA) producer. Procedia Food Sci. 3: 96-103. Szilagyi-Zecchin, V.J., A.C. Ikeda, M. Hungria, D. Adamoski, V. Kava-Cordeiro, C. Glienke, et al. 2014. Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express. 4: 26. Taghavi, S., C. Garafola, S. Monchy, L. Newman, A. Hoffman, N. Weyens, et al. 2009. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl. Environ. Microbiol. 75: 748-757. Taghavi, S., D. Van Der Lelie, A. Hoffman, Y.-B. Zhang, M.D. Walla, J. Vangronsveld, et al. 2010. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet. 6: e1000943. Taulé, C., C. Mareque, C. Barlocco, F. Hackembruch, V.M. Reis, M. Sicardi, et al. 2012. The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil. 356: 35-49. Tian, F., Y. Ding, H. Zhu, L. Yao, and B. Du. 2009. Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. Braz. J. Microbiol. 40: 276-284. Tian, X., L. Cao, H. Tan, W. Han, M. Chen, Y. Liu, et al. 2007. Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice. Microb. Ecol. 53: 700-707. Tsavkelova, E., T. Cherdyntseva, and A. Netrusov. 2005. Auxin production by bacteria associated with orchid roots. Microbiol. . 74: 46-53. Tsavkelova, E.A., T.A. Cherdyntseva, S.G. Botina, and A.I. Netrusov. 2007. Bacteria associated with orchid roots and microbial production of auxin. Microbiol. Res. 162: 69-76. Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 255: 571-586. Vierstraete, A. 1999. Principle of the PCR. University of Ghent, Belgium. Vincent, J.M. 1970. A manual for the practical study of the root-nodule bacteria. J. Basic Microbiol. Weilharter, A., B. Mitter, M.V. Shin, P.S. Chain, J. Nowak, and A. Sessitsch. 2011. Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J. Bacteriol. 193: 3383-3384. Xie, H., J. Pasternak, and B.R. Glick. 1996. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr. Microbiol. 32: 67-71. Yan, Y., J. Yang, Y. Dou, M. Chen, S. Ping, J. Peng, et al. 2008. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc. Natl. Acad. Sci. 105: 7564-7569. Yim, W., S. Seshadri, K. Kim, G. Lee, and T. Sa. 2013. Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium spp. inoculated tomato plants (Lycopersicon esculentum Mill.) challenged with Ralstonia solanacearum under greenhouse conditions. Plant Physiol. Biochem. 67: 95-104. Young, C.C. 1984. Autointoxication in root exudates of Asparagus officinalis L. Plant Soil. 82: 247-253. Young, C.C., J. Chang, and C.C. Chao. 1988. Physiological and symbiotic characteristics of Rhizobium fredii isolated from subtropical-tropical soils. Biol. Fertil. Soils. 5: 350-354. Young, L.-S., A. Hameed, S.-Y. Peng, Y.-H. Shan, and S.-P. Wu. 2013. Endophytic establishment of the soil isolate Burkholderia sp. CC-Al74 enhances growth and P-utilization rate in maize (Zea mays L.). Appl. Soil Ecol. 66: 40-47. Zachow, C., J. Fatehi, M. Cardinale, R. Tilcher, and G. Berg. 2010. Strain-specific colonization pattern of Rhizoctonia antagonists in the root system of sugar beet. FEMS Microbiol. Ecol. 74: 124-135. Zahir, Z.A., U. Ghani, M. Naveed, S.M. Nadeem, and H.N. Asghar. 2009. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch. Microbiol. 191: 415-424. Zahran, H.H. 2001. Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J. Biotechnol. 91: 143-153. Zakharova, E.A., A.D. Iosipenko, and V.V. Ignatov. 2000. Effect of water-soluble vitamins on the production of indole-3-acetic acid by Azospirillum brasilense. Microbiol. Res. 155: 209-214. Zakria, M., A. Ohsako, Y. Saeki, A. Yamamoto, and S. Akao. 2008. Colonization and growth promotion characteristics of Enterobacter sp. and Herbaspirillum sp. on Brassica oleracea. Soil Sci. Plant Nutr. 54: 507-516. Zhao, K., P. Penttinen, X. Zhang, X. Ao, M. Liu, X. Yu, et al. 2014. Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiol. Res. 169: 76-82.
摘要: 
Maize is one of the world's major crops and is widely planted for both food and silage. But the continuously increasing cost of chemical fertilizers continues becomes a burden to farmers. Utilization of biofertilizer containing plant growth promoting bacteria (PGPB) can promote crop growth, increase the resistance of plant to stress and plant disease, and raise the yield of crop. The aim of this study was to isolate and characterize plant growth promoting (PGP) traits of the endophytic bacteria from maize roots, and evaluate their inoculation effects on maize growth and nutrient uptake. Seed germination bioassay and planting-tube test were done among fifteen non-pathogenic endophytic isolates, and 4 strains Microbacterium neimengense HIH032, Azospirillum doebereinerae HIH038, Pseudomonas geniculata HIH039, and Pedobacter alluvionis HIH044 showing better performance were chosen as inoculant for further experiments. PGP traits analysis revealed that stains HIH032 and HIH044 had phosphate-solubilizing ability; these two species were first found to have the ability of phosphate solubilization. And strain HIH038 and HIH039 had nitrogen-fixing ability; species Pseudomonas geniculata was first revealed to have the ability of nitrogen fixation. Besides, strain HIH032 had cellulase-producing ability. Pot experiment results revealed that combination of half strength dose of recommended chemical fertilizer and inoculation of strain HIH032 (HIH032 H) causes significantly promotion growth effects in the greenhouse after 30 days, which was the same as the treatment with full strength dose chemical fertilizer (BA) without inoculation. And the plant nutrients analysis of N, P, K, Ca, and Mg also showed the similar results in HIH032 H and BA. Based on the above mentioned results, isolated endophytic strain HIH032 as an inoculant was evidenced to be beneficial for promoting maize growth. It was observed that strain HIH032 exhibited endophytic ability and exerted several important PGP traits, such as IAA-producing, phosphate-solubilizing and cellulase-producing abilities. Hence, HIH032 can be used and developed as an efficient biofertilizer for this maize cultivar to reduce the use of chemical fertilizer and promote the development of sustainable agriculture.

玉米為全世界總產量最高的糧食作物,是現今人類十分倚賴的食物、飼料之來源,但是隨著全球人口數目不斷增多對食物的需求也相對提昇,因此需要更多的來源供給,世界各地便大面積栽種玉米,隨之而來的就是化學肥料的不當使用造成對土壤環境的影響與傷害,為了降低化肥的過度施用可藉由使用含有植物生長促進菌 (plant growth promoting bacteria, PGPB) 的微生物肥料達到促進作物的生長,甚至可以幫助植物抗逆境與病害,進而提升作物的產量。本研究為從玉米根部分離出內生細菌,純化培養之後並對其做植物生長促進特性的分析,並且將分離的內生細菌接種於玉米,探討其對植物生長及養分吸收的影響。從玉米植株根部分離出15株非病原性之內生細菌,以種子生物發芽分析及溫室穴植管試驗的結果篩選出盆栽試驗之接種菌株Microbacterium neimengense HIH032 、 Azospirillum doebereinerae HIH038 、 Pseudomonas geniculata HIH039 、 Pedobacter alluvionis HIH044 共四株,針對這些菌株做植物生長促進特性之活性分析,結果顯示菌株 HIH032 與 HIH044 具有溶磷活性,此兩菌種 Microbacterium neimengense 與 Pedobacter alluvionis 為首次被發現具有溶磷的特性;菌株 HIH038 與 HIH039 具有固氮活性,菌種 Pseudomonas geniculata 為首次發現具有固氮的能力;菌株 HIH038 與 HIH032 具有IAA生成活性;而菌株 HIH032具有纖維素分解酶生成能力。溫室盆栽試驗中將此四株菌株回接至玉米三十天後結果發現,接種菌株 HIH032 且半量化肥施用之處理具有促進生長的作用,甚至可達到與無接種菌株並全量施肥之處理有相同的生長效果;在植體元素分析的結果上,氮、磷、鉀、鈣、鎂之含量在接種菌株 HIH032 並施用半量施肥之處理也是與上述結果具有類似的現象,達到與對照組不接種菌株全量化肥施用植株中相同的效果。綜合植物生長促進特性的能力以及溫室盆栽試驗之結果,玉米接種菌株 HIH032 後具有生長促進之效果,可能由於其內生能力以及其有適量的 IAA、纖維素分解酶生成能力以及溶磷活性,因此將菌株 HIH032 製作為此玉米品種之有效之微生物肥料在未來具有應用之潛力,並可降低化學肥料的施用且能友善土壤生態環境,促進永續農業之發展。
URI: http://hdl.handle.net/11455/90135
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-05起公開。
Appears in Collections:土壤環境科學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102039013-1.pdf15.28 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.