Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90137
標題: Effects of the composting processes of swine manure on antibiotic concentrations and microbial resistances
豬糞於堆肥過程中抗生素濃度與微生物抗藥性之變化
作者: Chiun-Ya Hung
洪群雅
關鍵字: manure;composting;tetracyclines;sulfonamides;禽畜糞;堆肥化;四環黴素;磺胺類;抗藥性
引用: 方嘉得、李得元、李得响、姜仁章。1997。基礎分析化學/第七版。雅美書版股 份有限公司。 行政院農委會。2007。動物用藥品使用手冊第三版。行政院農委會動植物防疫 檢疫局。 台灣區動物用藥品工業同業公會。1990。畜牧業與動物藥品之使用。台灣區動 物用藥品工業同業公會。 沈穎、魏元送、郭睿、徐超一、張朝暉、周光漪、趙鑫、劉俊新。2009。豬糞中 四環黴素類抗生素殘留物的生物降解。過程工程學報。 5:747-752。 呂旭峰、鄒梅芬、蔡惠貞、張雅欣、吳嘉齡、薛樹清。2002。人畜共用抗生素 安巴素(avoparcin)造成的潛在性危機。院內感染控制雜誌。12:31-43 宋聰華。2004。抗藥性菌的產生與防範。農政與農情。144: 49-52。 林正芳、林郁真、余宗賢。2008。新興汙染物(抗生素與止痛藥)於特定污染源 環境之流佈。持久性有機污染物(含戴奧辛)研討會。台灣。 林聖文。2005。畜牧用抗生素之抗藥性攜帶者在一個人工環境的宿命。中興大 學土環系碩士論文。 吳天鳴、朱延和。2003。國科會科學發展月刊。364:64-73。 吳錦。1997。病原微生物造成的環境汙染。環境微生物。科技圖書。223-259。 柯勇。2003。現代微生物學。藝軒圖書出版社。 陳德輝。1999。常用的抗生素。合記圖書出版社。 陳良人。1984。正確使用動物用抗生素。動物用藥品解說。 陳瑞祥。2001。含藥飼料添加使用規範之簡介。農政與農情。106:25-27。 陳瑛瑛、陳嫣紅、王復德。2006。抗藥性微生物院內感染之防治策略。臨床醫 學。57: 127-133。 陳淑娟、許齡尹、羅致逑。2012。以USEPA 1680方法檢測國產有機肥中糞生大 腸桿菌群。土壤肥料通訊。95: 87-88 陳藝文。2005。水體及土壤中大腸桿菌群抗藥性之研究。中興大學土環系碩士論文。 張上淳、陳美文、林美智、胡幼圃。2000。台灣人用抗生素與動物用抗生素使用量之調查研究。感染控制雜誌第。13:334-345。 國彬、姚麗賢、何兆桓、周昌敏、李國良、楊苞梅、黃連喜。2011。高效液相色譜法測定禽畜廢物中磺胺類、喹諾酮類抗生素。12:2054-2059。 黃淑華。2000。應用高效液相層析法檢測豬糞中四環黴素類抗生素及磺胺劑。中興大學獸醫系碩士論文。 楊美桂、陳淵銓。2001。普通微生物學實驗。藝軒圖書出版社。 廖俊凱、周慈怡。1996。藥物化學(上冊)。合計圖書出版社。 潘銘正。2003。細菌感染症的實驗室診斷。2003年動物疫病診斷鑑定技術研習 會專輯。行政院農業委員會動植物防疫檢疫局。 鄭世鑫。2011。堆肥大腸桿菌群在土壤與小白菜中之存活。中興大學土環系碩 士論文。 簡宣裕、朱戩良、林財旺、鄭智馨。2001。廢棄物堆肥化技術。永續農業-作物 篇。中華永續農業協會。 羅致逑、許齡尹、陳淑娟。2013。有機堆肥中沙門氏桿菌之檢驗方法。行政院農 業委員會農業藥物毒物試驗所技術專刊。109: 1-14 Aga, D.S., S. O'Connor, S. Ensley, J.O. Payero, D. Snow and D. Tarkalson. 2005. Determination of the persistence of tetracycline antibiotics and their degradates in manure-amended soil using enzyme-linked immunosorbent assay and liquid chromatography-mass spectrometry. J. Agric. Food Chem. 53: 7165-7171. Alcorn, T. 2012. Antibiotic use in livestock production in the USA. Lancet Infect. Dis. 12: 273-274. Anderson, K.L., T.G. Nagaraja, J.L. Morrill, P.G. Reddy, T.B. Avery and N.V. Anderson. 1988. Performance and ruminal changes of early-weaned calves fed lasalocid. J. Anim. Sci. 66: 806-813. APHA. 1992. Standard methods for the examination of water and wastewater. American Public Health Association. Washington APHA. 2005. Standard methods for the examination of water and waste water. American Public Health Association. Washington. Arikan, O.A. 2008. Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves. J. Hazard. Mater. 158: 485-490. Arikan, O.A., W. Mulbry and C. Rice. 2009. Management of antibiotic residues from agricultural sources: Use of composting to reduce chlortetracycline residues in beef manure from treated animals. J. Hazard. Mater. 164: 483-489. Bae, W., K.N. Kaya, D.D. Hancock, D.R. Call, Y.H. Park and T.E. Besser. 2005. Prevalence and antimicrobial resistance of thermophilic Campylobacter spp. from cattle farms in Washington State. Appl. Environ. Microbiol. 71: 169-174. Baquero, F. 1995. Pneumococcal resistance to bata-lactam antibiotics: a global deographic overview. Microb Drug Resist. 1: 115-120. Baran, W., E. Adamek, J. Ziemiańska and A. Sobczak. 2011. Effects of the presence of sulfonamides in the environment and their influence on human health. J. Hazard. Mater. 196: 1-15. Berger, K., B. Petersen and H. Buningpgaue. 1986. Persistence of drugs occurring in liquid manure in the food-chain. Arch. Lebensmittelhyg 37: 99-102. Bhatia, A., M. Ali, J. Sahoo, S. Madan, R. Pathania, N. Ahmed, et al. 2012. Microbial diversity during Rotary Drum and Windrow Pile composting. J. Basic Microbiol. 52: 5-15. Binh, C.T.T., H. Heuer, M. Kaupenjohann and K. Smalla. 2008. Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol. Ecol. 66: 25-37. Blackwell, P.A., P. Kay and A.B.A. Boxall. 2007. The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere 67: 292-299. Blackwell, P.A., H.C.H. Lutzhoft, H.P. Ma, B. Halling-Sorensen, A.B.A. Boxall and P. Kay. 2004. Ultrasonic extraction of veterinary antibiotics from soils and pig slurry with SPE clean-up and LC-UV and fluorescence detection. Talanta 64: 1058-1064. Boonsaner, M. and D.W. Hawker. 2010. Accumulation of oxytetracycline and norfloxacin from saline soil by soybeans. Sci. Total Environ. 408: 1731-1737. Bound, J.P. and N. Voulvoulis. 2004. Pharmaceuticals in the aquatic environment––a comparison of risk assessment strategies. Chemosphere 56: 1143-1155. Boxall, A.B.A., P. Blackwell, R. Cavallo, P. Kay and J. Tolls. 2002. The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol. Lett. 131: 19-28. Boxall, A.B.A., P. Johnson, E.J. Smith, C.J. Sinclair, E. Stutt and L.S. Levy. 2006. Uptake of veterinary medicines from soils into plants. J. Agric. Food Chem. 54: 2288-2297. Braidwood, J.C. and N.W. Henry. 1990. Clinical efficacy of chlortetracycline hydrochloride administered in milk replacer to calves. Vet. Rec. 127: 297-301. Braschi, I., S. Blasioli, L. Gigli, C.E. Gessa, A. Alberti and A. Martucci. 2010. Removal of sulfonamide antibiotics from water: Evidence of adsorption into an organophilic zeolite Y by its structural modifications. J. Hazard. Mater. 178: 218-225. Brooks, B.W., J.D. Maul and J.B. Belden. 2008. Antibiotics in Aquatic and Terrestrial Ecosystems. In: J. Editors-in-Chief: Sven Erik and F. Brian, editors, Encyclopedia of Ecology. Academic Press, Oxford. p. 210-217. Butaye, P., L.A. Devriese and F. Haesebrouck. 2003. Antimicrobial growth promoters used in animal feed: Effects of less well known antibiotics on gram-positive bacteria. Clin. Microbiol. Rev. 16: 175-188. Byrne-Bailey, K.G., W.H. Gaze, P. Kay, A.B.A. Boxall, P.M. Hawkey and E.M.H. Wellington. 2009. Prevalence of sulfonamide resistance genes in bacterial isolates from manured agricultural Soils and Pig Slurry in the United Kingdom. Antimicrob. Agents Chemother. 53: 696-702. Cappuccino, J.G. and N. Sherman. 1996. Microbiology: A laboratory manualThe Benjamin/Cummings Publishing Company, New York Chang, C., T.G. Sommerfeldt and T. Entz. 1991. Soil chemistry after eleven annual application of cattle feedlot manure. J. Environ. Qual. 20: 475-480. Chee-Sanford, J.C., R.I. Mackie, S. Koike, I.G. Krapac, Y.F. Lin, A.C. Yannarell, et al. 2009. Fate and Transport of Antibiotic Residues and Antibiotic Resistance Genes following Land Application of Manure Waste. J. Environ. Qual. 38: 1086-1108. Chen, Y.S., H.B. Zhang, Y.M. Luo and J. Song. 2012. Occurrence and assessment of veterinary antibiotics in swine manures: A case study in East China. Chin. Sci. Bull. 57: 606-614. Chopra, I. and M. Roberts. 2001. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65: 232-260. Cromwell, G.L. 2002. Why and how antibiotics are used in swine production. Anim. Biotechnol. 13: 7-27. Daghrir, R. and P. Drogui. 2013. Tetracycline antibiotics in the environment: a review. Environ. Chem. Lett. 11: 209-227. De Liguoro, M., V. Cibin, F. Capolongo, B. Halling-Sorensen and C. Montesissa. 2003. Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. Chemosphere 52: 203-212. De Liguoro, M., C. Poltronieri, F. Capolongo and C. Montesissa. 2007. Use of sulfadimethoxine in intensive calf farming: evaluation of transfer to stable manure and soil. Chemosphere 68: 671-676. Depaola, A. and M.C. Roberts. 1995. Class D and E tetracycline resistance determinants in gram-negative catfish pond bacteria. Mol. Cell. Probes 9: 311-313. Doi, A.M. and M.K. Stoskopf. 2000. The kinetics of oxytetracycline degradation in deionized water under varying temperature, pH, light, substrate, and organic matter. J. Aquat. Anim. Health 12: 246-253. Doretto, K.M. and S. Rath. 2013. Sorption of sulfadiazine on Brazilian soils. Chemosphere 90: 2027-2034. Duriez, P. and E. Topp. 2007. Temporal dynamics and impact of manure storage on antibiotic resistance patterns and population structure of Escherichia coli isolates from a commercial swine farm. Appl. Environ. Microbiol. 73: 5486-5493. Eady, E.A. 1998. Bacterial resistance in acne Dermatology 196: 59-66. Ena, J., M.a. del Mar Lopez-Perezagua, C. Martı́nez-Peinado, M.a. de los Angeles Cia-Barrio and I. Ruı́z-Lopez. 1998. Emergence of Ciprofloxacin Resistance in Escherichia coli Isolates after Widespread Use of Fluoroquinolones. Diagn. Microbiol. Infect. Dis.30: 103-107. Fang, G.-Z., J.-X. He and S. Wang. 2006. Multiwalled carbon nanotubes as sorbent for on-line coupling of solid-phase extraction to high-performance liquid chromatography for simultaneous determination of 10 sulfonamides in eggs and pork. J. Chromatogr. A1127: 12-17. FDA. 1951. the US Food and Drug Administration Franti, C.E., L.M. Julian and H.E. Adler. 1973. Antibiotic growth promotion - effects of zinc bacitracin and oxytetracycline on live weight and weights of selected muscles of new-hampshire cockerels. Poult. Sci. 52: 1757-1765. Fritz, J.W. and Y. Zuo. 2007. Simultaneous determination of tetracycline, oxytetracycline, and 4-epitetracycline in milk by high-performance liquid chromatography. Food Chem. 105: 1297-1301. Gao, P., M. Munir and I. Xagoraraki. 2012. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Sci. Total Environ. 421–422: 173-183. Gao, P.P., D.Q. Mao, Y. Luo, L.M. Wang, B.J. Xu and L. Xu. 2012. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Res. 46: 2355-2364. Gavalchin, J. and S.E. Katz. 1994. The persistence of fecal-borne antibiotics in soil. J. AOAC Int. 77: 481-485. Gong, C. M. 2007. Microbial safety control of compost material with cow dung by heat treatment. J. Environ. Sci. 19: 1014-1019. Gonsalves, D. and D.P.H. Tucker. 1977. Behavior of oxytetracycline in florida citrus and soils. Arch. Environ. Contam. Toxicol. 6: 515-523. Graves, A.K., L. Liwimbi, D.W. Israel, E. van Heugten, B. Robinson, C.W. Cahoon, et al. 2011. Distribution of ten antibiotic resistance genes in E. coli isolates from swine manure, lagoon effluent and soil collected from a lagoon waste application field. Folia Microbiol. 56: 131-137. Gu, C., K.G. Karthikeyan, S.D. Sibley and J.A. Pedersen. 2007. Complexation of the antibiotic tetracycline with humic acid. Chemosphere 66: 1494-1501. Guan, T.X., H.B. He, X.D. Zhang and Z. Bai. 2011. Cu fractions, mobility and bioavailability in soil-wheat system after Cu-enriched livestock manure applications. Chemosphere 82: 215-222. Guillemot, D. 1999. Antibiotic use in humans and bacterial resistance. Curr. Opin. Microbiol. 2: 494-498. Guillemot, D., E. Varon, C. Bernede, P. Weber, L. Henriet, S. Simon, et al. 2005. Reduction of antibiotic use in the community reduces the rate of colonization with penicillin G-nonsusceptible Streptococcus pneumoniae. Clin. Infect. Dis. 41: 930-938. Haller, M.Y., S.R. Muller, C.S. McArdell, A.C. Alder and M.J.F. Suter. 2002. Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography–mass spectrometry. J. Chromatogr. A952: 111-120. Halling-Sorensen, B., G. Sengelov and J. Tjornelund. 2002. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Arch. Environ. Contam. Toxicol. 42: 263-271. Hamscher, G., H.T. Pawelzick, H. Hoper and H. Nau. 2005. Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ. Toxicol. Chem. 24: 861-868. Hamscher, G., S. Sczesny, A. Abu-Qare, H. Hoper and H. Nau. 2000. Substances with pharmacological effects including hormonally active substances in the environment: Identification of tetracyclines in soil fertilized with animal slurry. Dtsch. Tierarztl. Wochenschr. 107: 332-334. Hamscher, G., S. Sczesny, H. Hoper and H. Nau. 2002. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal. Chem. 74: 1509-1518. Hartlieb, N., T. Ertunc, A. Schaeffer and W. Klein. 2003. Mineralization, metabolism and formation of non-extractable residues of 14C-labelled organic contaminants during pilot-scale composting of municipal biowaste. Environ. Pollut. 126: 83-91. Hastings, P.J., S.M. Rosenberg and A. Slack. 2004. Antibiotic-induced lateral transfer of antibiotic resistance. Trends in Microbiology 12: 401-404. Heberer, T. 2002. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol. Lett. 131: 5-17. Hernandez, F., J.V. Sancho, M. Ibanez and C. Guerrero. 2007. Antibiotic residue determination in environmental waters by LC-MS. TrAC Trends in Anal. Chem. 26: 466-485. Heuer, H., A. Focks, M. Lamshoft, K. Smalla, M. Matthies and M. Spiteller. 2008. Fate of sulfadiazine administered to pigs and its quantitative effect on the dynamics of bacterial resistance genes in manure and manured soil. Soil Biol. Biochem. 40: 1892-1900. Hill, G.M., D.C. Mahan, S.D. Carter, G.L. Cromwell, R.C. Ewan, R.L. Harrold, et al. 2001. Effect of pharmacological concentrations of zinc oxide with or without the inclusion of an antibacterial agent on nursery pig performance. J. Anim. Sci. 79: 934-941. Hirsch, R., T. Ternes, K. Haberer and K.L. Kratz. 1999. Occurrence of antibiotics in the aquatic environment. The Sci. Total Environ. 225: 109-118. Ho, Y.B., M.P. Zakaria, P.A. Latif and N. Saari. 2013. Degradation of veterinary antibiotics and hormone during broiler manure composting. Bioresour. Technol. 131: 476-484. Holt, J.P., E. van Heugten, A.K. Graves, M.T. See and W.E.M. Morrow. 2011. Growth performance and antibiotic tolerance patterns of nursery and finishing pigs fed growth-promoting levels of antibiotics. Livest. Sci. 136: 184-191. Holvoet, K., I. Sampers, B. Callens, J. Dewulf and M. Uyttendaele. 2013. Moderate Prevalence of Antimicrobial Resistance in Escherichia coli Isolates from Lettuce, Irrigation Water, and Soil. Appl. Environ. Microbiol. 79: 6677-6683. Homem, V. and L. Santos. 2011. Degradation and removal methods of antibiotics from aqueous matrices – A review. J. Environ. Manage. 92: 2304-2347. Hu, X.G., L. Yi, Q.X. Zhou and L. Xu. 2008. Determination of Thirteen Antibiotics Residues in Manure by Solid Phase Extraction and High Performance Liquid Chromatography. Chinese Journal of Analytical Chemistry 36: 1162-1166. Hu, X., Q. Zhou and Y. Luo. 2010. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ. Pollut. 158: 2992-2998. Hughes, V.M. and N. Datta. 1983. Conjugative plasmids in bacteria of the 'pre-antibiotic' era. Nature 302: 725-726. Inoko, A. 1982. The composting of organic materials and associated maturity problems. ASPAC/FFTC Technical Bulletin 71: 1-20. Jacobs, L.W. 1990. potential hazards when using organic material as fertilizers for crop production. ASPAC/FFTC Extension Bulletin 313: 1-29. Jacobsen, A.M. and B. Halling-Sorensen. 2006. Multi-component analysis of tetracyclines, sulfonamides and tylosin in swine manure by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 384: 1164-1174. Jeong, J., W. Song, W.J. Cooper, J. Jung and J. Greaves. 2010. Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere 78: 533-540. Jjemba, P.K. 2002. The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agric. Ecosyst. Environ. 93: 267-278. Johnsen, P.J., J.P. Townsend, T. Bohn, G.S. Simonsen, A. Sundsfjord and K.M. Nielsen. 2009. Factors affecting the reversal of antimicrobial-drug resistance. Lancet Infect. Dis. (9): 357-364. Kummerer, K., A. Al-Ahmad and V. Mersch-Sundermann. 2000. Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40: 701-710. Karcı, A. and I.A. Balcıoğlu. 2009. Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci. Total Environ. 407: 4652-4664. Kay, P., P.A. Blackwell and A.B.A. Boxall. 2005. A lysimeter experiment to investigate the leaching of veterinary antibiotics through a clay soil and comparison with field data. Environ. Pollut. 134: 333-341. Kemper, N. 2008. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 8: 1-13. Khan, M.A., J. Mustafa and J. Musarrat. 2003. Mechanism of DNA strand breakage induced by photosensitized tetracycline-Cu(II) complex. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 525: 109-119. Kim, K.R., G. Owens, S.I. Kwon, K.H. So, D.B. Lee and Y.S. Ok. 2011. Occurrence and Environmental Fate of Veterinary Antibiotics in the Terrestrial Environment. Water Air Soil Pollut. 214: 163-174. Kim, K.R., G. Owens, Y.S. Ok, W.K. Park, D.B. Lee and S.I. Kwon. 2012. Decline in extractable antibiotics in manure-based composts during composting. Waste Manage. 32: 110-116. Kodaka, H., S. Mizuochi, T. Honda and K. Yamaguchi. 2000. Improvement of mannitol lysine crystal violet brilliant green agar for the selective isolation of H2S-positive Salmonella. J. Food Prot. 63: 1643-1647. Kong, W.D., Y.G. Zhu, Y.C. Liang, J. Zhang, F.A. Smith and M. Yang. 2007. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environ. Pollut. 147: 187-193. Kotzerke, A., S. Sharma, K. Schauss, H. Heuer, S. Thiele-Bruhn, K. Smalla, et al. 2008. Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environ. Pollut. 153: 315-322. Kuhne, M., D. Ihnen, G. Moller and O. Agthe. 2000. Stability of tetracycline in water and liquid manure. Journal of Veterinary Medicine Series A-Physiology Pathology Clinical Medicine 47: 379-384. Kulshrestha, P., R.F. Giese and D.S. Aga. 2004. Investigating the molecular interactions of oxytetracycline in clay and organic matter: Insights on factors affecting its mobility in soil. Environ. Sci. Technol. 38: 4097-4105. Kummerer, K. 2003. Significance of antibiotics in the environment. J. Antimicrob. Chemother. 52: 5-7. Kwon, J.W. 2011. Mobility of Veterinary Drugs in Soil with Application of Manure Compost. Bull. Environ. Contam. Toxicol. 87: 40-44. Kwon, S.I., G. Owens, Y.S. Ok, D.B. Lee, W.T. Jeon, J.G. Kim, et al. 2011. Applicability of the Charm II system for monitoring antibiotic residues in manure-based composts. Waste Manage. 31: 39-44. Kyselkova, M., A. Chronakova, L. Volna, J. Nemec, V. Ulmann, J. Scharfen, et al. 2012. Tetracycline Resistance and Presence of Tetracycline Resistance Determinants tet(V) and tap in Rapidly Growing Mycobacteria from Agricultural Soils and Clinical Isolates. Microbes Environ. 27: 413-422. Lacina, P., P. Zenatova and M. Vavrova. 2012. The assessment of contamination of selected river streams in the czech republic by human and veterinary drug residues with liquid and gas chromatography. Fresenius Environmental Bulletin 21: 3318-3324. Lalith, M.K. 2004. Manual on Antimicrobial Susceptibility Testing. Lertpaitoonpan, W., S.K. Ong and T.B. Moorman. 2009. Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere 76: 558-564. Levy, S.B. 1992. The antibiotic paradox: how miracle drugs are destroying the miracle. Plenum Press, New York Levy, S.B. 2002. The antibiotic paradox: how the misuse of antibiotics destroys their curative powers. Da Capo Press, New York Li, D., M. Yang, J. Hu, Y. Zhang, H. Chang and F. Jin. 2008. Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. Water Res. 42: 307-317. Li, L.L., L.D. Huang, R.S. Chung, K.H. Fok and Y.S. Zhang. 2010. Sorption and Dissipation of Tetracyclines in Soils and Compost. Pedosphere 20: 807-816. Li, L., J. Wu, G. Tian and Z. Xu. 2009. Effect of the transit through the gut of earthworm (Eisenia fetida) on fractionation of Cu and Zn in pig manure. J. Hazard. Mater. 167: 634-640. Li, X.D., H.X. Yu, S.S. Xu and R.M. Hua. 2013. Uptake of three sulfonamides from contaminated soil by pakchoi cabbage. Ecotox. Environ. Safe. 92: 297-302. Lin, Q., L. Liang, L.H. Wang, Q.L. Ni, K. Yang and J. Zhang. 2013. Roles of pyrolysis on availability, species and distribution of Cu and Zn in the swine manure: Chemical extractions and high-energy synchrotron analyses. Chemosphere 93: 2094-2100. Liu, L., Y.-h. Liu, C. X. Liu, Z. Wang, J. Dong and G. F. Zhu. Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions. Ecol. Eng. 53: 183-143. Liu, Y., H. Yang, S. Yang, Q. Hu, H. Cheng and H. Liu. 2013. High-performance liquid chromatography using pressurized liquid extraction for the determination of seven tetracyclines in egg, fish and shrimp. J. Chromatogr. B 917-918: 11-17. Luber, P., J. Wagner, H. Hahn and E. Bartelt. 2003. Antimicrobial resistance in Campylobacter jejuni and Campylobacter coli strains isolated in 1991 and 2001-2002 from poultry and humans in Berlin, Germany. Antimicrob. Agents Chemother. 47: 3825-3830. Luo, Y., D.Q. Mao, M. Rysz, D.X. Zhou, H.J. Zhang, L. Xu, et al. 2010. Trends in Antibiotic Resistance Genes Occurrence in the Haihe River, China. Environ. Sci. Technol. 44: 7220-7225. Luo, Y., L. Xu, M. Rysz, Y. Wang, H. Zhang and P.J.J. Alvarez. 2011. Occurrence and Transport of Tetracycline, Sulfonamide, Quinolone, and Macrolide Antibiotics in the Haihe River Basin, China. Environ. Sci. Technol. 45: 1827-1833. Mao, E.F., L. Lane, J. Lee and J.H. Miller. 1997. Proliferation of mutators in a cell population. J. Bacteriol. 179: 417-422. Martinez-Carballo, E., C. Gonzalez-Barreiro, S. Scharf and O. Gans. 2007. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ. Pollut. 148: 570-579. Marzo, A. and L. Dal Bo. 1998. Chromatography as an analytical tool for selected antibiotic classes: a reappraisal addressed to pharmacokinetic applications. J. Chromatogr. A 812: 17-34. Maszkowska, J., M. Kołodziejska, A. Białk-Bielińska, W. Mrozik, J. Kumirska, P. Stepnowski, et al. 2013. Column and batch tests of sulfonamide leaching from different types of soil. J. Hazard. Mater. 260: 468-474. Miyata, M., I. Ihara, G. Yoshid, K. Toyod and U. K. 2011. Electrochemical oxidation of tetracycline antibiotics using a Ti/TiO2 anode for wastewater treatment of animal husbandry. Water Sci Technol 63: 456-461. Mojica, E.R.E. and D.S. Aga. 2011. Antibiotics Pollution in Soil and Water: Potential Ecological and Human Health Issues. In: O. N. Editor-in-Chief: Jerome, editor Encyclopedia of Environmental Health. Elsevier, Burlington. p. 97-110. Naaber, P., S. Koljalg and M. Maimets. 2000. Antibiotic usage and resistance — trends in Estonian University Hospitals. Int. J. Antimicrob. Agents 16: 309-315. NCCLS. 2000. MIC test supplemental table. Nwosu, V.C. 2001. Antibiotic resistance with particular reference to soil microorganisms. Res. Microbiol. 152: 421-430. O'Connor, S. and D.S. Aga. 2007. Analysis of tetracycline antibiotics in soil: Advances in extraction, clean-up, and quantification. TrAC Trends in Anal. Chem. 26: 456-465. Oka, H. and J. Patterson. 1995. Chemical analysis of tetracycline antibiotics. Chemical analysis for antibiotics used in agriculture. AOAC Int. p. 347-376. Oka, H., K. Uno, K.-i. Harada and M. Suzuki. 1984. J. Chromatogr. 298: 435. Peres, G.T., S. Rath and F.G.R. Reyes. 2010. A HPLC with fluorescence detection method for the determination of tetracyclines residues and evaluation of their stability in honey. Food Control 21: 620-625. Pils, J.R.V. and D.A. Laird. 2007. Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes. Environ. Sci. Technol. 41: 1928-1933. Pinheiro, A., R.M. Rosa Albano, T.C. Alves, V. Kaufmann and M.R. da Silva. 2013. Veterinary antibiotics and hormones in water from application of pig slurry to soil. Agric. Water Manage. 129: 1-8. Preciado, L.C.L., V.S. Miyada, J.D.F. Gomes, R.M. Possobon, A. Lavorenti and J.F.M. Menten. 1997. Evaluation of dietary levels of salinomycin as a growth promotor for weanling pigs. Rev. Soc. Bras. Zootec.-J. Bras. Soc. Anim. Sci. 26: 337-342. Pruden, A., D.G.J. Larsson, A. Amezquita, P. Collignon, K.K. Brandt, D.W. Graham, et al. 2013. Management Options for Reducing the Release of Antibiotics and Antibiotic Resistance Genes to the Environment. Environ. Health Perspect. 121: 878-885. Qiang, Z. and C. Adams. 2004. Potentiometric determination of acid dissociation constants (pK a) for human and veterinary antibiotics. Water Res. 38: 2874-2890. Ratasuk, N., M. Boonsaner and D.W. Hawker. 2012. Effect of temperature, pH and illumination on abiotic degradation of oxytetracycline in sterilized swine manure. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 47: 1687-1694. Roberts, M.C. 2005. Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett. 245: 195-203. Runsey, T.S., R.W. Miller and D.A. Dinius. 1977. Residue content of beef feedlot manure after feeding diethylstilbestrol, chlortetracycline and Ronnel and the use of stirofos to reduce population of fly larvae in feedlot manure. Arch. Environ. Contam. Toxicol. 6: 203-212. Salyers, A.A. and C.F. AmabileCuevas. 1997. Why are antibiotic resistance genes so resistant to elimination? Antimicrob. Agents Chemother. 41: 2321-2325. Samanidou, V.F., E.A. Christodoulou and I.N. Papadoyannis. 2005. Determination of fluoroquinolones in edible animal tissue samples by high performance liquid chromatography after solid phase extraction. J. Sep. Sci. 28: 555-565. Sanderson, H., F. Ingerslev, R.A. Brain, B. Halling-Sorensen, J.K. Bestari, C.J. Wilson, et al. 2005. Dissipation of oxytetracycline, chlortetracycline, tetracycline and doxycycline using HPLC-UV and LC/MS/MS under aquatic semi-field microcosm conditions. Chemosphere 60: 619-629. Sarmah, A.K., M.T. Meyer and A.B.A. Boxall. 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65: 725-759. Schmitt, M.O. and S. Schneider. 2000. Spectroscopic investigation of complexation between various tetracyclines and Mg2+ or Ca2+. PhysChemComm. 3: 42-55 Schwaiger, K., K. Harms, C. Holzel, K. Meyer, M. Karl and J. Bauer. 2009. Tetracycline in liquid manure selects for co-occurrence of the resistance genes tet(M) and tet(L) in Enterococcus faecalis. Vet. Microbiol. 139: 386-392. Selvam, A., D. Xu, Z. Zhao and J.W.C. Wong. 2012a. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Bioresour. Technol. 126: 383-390. Selvam, A., Z. Zhao and J.W.C. Wong. 2012b. Composting of swine manure spiked with sulfadiazine, chlortetracycline and ciprofloxacin. Bioresour. Technol. 126: 412-417. Shalaby, A.R., N.A. Salama, S.H. Abou-Raya, W.H. Emam and F.M. Mehaya. 2011. Validation of HPLC method for determination of tetracycline residues in chicken meat and liver. Food Chem. 124: 1660-1666. Sommerfeldt, T.G., C. Chang and T. Entz. 1988. Long-term annual manure applications increase soil organic matter and nitrogen, and decrease carbon nitrogen ratio. Soil Sci. Soc. Am. J. 52: 1668-1672. Storteboom, H., M. Arabi, J.G. Davis, B. Crimi and A. Pruden. 2010. Identification of Antibiotic-Resistance-Gene Molecular Signatures Suitable as Tracers of Pristine River, Urban, and Agricultural Sources. Environ. Sci. Technol. 44: 1947-1953. Sukul, P., M. Lamshoft, S. Zuhlke and M. Spiteller. 2008. Sorption and desorption of sulfadiazine in soil and soil-manure systems. Chemosphere 73: 1344-1350. Swedberg, G., C. Fermer and O. Skold. 1993. Point mutations in the dihydropteroate synthase gene causing sulfonamide resistance. Advances in Experimental Medicine and Biology 338: 555-558. Taddei, F., M. Radman, J. Maynard-Smith, B. Toupance, P.H. Gouyon and B. Godelle. 1997. Role of mutator alleles in adaptive evolution. Nature 387: 700-702. Tang, J.-C., T. Kanamori, Y. Inoue, T. Yasuta, S. Yoshida and A. Katayama. 2004. Changes in the microbial community structure during thermophilic composting of manure as detected by the quinone profile method. Process Biochem. 39: 1999-2006. Tao, Y., D. Chen, G. Yu, H. Yu, Y. Pan, Y. Wang, et al. 2011. Simultaneous determination of lincomycin and spectinomycin residues in animal tissues by gas chromatography-nitrogen phosphorus detection and gas chromatography-mass spectrometry with accelerated solvent extraction. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment 28: 145-154. Teuber, M. 2001. Veterinary use and antibiotic resistance. Curr. Opin. Microbiol. 4: 493-499. Thiele-Bruhn, S. 2003. Pharmaceutical antibiotic compounds in soils - a review. J. Plant Nutr. Soil Sci.-Z. Pflanzenernahr. Bodenkd. 166: 145-167. Vargas Mamani, M.C., F.G. Reyes Reyes and S. Rath. 2009. Multiresidue determination of tetracyclines, sulphonamides and chloramphenicol in bovine milk using HPLC-DAD. Food Chem. 117: 545-552. Wang, Q. and S.R. Yates. 2008. Laboratory study of oxytetracycline degradation kinetics in animal manure and soil. J. Agric. Food Chem. 56: 1683-1688. Wang, Q.Q., S.A. Bradford, W. Zheng and S.R. Yates. 2006. Sulfadimethoxine degradation kinetics in manure as affected by initial concentration, moisture, and temperature. J. Environ. Qual. 35: 2162-2169. Watkinson, A.J., E.J. Murby, D.W. Kolpin and S.D. Costanzo. 2009. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Sci. Total Environ. 407: 2711-2723. Wegener, H.C. 2003. Antibiotics in animal feed and their role in resistance development. Curr. Opin. Microbiol. 6: 439-445. Wehrhan, A., R. Kasteel, J. Simunek, J. Groeneweg and H. Vereecken. 2007. Transport of sulfadiazine in soil columns - Experiments and modelling approaches. J. Contam. Hydrol. 89: 107-135. Wierup, M. 2001. The Swedish experience of the 1986 year ban of antimicrobial growth promoters, with special reference to animal health, disease prevention, productivity, and usage of antimicrobials. Microbial Drug Resistance- Mechanisms Epidemiology and Disease 7: 183-190. Winckler, C. and A. Grafe. 2001. Use of veterinary drugs in intensive animal production; evidence for persistence of tetracycline in pig slurry. J. Soils Sediments 1: 66-70. Won, S.Y., C.H. Lee, H.S. Chang, S.O. Kim, S.H. Lee and D.S. Kim. 2011. Monitoring of 14 sulfonamide antibiotic residues in marine products using HPLC-PDA and LC-MS/MS. Food Control 22: 1101-1107. Woodward, K.N. and G. Shearer. 1995. Antibiotic use in aminal production in the European Union-regulation and current methods for residue detection. Wu, C.X., A.L. Spongberg, J.D. Witter, M. Fang and K.P. Czajkowski. 2010. Uptake of Pharmaceutical and Personal Care Products by Soybean Plants from Soils Applied with Biosolids and Irrigated with Contaminated Water. Environ. Sci. Technol. 44: 6157-6161. Xie, X.J., Q.X. Zhou, Z.C. He and Y.Y. Bao. 2010. Physiological and potential genetic toxicity of chlortetracycline as an emerging pollutant in wheat (Triticum Aestivum L.). Environ. Toxicol. Chem. 2: 922-928. Xu, X.-R. and X.-Y. Li. 2010. Sorption and desorption of antibiotic tetracycline on marine sediments. Chemosphere 78: 430-436. Yamada, T., A. Suzuki, H. Ueda, Y. Ueda, K. Miyauchi and G. Endo. 2008. Successions of bacterial community in composting cow dung wastes with or without hyperthermophilic pre-treatment. Appl. Microbiol. Biotechnol. 81: 771-781. Yang, J.F., G.G. Ying, L.J. Zhou, S. Liu and J.L. Zhao. 2009. Dissipation of oxytetracycline in soils under different redox conditions. Environ. Pollut. 157: 2704-2709. Yiruhan, Q.-J. Wang, C.-H. Mo, Y.-W. Li, P. Gao, Y.-P. Tai, et al. 2010. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao. Environ. Pollut. 158: 2350-2358. Yu, Z.T., F.C. Michel, G. Hansen, T. Wittum and M. Morrison. 2005. Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance. Appl. Environ. Microbiol. 71: 6926-6933. Yuan, S., Q. Wang, S.R. Yates and N.G. Peterson. 2010. Development of an efficient extraction method for oxytetracycline in animal manure for high performance liquid chromatography analysis. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes 45: 612-620. Zhang, H., Y. Luo and Q.X. Zhou. 2008. Research advancement of eco-toxicity of tetracycline antibiotics. J. Agro-Environ. Sci. 27: 407-413. Zhang, Z.Y., K. Sun, B. Gao, G.X. Zhang, X.T. Liu and Y. Zhao. 2011. Adsorption of tetracycline on soil and sediment: Effects of pH and the presence of Cu(II). J. Hazard. Mater. 190: 856-862. Zhao, L., Y.H. Dong and H. Wang. 2010. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci. Total Environ. 408: 1069-1075. Zhao, Y., J. Geng, X. Wang, X. Gu and S. Gao. 2011. Adsorption of tetracycline onto goethite in the presence of metal cations and humic substances. J. Colloid Interface Sci. 361: 247-251. Zhao, Y.P., Y.Y. Tan, Y. Guo, X.Y. Gu, X.R. Wang and Y. Zhang. 2013. Interactions of tetracycline with Cd (II), Cu (II) and Pb (II) and their cosorption behavior in soils. Environ. Pollut. 180: 206-213. Zielezny, Y., J. Groeneweg, H. Vereecken and W. Tappe. 2006. Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biol. Biochem. 38: 2372-2380.
摘要: 
Antibiotics are widely used in livestock production as a means of disease prevention and growth promotion, and tetracycline (TCs) and sulfonamides (SAs) are the main sources of antibiotics. They are cheap and easy to get, the global usage of these antiboiotics still increase. However, most of the administered antibiotics are excreted through urine and feces as non-metabolized parent compounds and these residual antibiotics in the animal manure become a significant source of antibiotics and cause the development of antibiotic resistant microbes in the environment. Livestock manures are normally treat by composting indicating that there is potential for antibiotic release to the environment through compost application to agricultural lands. The study detects the TCs and SAs concentrations and microbial resistances, in order to know the change during swine manure composting. The results show the mean concentrations of TCs and SAs in fresh swine manure are 3.31 (±0.2) mg/kg and 1.33 (±0.5) mg/kg, and the concentration of these antibiotics decrease during composting process. The resistances of bacteria in fresh swine manure are over 60% for these antibiotics. The resistances of bacteria in compost are 30% for TCs and 40% for SAs. If the temperature during composting could maintain 60℃ in 30 days, the concentrations and resistances of antibiotics will reduce effectively. In the meanwhile, the pathogenic bacteria could also be eliminated.

四環黴素類(tetracyclines, TCs)與磺胺類(sulfonamides, SAs)抗生素為全球廣泛使用的動物用抗生素之一。由於可以預防疾病及促進動物生長,且價格低廉容易取得,因而其使用量逐年上升。這些抗生素不易被動物體代謝,故大部分會隨著排泄物而排出體外,如直接排放會造成環境負擔,並有增加環境中抗藥性微生物的風險。隨著有農業的發展與農業廢棄物資源化觀念的興起,農業上常以堆肥化來處理這些動物排泄物,然而堆肥處理過程中,抗生素與抗藥性微生物的轉變需要加以了解,亦保障有機堆肥施用於土壤之安全性。故本研究取堆肥廠豬糞樣品、堆肥半成品及堆肥成品,以了解堆肥化對於TCs和SAs濃度及微生物抗藥性的影響。結果發現,新鮮豬糞中的TCs平均濃度為3.31 (±0.2) mg/kg,SAs則為1.33 (±0.5) mg/kg,堆肥半成品及成品中其可測得的抗生素濃度及檢出數量皆較新鮮樣品低;在抗藥性方面,新鮮樣品中分離之TSA可培養之微生物對6種抗生素的抗藥性比率都達到60%以上,其而堆肥成品中對TCs的抗藥性比率皆低於30%,對磺胺類則低於40%。新鮮樣品中的大腸桿菌群或沙門氏菌群其對抗生素的抗藥性比率皆可達80%以上,而在堆肥成品中如有分離出這兩類微生物,其抗藥性比率仍有60%以上。新鮮豬糞經過完整的腐熟發酵,如果能在高溫60℃的狀態維持30天,能有效降低豬糞中的TCs和SAs濃度及其內微生物抗藥性,同時也能有效消滅其中的大腸桿菌群及沙門氏菌群。
URI: http://hdl.handle.net/11455/90137
Rights: 同意授權瀏覽/列印電子全文服務,2017-01-29起公開。
Appears in Collections:土壤環境科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-102-7100039014-1.pdf2.61 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.