Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90136
標題: Evaluate the safety of vermicomposts and their effects on the growth and antioxidant activity of lettuce
評估蚓糞堆肥之安全性及其對萵苣生長及抗氧化能力之影響
作者: Shao-Yu Chien
簡紹祐
關鍵字: Vermicompost;Pathogen;Antioxidant activity;Soil fertility;Lettuce;蚓糞堆肥;病原菌;抗氧化能力;土壤肥力;萵苣
引用: 王念慈、王自存、曹幸之。2009。新鮮與老化葉菜類蔬菜抗氧化力之測定。台中 區農業改良場研究彙報,104: 67-82。 王效岳。1990。蚯蚓的世界。第1至13頁。台灣省立博物館印行。 行政院環保署。2010。全國事業廢棄物申報統計。 李宗翰、鄭世鑫、譚鎮中。2012。農畜廢棄物及廚餘堆肥病原微生物安全性研究。 2012年有機農業研究團隊研發成果研討會。花蓮區農業改良場。 林叡呈。2012。蚓糞堆肥與禽畜糞堆肥之單獨或混合施用對甘藍生育及土壤肥力 之影響。國立中興大學土壤環境科學系碩士學位論文。 陳仁炫、林正錺、郭惠千。1993。土壤肥力因子之分級標準彙集。第60頁。國 立中興大學土壤環境科學系編印。行政院農委會。 陳仁炫。1995。有機質肥的添加對土壤磷有效性及礦化作用之影響。中 國農業化學誌,33:533-549。 陳仁炫。2008。禽畜糞堆肥的製作及使用要領。第五屆畜牧污染防治技術研 討會論文集。第48至58頁。農委會畜牧處編印。 陳俊仁。2015。豬糞與養菇廢棄包混合物經一般堆肥化與蚓糞堆肥化對微生物群 落結構之影響。國立中興大學土壤環境科學系碩士學位論文。 黃旭瑩。2012。稻殼生物炭對紫色葉用甘藷產量、養分吸收與抗氧化性質的影響。 國立台灣大學生物資源暨農學院農業化學系碩士學位論文。 黃裕銘、吳正宗。1999。禽畜糞堆肥成分檢驗方法與實習操作。88年度全省禽 畜糞堆肥場堆肥成分分析檢驗及處理技術手冊,第5至15頁。中興大學土 壤調查試驗中心。 經濟部。2005。堆肥技術與設備手冊及案例彙編。第5至6頁。經濟部工業局。 農糧署。2005。作物施肥手冊。第103頁。中華肥料協會編印。 農糧署。2013。肥料種類品目及規格。第40頁。行政院農業委員會農糧署。 蔡青芬。2011。評估不同組合有機廢棄物對蚯蚓生長及蚓糞堆肥特性的影響。國 立中興大學土壤環境科學系碩士學位論文。 蔡碧仁。2007。保健植物酚類萃取與分析。保健食品理論與應用。第13至19 頁。國立屏東科技大學出版。 鄭世鑫。2011。堆肥大腸桿菌群在土壤與小白菜中之存活。國立中興大學土壤環 境科學系碩士學位論文。 謝宜敏。1997。蚯蚓的利用與養殖。第106至107頁。五洲出版社。 顏偉益。2010。評估有機廢棄物的特性對蚯蚓生長生殖及蚯蚓糞肥的影響。國立 中興大學土壤環境科學系碩士學位論文。 鍾文俊。2010。事業廢棄堆肥之品質評估與應用。國立中興大學土壤環境科學系 碩士論文。 吉田零。1997。堆廄肥之施用對土壤及農作物的影響 (1)。農業與園藝,72: 473-478。 Abdelbasset, L., H. Falleh, Y. Ouni, S. Oueslati, A. Debez, R. Ksouri, and C. Abdelly. 2011. Municipal solid waste compost application improves productivity, polyphenol content, and antioxidant capacity of Mesembryanthemun edule. J. Hazard. Mater., 191:373-379. Adi, A. J., and Z. M. Noor. 2009. Waste recycling: utilization of coffee grounds and kitchen waste in vermicomposting. Bioresour. Technol., 100: 1027-1030. Albanell, E., J. Plaixats, and T. Cabrero. 1988. Chemical changes during vermicomposting (Eisenia Andrei) of sheep manure mixed with cotton industrial wastes. Biol. Fertil. Soil, 6: 266-269. Albiach, R., R. Canet, F. Pomares, and F. Ingelmo. 2000. Microbial biomass content and enzymatic activities after application of organic amendments to a horticultural soil. Bioresour. Technol., 75: 43-48. Angelica, G., C.D. Mattia, M.D. Gregorio, S. Speca, D. Mastrocola, M. Pisante, and F. Stagnari. 2015. Effects of nutrient deficiency and abiotic environmental stresses on yield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.). Sci. Horti., 187: 93-101. Angelova, V.R., V.I. Akova, N.S. Artinova, and K.I. Ivanov. 2013. The effect of organic amendments on soil chemical characteristics. Bulg. J. Agric. Sci., 19: 958-971. Angin, L., E.L. Aksakal, T. Oztas, and A. Hanay. 2013. Effects of municipal solid waste compost (MSWC) application on certain physical properties of soils subjected to freeze-thaw. Soil Till. Res., 130: 58-61. Arancon, N.Q., C.A. Edwards, P. Bierman, P. Welch, and T.D. Metzger. 2004. Influences of vermicomposts on field strawberries: 1. Effect on growth and yields. Bioresour. Technol., 93: 145-153. Arancon, N.Q., C.A. Edwards, P. Bierman, J.D. Metzger, and C. Lucht. 2005. Effects of vermicomposts produced ffrom cattle, food waste and paper waste on the growth and yield of peppers in the field. Pedobiologia, 49: 297-306. Arancon, N.Q., C.A. Edwards, and P. Bierman. 2006. Influences of vermicomposts on field strawberries:2. Effects on soil microbiological and chemical properties. Bioresour. Technol., 97: 145-153. Aruoma, O.I., M. Deiana, A. Rosa, V. Casu, R. Piga, S. Peccagnini, M.A. Dessi, B. Ke, Y.F. Liang, and T. Higa. 2002. Assessment of the ability of the antioxidant cocktail-derived from fermentation of plants with effective microorganisms (EM-X) to modulate oxidative damage in the kidney and liver of rats in vivo: Studies upon the profile of poly- and mono-unsaturated fatty acids. Toxicol. Lett., 135: 209-217. Askegaard, M., J. Eriksen, and A.E. Johnston. 2004. Sustainable management of potassium. In: Schjonning, P., S. Elmholt, and B.T. Christensen. (ed.): Managing soil quality: challenges in modern agriculture. CABI Publishing. Wallingford, 85-102. Atiyeh, R.M., S. Subler, C.A. Edwards, G. Bachman, J.D. Metzger, and W. Shuster. 2000. Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia, 44: 579-590. Atiyeh, R.M., C.A. Lee Edward, S. Sulbar, and T. Metzger. 2001. Pig manure vermicompost as a component of a horticultural bedding plant medium. Effects on physiochemical properties and plant growth. Bioresour. Technol., 78: 11-20. Atiyeh, R.M., C.A. Lee Edward, N.Q. Arancon, and J.D. Metzger. 2002. The influence of humic acids derived from earthworm- processed organic wastes on plant growth. Bioresour. Technol., 84: 7-14. Azarmi, R., M.T. Giglou, and R.D. Taleshmikail. 2008. Influence of vermicompost on soil chemical and physical properties in tomato (Lycopersicum esculentum) field. Afr. J. Biotechnol., 7: 2397-2401. Baker, G.H. 1998. The ecology, management and benefits of earthworms in agricultural soils, with particular reference to southern Australia (this vol.). Barzegar A.R., A. Yousef, and A. Daryashenas. 2002. The effect of addition of different amounts and types of organic materials on soil physical properties and yield of wheat. Plant Soil, 247: 295-301. Beate, S., F. Yan, and B. Honermeier. 2015. Nitrogen fertilization and maturity influence the phenolic concentration of wheat grain (Triticum aestivum). J. Plant Nutr. Soil Sci., 178: 118-125. Benitez, E., H. Sainz, and R. Nogales. 2005. Hydrolytic enzyme activities of extracted humic substances during the vermicomposting of a lignocellulosic olive waste. Bioresour. Technol., 96:785-790. Bityutskii, N.P., P.I. Kaidun, and K.L. Yakkonen. 2012. The earthworm (aporrectodea caliginosa) primes the release of mobile and available micronutrients in soil. Pedobiologia, 55:93-99. Bouche, M.B. 1983. The establishment of earthworm communities. In J.E. Satchell (ed.) Earthworm Ecology-from Darwin to Vermiculture. pp. 431-448. Chapman& Hall, London. Bray, R.H., and L.T. Kurtz. 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Sci., 59: 39-45. Bremner, J.M. and C.S. Mulvaney. 1982. Nitrogen-total. P. 595-624. In A. L. Page et al., (ed.) Methods of soils analysis. Part 2. 2nd edition. Agron. Mongr. 9. ASA and SSSA., Medison, WI. Bryant, J., F.S. Chapin, and D.R. Klein. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos, 40: 357-368. Caldwell, C.R. 2003. Alkylperoxyl radical scavenging activity of red leaf lettuce (Lactuca sativa L.) phenolics. J. Agric. Food Chem., 51: 4589-4595. Canellas, L.P., F.L. Olivares, A.L. Okorokova-Facanha, and A.R. Facanha. 2002. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol., 130: 1951-1957. Cartelat, A., Z.G. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J.L. Prioul, A. Barbottin, M.H. Jeuffroy, P. Gate, G. Agati, and I. Moya. 2005. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crop. Res., 91: 35-49. Chan, P.L.S., and D.A. Griffiths. 1988. The vermicomposting of pretreated pig manure. Biol. Wastes, 24: 57-69. Chaoui, H.I., L.M. Zibilske, and T. Ohno. 2003. Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol. Biochem., 35:295-302. Chapuis-Lardy, L., A. Brauman, L. Bernard, A.L. Pablo, J. Toucet, M.J. Mano, L. Weber, D. Brunet, T. Razafimbelo J.L. Chotte, and E. Blanchart. 2010. Effect of the endogeic earthworm Pontoscolex corethrurus on the microbial structure and activity related to CO2 and N2O fluxes from a tropical soil (Madagascar). Appl. Soil Ecol., 45:201-208. Contrears-Ramos, S.M., E.M. Escamilla-Silva, and L. Dendooven. 2005. Vermicomposting of biosolids with cow manure and oat straw. Biol. Fertil. Soils, 41: 190-198. Correa, J.D., M.L. Barrios, and R.P. Galdona. 2004. Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil, 266: 75-84. Di-Mascio, P., S. Kaiser, and H. Sies. 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys., 274: 532-538. Dixon, R.A., and N.L. Paiva. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell, 7: 1085-1097. Dominguez, J., and C.A. Edwards. 2004. Vermicomposting organic wastes: a review. In: Shakir, S.H., Mikha, W.Z.A. (ed.), 'Soil Zoology for Sustainable Development in the 21st Century.' Cairo, pp. 369-396. Easterwood, G.W., and J.B. Sartain. 1990. Clover residue effectiveness in reducing orthophosphate sorption on ferric hydroxide coated soil. Soil Sci. Soc. Am. J., 54: 1345-1350. Eastman, B.R., P.N. Kane, C.A. Edwards, L. Trytek, B. Gunadi, A.L. Stermer, and J.R. Mobley. 2001. The effectiveness of vermiculture in human pathogen reduction for USEPA biosolids stabilization. Compost Sci. Util., 9:38-49. Eduardo, J.-F., M. Ponce, A. R.-Rua, E. Zuasti, M. Manchado, and C. F.-Diaz. 2015. Effect of dietary vitamin C level during early larval stages in Senegalese sole (Solea senegalensis). Aqua., 443: 65-76. Edwards, C.A., I. Burrows, K.E. Fletcher, and B.A. Jones. 1985. The use of earthworms for composting farm wastes. In: Gasser, J.K.R. (Ed), Composting of Agriculture and Other Wastes. Elsevier, Amsterdam, pp. 229-242. Edwards, C.A. (ed). 1998. Earthworm Ecology. CRC Press LLC. Boca Raton, Florida. Edwards, C.A. 1998. The use of earthworms in the breakdown and management of organic wastes. In: Edwards, C.A. 'Earthworm Ecology.' CRC press LLC, Boca Ration, F1, pp. 327-354. Edwards, C. A. 2011. Human pathogen reduction during vermicomposting. In: Edwards, C. A., N. Q. Arancon, and R. Sherman. (ed.) 'Vermiculture Technology: Earthworms, Organic Wastes and Environmental Management.' CRC Press, Boca Raton. pp. 249-261. Egert, M., S. Marhan, B. Wagner, S. Scheu, and M.W. Friedrich. 2004. Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta: Lumbridcidae). FEMS Microbiol. Ecol., 48: 187-197. Elliott, E.T. 1997. Rationale for developing bioindicators of soil health. In: Pankhurst C.E., B.M. Doube, and V.V.S.R. Gupta. (ed.) Biological Indicators of Soil Health. CAB International, New York, pp. 49-78. Ersahin, Y.S., K. Haktanir, and Y. Yanar. 2009. Vermicompost suppresses Rhizoctonia solani Kuhn in cucumber seedlings. J. Plant Dis. Protect., 4:182-188. Estrada, I.B., A. Aller, F. Aller, X. Gomez, and A. Moran. 2004. The survival of Escherichia coli, faecal coliforms and enterobacteriaceae in general in soil treated with sludge from wastewater treatment plants. Bioresour. Technol., 93: 191-198. Fauci, M.F., and R.P. Dick. 1994. Soil microbial dynamics: Short and long-term effects of organic and inorganic nitrogen. Soil Sci. Soc. of Amer. J., 58: 801-808. Fernandez-Orozco, R., L. Li, C. Harflett, P.R. Shewry, and J.L. Ward. 2010. Effects of environment and genotype on phenolic acids in wheat in the HEALTHGRAIN diversity screen J. Agric. Food Chem., 58: 9341-9352. Franzluebber, A.J., F.M. Hons, and D.A. Zubber. 1995. Soil organic carbon, microbial biomass and mineralisable carbon and nitrogen in sorghum. Soil Sci. Soc. Amer. J., 59: 460-466. Garcia-Orenes, F., A. Roldan, C. Guerrero, J. Mataix-Solera, J. Navarro-Pedreno, I. Gomez, and J. Mataix-Beneyto. 2007. Effect of irrigation on the survival of total coliforms in three semiarid soils after amendment with sewage sludge. Waste Manage., 27: 1815-1819. Gee, G.W., and J.W. Bauder. 1986. Particle-size analysis. p. 404-408. In A. Klute et al. (ed.) Methods of soil analysis. Part 1. 2nd edition. Agron. Mongr. 9. ASA and SSSA., Madison, WI. Gopal, M., A. Gupta, E. Sunil and G.V. Thomas. 2009. Amplification of plant beneficial microbial communities during conversion of coconut leaf substrate to vermicompost by Eudrilus sp. Current microbiology, 59: 15-20. Gutierrez-Miceli, F.A., J.S. Santiago-Borraz, J.A.M. Molina, C.C. Nafate, M. Abud-Archila, M.A.O. Llaven, R. Rincon-Rosales, and L. Dendooven. 2007. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentu). Bioresour. Technol., 98: 2781-2786. Halliwell, B., M.A. Murcia, S. Chirico, and O.I. Aruoma. 1995. Free radicals and antioxidants in food and in vivo: What they do and how they work. Crit. Rev. Food Sci. Nutr., 35: 7-20. Halliwell, B., and J.M.C. Gutteridge. 1999. Free radicals in biology and medicine. Third ed. New York, NY: Oxford University Press. Han, J., L. Sun, X. Dong, Z. Cai, H. Yang, Y. Wang, and W. Song. 2005. Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various pathogens. Syst. Appl. Microbiol., 28: 66-76. Haukioja, E., V. Ossipov, J. Koricheva, T. Honkanen, S. Larsson, and K. Lempa,1998. Biosynthetic origin of carbon-based secondary compounds:Cause of variable responses of woody plants to fertilization? Chemoecology, 8: 133-139. Hendrix, P.F., B.R. Mueller, R.R. Bruce, G.W. Langdale, and R.W. Parmelee. 1992. Abundance and distribution of earthworms in relation to landscape factors on the Georgia Piedmont, U.S.A. Soil Biology and Biochemistry, 24:1357-1361. Herms, D.A., and W. Mattson. 1992. The dilemma of plants: to grow or defend. Q. Rev. Biol., 67: 283-335. Hoitink, H.A.J., A.F. Schmitthenner, and L.J. Herr. 1997. Suppression of plant diseases by composts. Hortscience, 32: 184-187. Hue, N.V. 1991. Effect of organic acid/anions on P sorption and phytoavailability in soils with different mineralogies. Soil Sci., 152: 463-471. Hue, N.V., and J.Liu. 1995. Predicting compost stability. Compost Sci. Util., 3: 8-15. Iyamuremye, F., and R.P. Dick. 1996. Organic amendments and phosphorus sorption by soils. Adv. Agron., 56: 139-185. Iyamuremye, F., R.P. Dick, and J. Baham. 1996. Organic amendments and phosphorus dynamics:III. Phosphorus speciation. Soil Sci., 161: 444-451. Jack, A.L.H., A. Rangarajan, S.W. Culman, T. S. Nuguan, and J.E. Thies. 2011. Choice of organic amendments in tomato transplants has lasting effects on bacterial rhizosphere communities and crop performance in the field. Appl. Soil Ecol., 48: 94-101. Jacob, R.A., and B.J. Burri. 1996. Oxidative damage and defense. Am. J. Clin. Nutr., 63: 985-990. Jerzy, L., M. Turski, M. Hajnos, and R. Swieboda. 2015. Pore structure, stability and water repellency of earthworm casts and natural aggregates in loess soil. Geoderma., 243-244:124-129. Jones, J.B., and J.B. Jones. Jr. 2001. Laborator Guide for Conducting Soil Tests and Plant Analysis. CRC Press. Jouquet, P., N. Bottinelli, P. Podwojewski, V. Hallaire and T. Tran Duc. 2008. Chemical and physical properties of earthworm casts as compared to bulk soil under a range of different land-use systems in VIetnam. Geoderma, 146: 231-238. Kalt, W. 2005. Effects of production and processing factors on major fruit and vegetable antioxidants. J. Food Sci., 70: 11-19. Karthika, A., S.Ganesan, V. Muthunarayanan, S. Vivek, S. Sugumar, and V. Munusamy. 2015. Potentiality of Eisenia fetida to degrade disposable paper cups-an ecofriendly solution to solid waste pollution. Environ. Sci. Pollut. Res., 22:2868-2876. Kaushik, P., and V. K. Garg. 2003. Vermicomposting of mixed solid textile mill sludge and cowdung with epigeic earthworm Eisenia fetida. Biores. Technol., 90: 311-316. Kaviraj., and S. Shama. 2003. Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresour. Technol., 90: 169-173. Kawai, M., and S. Matsuura. 1997. Manda surpresses emotional stress induced stomach ulcers in rats. Int. J. Stress Manag., 4: 63-69. Keeney, D.R., and D.W. Nelson. 1982. Nitrogen-Inorganic forms. P. 643-698. In A. L. Page et al. (ed.) Methods of soil analysis. Part2. 2nd edition. Agron. Mongr. 9. ASA and SSSA., Madison, WI. Khalaf El-Duweini, A., and S.I. Ghabbour. 1965. Population density and biomass of earthworms in different types of Egyptian soils. Journal of Appl. Ecology, 2: 271-287. Khomyakov N.V., S.A. Kharin, T.Yu. Nechitailo, P.N. Golyshin, A.V. Kurakov, B.A. Byzov, and D.G. Zvyagintsev. 2007. Reaction o fmicroorganisms to the digestive fluid of earthworms. Microbiology., 76: 45-54. Knudsen, O., G.A. Peterson, and P.F. Pratt. 1982. Lithium, sodium and potassium. P. 225-246. In A. L. Page (ed.) Methods of soil analysis Part 2. 2nd edition. Agronomy. ASA. Madison, WI. Lavelle, P. 1983. The structure of earthworm communities. In J.E. Satchell (ed.) Earthworm Ecology-from Darwin to Vermiculture, pp. 449-466. Chapman&Hall, London. Lavelle, P., and B. Pashanasi. 1989. Soil macrofauna and land management in Peruvian Amazonia (Yurimaguas, Loreto). Pedobiologia, 33: 283-291. Lavelle, P., T. Decaens, M. Aubert, S. Barot, M. Blouin, F. Bureau, P. Margerie P. Mora, and J.P. Rossi. 2006. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 42 (Supplement 1): S3-S15. Lee, K.E. 1985. Earthworms, Their ecology and relationships with soils and land us. Academic Press, Sydney. Lemunier, M., C. Francou, S. Rousseaux, S. Houot, P. Dantigny, P. Piveteau, and J. Guzzo. 2005. Long-Term Survival of Pathogenic and Sanitation Indicator Bacteria in Experimental Biowaste Composts. Appl. Environ. Microbiol., 71:5779-5786. Li, J., T.M. Ou-Lee, R. Raba, R.G. Amundson, and R.L. Last. 1993. Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell, 5: 171-179. Llorach, R., A. Martinez-Sanchez, F.A. Tomas-Barberan, M.I. Gil, and F. Ferreres. 2008. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem., 108: 1028-1038. Lordan, J., M. Pascual, and F. Fonseca. 2013. Use jof rice husk to enhance peach tree performance in soil switch limiting physical properties. Soil Till. Res., 129: 19-22. Lu, J.M., P.H. Lin, Q. Yao, and C.Y. Chen. 2010. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J. Cell Mol. Med., 14: 840-860. Mahmoud, M.I., E.K. Mahmoud, and D.A. Ibrahim. 2015. Effects of vermicompost and water treatment residuals on soil physical properties and wheat yield. Int. Agrophys., 29: 157-164. Manuel, A., M. Gomez-Brandon, P. Gonzalez-Porto, and J. Dominguez. 2011. Selective reduction of the pathogenic load of cow manure in an industrial-scale continuous-feeding vermireactor. Bioresour. Technol., 102: 9633-9637. Marinova, D., F. Ribarova, and M. Atanassova. 2005. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metall., 40:255-260. McKeehen, J.D., R.H. Busch,and R.G. Fulcher. 1999. Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance. J. Agric. Food Chem., 47: 1476-1482. McKersie, B.D., and Y.Y. Leshem. 1994. Chilling stress. In: McKersie, B.D., Y.Y. Leshem. (ed.) Stress and stress coping in cultivated plants. Kluwer Academic Publishers, Dordrecht/Boston/London, pp. 79-103. McLean, E. O. 1982. Soil pH and lime requirement. p. 199-224 In A. L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd edition ASA and SSSA. Madison, WI. Meda, A., C.E. Lamien, M. Romito, J. Millogo, and O.G. Nacoulma. 2005. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem., 91:571-577. Menga, J., C. Fares, A. Troccoli, L. Cattivelli, and A. Baiano. 2010. Effects of genotype, location and baking on the phenolic content and some antioxidant properties of cereal species. Int. J. Food Sci. Tech., 45: 7-16. Mitchell, M.J. 1978. Role of invertebrates and microorganisms in sludge decomposition. In: R. Hartenstein (ed.), Utilization of soil organisms in sludge management. 35-50. The National Technology Information Service. PB286932, Springfield, V.A. Monroy, F., M. Aira, and J. Dominguez. 2008. Changes in density of nematodes, protozoa and total coliforms after transit through the gut of four epigeic earthworms (Oligochaeta). Appl. Soil Ecol., 39:127-132. Monroy, F., M. Aira, and J. Dominguez. 2009. Reduction of total coliform numbers during vermicomposting is caused by short-term direct effects of earthworms on microorganisms and depends on the dose of application of pig slurry. Sci. Tot. Environ., 407:5411-5416. Moore, J., J.-G. Liu, K. Zhou, and L. Yu. 2006. Effects of genotype and environment on the antioxidant properties of hard winter wheat bran. J. Agric. Food Chem., 54: 5313-5322. Mpofu, A., H.D. Sapirstein, and T. Beta. 2006. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. J. Agric. Food Chem., 54: 1265-1270. Munrol, G. 2007. Manual of on-farm vermicomposting and vermiculture. Organic Agriculture Centre of Canada. Nova Scotia. Murphy, J., and J.D. Riley. 1962. A modified single solution method for the determination of phosphorus in natural waters. Anal. Chim Acta., 27: 31-36. Nelson, D.W., and L.E. Sommers. 1982. Total carbon, organic carbon, and organic matter. P. 539-579. In A. L. Page(ed.) Methods of soil analysis. Part 2. 2nd edition. Agronomy. ASA. Madison, WI. Ngole, V., S. Mpuchane, and O. Totolo. 2006. Survival of faecal coliforms in four different types of sludge-amended soils in Botswana. Eur J. Soil Biol., 42: 208-218. Nicolle, C., A. Carnat, D. Fraisse, J. Lamaison, E. Rock, H. Michel, P. Amouroux, and C. Remesy. 2004. Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). J. Sci. Food Agric., 84: 2061-2069. Nnaji, G.U. 2009. Changes in physical properties of soil under cassava (Manihot esculenta Crantz) monocropping and organic waste amendments. Nat. Appl. Sci. J., 10: 12-17. Nur Faezah, O., S.A. Hassan, U.K. Yusoff, N.A.P. Abdullah, P.E.M. Wahab, and U.R. Sinniah. 2012. Phenolics, flavonoids, antioxidant activity and cyanogenic glycosides of organic and mineral-base fertilized cassava tuvers. Molecules, 14: 2378-2387. Olk, D.C., and K.G. Cassman. 1993. Reduction of potassium fixation by organic matter in vermiculitic soils. Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, pp. 307-315. Olsen, S.R., and L.E. Sommers. 1982. Phosphourus. P.403-430. In A. L. Page. H. Miller and D. R. Keeney (ed.) Methods of soil analysis. Part2. Academic Press, Inc., New York. Oluwadare, D.A., and U.C. Osakwe. 2014. Effects of applied organic materials on physical properties of intensively cropped ultisol in North-Eastern Nigeria. J. Recent. Adv. Agri., 2: 199-207. Orozco, F.H., J. Cegarra, L.M. Trujillo, and A. Roig. 1996. Vermicomposting of coffee pulp using the earthworm Eisenia fetida:effects on C and N contents and the availability of nutrients. Biol. Fert. Soils, 22: 162-166. Panikkar, A.K., S.J. Riley, and S.P. Shrestha. 2004. Risk management in vermicomposting of domestic organic wate. Environ. Health, 4: 11-19. Parr, A.J., and G.P. Bolwell. 2000. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric., 80: 985-1012. Pramanik, P., G. K. Ghosh, P.K. Ghosal, and P. Banik. 2007. Changes in organic-C, N, P, and K and enzyme activities in vermicompost of biodergradable organic wastes under liming and microbial inoculants. Bioresour. Technol., 98:2485-2494. Rao, S., A.R. Subba, and P.N. Takkar. 1996. Changes in different forms of K under earthworm activity. National Seminar on Organic Farming and Sustainable Agriculture, India, pp. 9-11. Raphael, K. and K. Velmourougane. 2010. Chemical and microbiological changes during vermicomposting of coffee pulp using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis) species. Biodegradation, 22: 497-507. Rimmer, D.L. 2006. Free raicals, antioxidants, and soil organic matter recalcitrance. Eur. J. Soil Sci., 57: 91-94. Rivera, M.C., E.R. Wright, M.V. Lopez, and M.C. Fabrizio. 2004. Temperature and dosage dependent suppression of damping-off caused by Rhizoctonia solani in vermicompost amended nurseries of white pumpkin. Phyton (Buenos Aires) 131-136. Rodriguez-Canche, L.G., L.C. Vigueros, T. Maldonado-Montiel, and M. Martinez-Sanmiguel. 2010. Pathogen reduction in septic tank sludge through vermicomposting using Eisenia fetida. Bioresour. Technol., 101: 3548-3553. Rodriguez, H., and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv., 17: 319-339. Scheu, S. 2003. Effects of earthworms on plant growth: patterns and perspectives: the 7th International Symposium on Earthworm Ecology. Cardiff, Wales. 2002. Pedobiologia, 47:846-856. Sharpley, A.N., and J.K. Syres. 1977. Seasonal variations in casting activity and in the amounts and release to solution of phosphorous forms in earthworm casts. Soil Biol. Biochem., 9: 227-231. Shimada, K., K. Fujikawa, K. Yahara, and T. Nakamura. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 40:945-948. Shipitalo, M.J., and R.C. Le Bayon. 2004. Quantifying the effects of earthworms on soil aggregation and porosity. In Edwards, C.(ed.) Earthworm Ecology. CRC Press, Boca Raton, Florida, pp. 183-200. Simon, T., O. Mikanova, and D. Cerhanova. 2013. Long-term effect of straw and farmyard manure on soil organic matter in field experiment in the Czech Republic. Arch. Agron. Soil Sci., 59: 1193-1205. Singh, R., A. Kalra, B.S. Ravish, S. Divya, T.N. Parameswaran, K. Srinivas, and D.J. Bagyaraj. 2012. Effect of potential bioinoculants and organic manures on root-rot and wilt growth yield and quality of organically grown Coleus forskohlii in a semiarid tropical region of Bangalore (India). Plant Pathol., 61: 700-708. Sinha, R.K., S. Heart, S. Agarwal, and R.E. Carretero. 2002. Vermiculture technology for environmental management:study of action of earthworms Eisina fetida, Eudrilus euginae and Perionyx excavatus on biodegradation of some community wastes in India and Australia. Environmentalist, U.K. 22: 261-268. Solomon, E.B., S. Yaron, and K.R. Marhews. 2002. Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Appl. Environ. Microbiol., 68'397-400. Stover, K.S. 2009. The impacts of biological amendments on osil colonization by Agrobacterium tumefaciens and the influence of long-term starvaion conditions on Pseudomonas syringae pv. syringae. M.S. Thesis. University of California, Davis. Strauss, S.L., J.K. Stover, and D.A. Kluepfel. 2015. Impact of biological amendments on Agrobacterium tumefaciens survival in soil. Appl. Soil Ecol., 87: 39-48. Svensson, K., and H. Friberg. 2007. Changes in active microbial biomass by earthworms and grass amendments in agricultural soil. Biol. Fertil. Soils, 44: 223-228. Szczech, M., and U. Smolinska. 2001. Comparison of suppressiveness of vermicomposts produced from animal manures and sewage sludge against Phytophthora Breda de Haan var. nicotianae. Phytopathol. Z., 149: 77-82. Torsvik, V., and L. Ovreas. 2002. Microbial diversity and function in soil: From genes to ecosystems. Curr. Opin. Microbiol., 5: 240-245. Tripathi, G., and P. Bhardwaj. 2004. Comparative studies on biomass production, life cycles and composting efficiency of Eisenia fetida (Savigny) and Lampito mauritii (Kinberg). Bioresour. Technol., 92:275-283. Turkmen, N., F. Sari, and S. Velioglu. 2005. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem., 93: 713-718. Unagwu, B.O., C.A. Asadu, and P.I. Ezeaku. 2013. Residual effects of organic and NPK fertilizers performance at different soil pH levels. J. Agric. Vet. Sci., 5:47-53. USEPA. 1993. The standards for the use of disposal of sewage sludge. Final CFR Part 503 Rules. EPA 822/Z-93/001. USEPA, Office of Water, Washington, DC. U. S. Sanlinity Laboratory Staff. 1954. L. A. Richards (ed.) Diagnosis and improvement of saline and alkali soils. U. S. Dep. of Agriculture Handbook no. 60. Vivas, A., B. Moreno, S.G. Rodriguez, and E. Benitez. 2009. Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste. Bioresour. Technol., 100: 1319-1326. Wander, M.M. 2004 Soil organic matter fractions and their relevance to soil function, in:F. Magdoff, R. Weil (ed.), Advances in Agroecology, CRC Press, Boca Raton, FL. 2004. pp. 67-102. Wang, D.H., Q. Shi, X. Wang, M. Wei, J. Hu, J. Liu, and F. Yang. 2010. Influence of cow manure vermicompost on the growth, metabolite contents, and antioxidant activities of Chinese cabbage (Brassica campestris ssp. chinensis). Biol. Fertil. Soils, 46: 689-696. White, F.W., and A.T. Ayoub. 1983. Decomposition of plant residues of variable C/P ratio and the effect of soil phosphate availability. Plant Soil, 74: 163-173. Wong, J.W.C., K.K. Ma, K.M. Fang, and C. Cheung. 1999. Utilization of a manure compost for organic farming in Hong Kong. Bioresour. Technol., 67: 43-46. Yanina, S.C-C., M.I.S. De Pinto, and M.A. Nazareno. 2009. Variaitons in bioactive substance contents and crop yields of lettuce (Lactuca sativa L.) cultivated in soils with different fertilization treatments. J. Agric. Food Chem., 57: 10122-10129. Zaccardelli, M., F.De Nicola, D. Villecco, and R. Scotti. 2013. The development and suppressive activity of soil microbial communities under compost amendment. J. Soil Sci. Plant Nutr., 13: 730-742. Zhang, D., and Y. Hamauzu. 2004. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem., 88: 503-509. Zhao, X., E.E. Carey, W. Wang, and C.B. Rajashekar. 2006. Does organic production enhance phytochemical content of fruit and vegetables ? Current knowledge and prospects for research. HortTechnology., 16: 449-456. Zhao, X., J.R. Nechols, K.A. Williams, W. Wang, and E.E. Carey. 2009. Comparison of phenolic acids in organically and conventionally grown pac choi (Brassica rapa L. chinensis). J. Sci. Food Agric., 89: 940-946. Zink, T.A., M.F. Allen. 1998. The effects of organic amendments on the restoration of a disturbed coastal sage scrub habitat. Restor. Ecol., 6: 52-58.
摘要: 
The high temperature during the composting process can eliminate or reduced weed seed, insect eggs and the human pathogens, however, vermicomposting by earthworms and microorganisms action usually decomposes the organic matters below 30℃, so it is worth to investigating the growth of pathogens during the vermicomposting process. In addition, the effects of vermicomposts applications on soil quality, crops growth, nutrient uptake and soil fertility may be different as earthworms are fed with different kinds of food. The objectives of these study were:(1) to evaluate the changes of colony form units of coliforms and Salmonella spp. during the vermicomposting process with different feeding method, and the safety of vermicompost products and (2) to compare the effects of vermicomposts, chemical fertilizers and composted animal manures application on soil fertility, antioxidant activity and growth of lettuce. Eisenia fetida and four treatments with spent mushroom substrate, including:(1) blank (BK), (2) rice bran (VRM), (3) pig manure (VPM), and (4) fruit residues (VFM) were used in this study. During the 56-day vermicomposting process, foods was feed continuously, and the colony form units of coliforms and Salmonella spp. were evaluated every two weeks. In addition, a study also conducted that pig manure was fed discontinuously, and analyzed the colony form units of coliforms and Salmonella spp. during 28-day of vermicomposting process. A pot experiment of lettuce was including five treatments, (1) control (CK) (2) chemical fertilizer (CF) (3) composted animal manure (CAM) (4) vermicomposted rice bran (VRM) (5) vermicomposted fruit residues (VFM). To evalute effects of these fertilizer treatments on the growth, nutrient uptake, and antioxidant activity of lettuce and on soil fertility. The results showed that during the 56-day vermicomposting, continuous feeding could not reduce the colony form units of coliforms and Salmonella spp., but they were reduced after air-dry of the vermicomposted products. However, in the experiment of the 28-day vermicomposting, discontinuous feeding did reduce the colony form units of pathogens. Results also showed that compared with the control treatment, all fertlizer treatments significantly improved the fresh weight of lettuce and increased the nutrient availability in soil, especially the treatments of CAM, VRM and VFM significantly improved plant growth, the treatments of CF had the highest uptake of nitrogen and potassium, followed by the treatment CAM, VRM and VFM, and the treatment of VRM had the highest content of phosphorus and magnesium. There was no significant difference in total flavonoid contents among the treatments, but CK treatment had the highest content of total phenolics. Moreover, CK had the highest DPPH free radical scavenging effects, followed by the treatments of VFM and VRM. To summarize, the colonly form units of coliforms and Salmonella spp. can be reduced by vermicomposting, and the application of vermicomposts can promote the growth of lettuce, as effective as chemical fertlizer and composted animal manure do, and it also exhibit better antioxidant activity.

傳統堆肥化的高溫階段具殺死或降低雜草種子、蟲卵和病原菌數量的效果,然而,蚓糞堆肥化係透過蚯蚓和微生物的作用在30℃下進行,故蚓糞堆肥化過程對病原菌之消長值得探討。蚓糞堆肥之施用對土壤品質、作物生長、養分吸收和土壤肥力之影響,亦可能因餵食資材之不同而異。本研究之目的在於: (一) 評估以不同方式餵食蚯蚓,於蚓糞堆肥化過程中之大腸桿菌群和沙門氏菌菌數之變化及其安全性及(二) 探討蚓糞堆肥之施用對萵苣生長、抗氧化能力及土壤肥力之影響,並與施用禽畜糞堆肥和化學肥料的處理比較。本研究以Eisenia fetida為供試蚯蚓,下列含四種處理:(1) 對照組 (Blank,BK);(2) 餵食米糠組 (Rice bran,VRM);(3) 餵食豬糞組 (Pig manure,VPM) 及 (4) 餵食水果組 (Fruit residues,VFM)。以菇類養殖廢棄物作為餵養基料,並以分批餵食方式進行56天的蚓糞堆肥化作用,每兩周採樣分析大腸桿菌群和沙門氏菌菌數。此外,另針對未分批餵食豬糞之處理進行28天之大腸桿菌群和沙門氏菌菌數之測定。另進行萵苣盆栽試驗,含五種處理:(1) 未施肥組 (Check,CK);(2) 化學肥料處理組 (Chemical fertilizer,CF);(3) 禽畜糞堆肥處理組 (Composted animal manure,CAM);(4) 米糠蚯蚓糞肥處理組 (Vermicomposted rice bran,VRM) 以及 (5) 水果蚯蚓糞肥處理組 (Vermicomposted fruit residues,VFM)。比較各處理之萵苣生長、養分吸收、抗氧化能力與土壤肥力。結果顯示,在分批餵食之56天蚓糞堆肥化過程中,大腸桿菌群和沙門氏菌的菌數並無減少之趨勢,但經風乾後,各處理之該兩種病原菌菌數皆呈顯著的下降。未分批餵食之28天豬糞試驗中,兩種病原菌之菌數會隨堆肥時間的增加而降低;顯示蚓糞堆肥化確有降低病原菌之作用。試驗結果亦顯示,與CK處理比較,各種肥料之施用皆可提升萵苣之鮮重並增進土壤的養分有效性;其中以CAM、VRM和VFM處理之萵苣生長較佳,而CF處理有最高的氮和鉀吸收量,VRM處理則有較高的磷和鎂吸收量。萵苣植體中抗氧化物質的含量中,總類黃酮含量於各處理間無明顯差異,而CK處理具有最高的總酚類含量。此外,CK處理之清除自由基DPPH率為最高,其次為VFM處理和VRM處理。綜合以上結果,以未分批餵食方式進行蚓糞堆肥化較能減少病原菌數,而蚓糞堆肥之施用,對萵苣產量之提升與禽畜糞堆肥或化學肥料相當,但具有較佳的抗氧化能力。
URI: http://hdl.handle.net/11455/90136
Rights: 同意授權瀏覽/列印電子全文服務,2015-08-20起公開。
Appears in Collections:土壤環境科學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102039001-1.pdf735.22 kBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.