Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90140
DC FieldValueLanguage
dc.contributorYu-Min Tzouen_US
dc.contributor鄒裕民zh_TW
dc.contributor.authorChe-En Hwangen_US
dc.contributor.author黃&#x5586恩zh_TW
dc.contributor.other土壤環境科學系所zh_TW
dc.date2015zh_TW
dc.date.accessioned2015-12-09T02:25:12Z-
dc.identifier.citation吳錦昆,1990,氧化鋁吸附地下水中砷之研究,國立成功大學 環境工程學系碩士論文。 李雅萍,1998,混凝與離子交換法去除水中As (V)之研究,台大環工所 碩士論文。 邱誌忠,2004,半導體產業高濃度含砷廢水之處理-化學沈降法與活性炭 吸附法之評估,中興大學環工所碩士論文。 鄭仲凱,2003,氫氧化鐵吸附水中砷之動力與平衡研究,國立成功大學 環境工程學系碩士論文。 劉振宇,2009,淺論台灣地區含砷地下水水質特徵及其釋出機制,台灣 土壤及地下水環境保護協會會刊31:4-17。 賴志傑,2008,嘉南平原之水文地質環境中砷之分布與特徵:意涵砷之 釋出過程,國立台灣大學生物暨農學院生物環境系統工程學系碩士論文。 謝文彬,2004,奈米級零價鐵結合過氧化氫與Fenton試劑處理含PAHs 汙染土壤,國立中興大學土壤環境科學系碩士論文。 Alloway, B.J. 1995. Heavy metals in soil. New York : Halsted Press, pp.106-121. Blowes, D.W., C. J. Ptacek, and J. L. Jambor, 1997. In-Situ Remediation of Chromate Contaminated Groundwater Using Permeable Reactive Walls. Environment. Sci.31(12): 3348–3357. Bokare, A.D., and W. Choi. 2009. Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environment. Sci. 43: 7130-7135. Busetti, F., S. Badoer, M. Cuomo, B. Rubino, and P. Traverso. 2005. Occurrence and Removal of Potentially Toxic Metals and Heavy Metals in the Wastewater Treatment Plant of Fusina (Venice, Italy). Ind. Eng. Chem. Res. 44: 9264-9272. Chen, S.L., S.R. Dzeng, and M.H. Yang. 1994. Arsenic species in groundwater of the blakfoot disease area, Taiwan. Environ. Sci. Technol. 28: 877-881. Cullen , W.R., and K.J. Reimer. 1989. Arsenic speciation in the environment. Chem. Rev. 89: 713-764. Gao, S., K.K. Tanji, and S. Goldberg. 1997. Session 1 : Potentially toxic trace elements in soils and sediments Paper 4 : Reactivity and transformation of arsenic. Ghimirea, K.N., K. Inoue, H Yamaguchi, and K. Makino, and T. Miyajima. 2003. Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Res. 37: 4945-4953. Goldstone, M. E., P. W. W. Kirk, and J. N. Lester. 1990. The behaviour of heavy metals during wastewater treatment I. Cadmium, chromium and copper. Sci. Total Environ. 95: 233-252. Hatleild, B., C. Brailford, and D.E. Carter. 1996. Reaction of arsenic with heroglobin. J. Toxicol. Enivorn. Health. 47: 145-157. Hsu, K.H., L.L. Hsieh, H.Y. Chiou, C.J. Lee, C.Y. Wang, T.H. Lee, and C.J. Chen. 1999. Comparison of characteristics and arsenic toxicity between residents of southwestern region and northeastern basin in Taiwan: A study on prevalence of hypertension. Chin J. Public. Health, 18(1): 124-133. Ishinishi, N., Tsuchiya, M. Vahter, and B.A. Fowler. Arsenic. 1986. In L. Friberg etal. (ed.) Handbook on the toxicology of metals, 2nd ed. Elservier Sci. 43-83. Katsoyiannis, I.A., T. Ruettimann, and S. J. Hug., 2008. pH Dependence of Fenton Reagent Generation and As(III) Oxidation and Removal by Corrosion of Zero Valent Iron in Aerated Water. Environ. Sci. Technol. 42: 7424-7430. Korte, N.E., and Q. Fernando. 1991. A review of arsenic(III) in groundwater. Crit Rev. Environ Con. 21: 1-39. Lee, J., J. Kim, and W. Choi. 2007. Oxidation on Zerovalent Iron Promoted by Polyoxometalate as an Electron Shuttle. Environ. Sci. Technol. 42: 3335-3340. Lin, C.J., S.L. Wang, P.M. Huang, Y.M. Tzou, J.C. Liu, C.C. Chen, J.H. Chen, and C. Lin. 2009. Chromate reduction by zero-valent Al metals as catalyzed by polyoxometalate. Water Res. 43: 5015-5022 Matheson, L. J., and P.G. Tratnyek. 1994. Reductive Dehalogenation of Chlorinated Methanes by Iron Metal. Environ. Sci. Technol. 28 (12): 2045-2053. Ng, J.C., J. Wang and A. Shraim. 2003. A global health problem caused by arsenic from natural sources. Chemosphere 52: 1353-1359. O'Neill, P. 1995. Arsenic. In 'Heavy Metals in Soil' (B. J. Alloway, Ed.). Blackie Academic & Professional, Glasgow. Raven, K.P., A. Jain, and R.H. Loeppert. 1998. Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol. 32: 344-349. Sadiq, M. 1997. Arsenic chemistry in siols: An overview of thermodynamic predictions and field observations. Water Air Soil Pollut. 93: 117-136. Scherer, M. M., S. Richter, R. L. Valentine, and P. J. J. Alvarez. 2000. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Environ. Sci. Technol. 30(3): 364-411. Schwertmann U., U. Gasser, and H. Sticher. 1989. Chromium for iron substitution in synthetic goethites. Geochim Cosmochim Acta. 53: 1293-1297. Seidel, A.,Waypa J. J. and Elimelech, M., 2001. Role of charge (Donnan) exclusion in removal of arsenic from water by a negatively charged porous nanofiltration membrane, Environmental Engineering Science, 18, 105–112. Shen, J.,C. Ou, Z. Zhou, J. Chen, K. Fang, X. Sun, J. Li, L. Zhou, and L Wang, 2013. Pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater using a combined zero-valent iron (ZVI) reduction and Fenton oxidation process. J Hazard Mater. 260: 993-1000. Smedley, P.L., and D.G. Kinnburgh. 2002. A review of source, behavior and distribution of arsenic in natural waters. Appl. Geochem. 17: 517-568 Takamatsu T.H., H. Aoki and T. Yoshida. 1982. Determination of arsenate, arsenite monomethylaraonate and dimethylarsinate in soil polluted with arsenic. Soil Science. 133: 239-246. Tseng, C.H., T.Y. Tai, C.K. Chong, C.P. Tseng, M.S. Lai, B.J. Lin, H.Y. Chiou, Y.M. Hsueh, K.H. Hsu and C.J. Chen. 2000. Long-term arsenic exposure and incidence of non-dependent diabetes mellitus: a cohort study in arseniasis- hyperendemic villages in Taiwan. Environ. Health Persp., 108: 847-851. WHO. 2001. Arsenic and Arsenic Compounds (Environmental Health Criteria 224), 2nd ed. Geneva: World Health Organization, International Programme on Chemical Safety. Wu, C. C., L. C. Hsu, P.N. Chiang, J. C. Liu, W. H. Kuan, C. C. Chen, Y.M. Tzou, M. K. Wang, C. E. Hwang. 2013. Oxidative removal of arsenite by Fe(II)- and polyoxometalate (POM)-amended zero-valent aluminum (ZVAl) under oxic conditions. Water Res. 47(7): 2583-5291. Yamauchi, H., and A.F. Bruce. 1994. Toxicity and metalbolism of inorganic and methylated arsenicals. In arsenic in the environment II. Human health and ecosystem effects (JO.Nriagu,ED). Wiley New York. pp.35-43.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/90140-
dc.description.abstractArsenic, a commonly found pollutant in the environment, has received much scientific concern because it, particularly in the inorganic form, is very toxic and carcinogenic to human. Arsenic consists of two major forms of As(III) and As(V). Since As(III) is more toxic than As(V), the oxidation of As(III) and subsequent removal of As(V) are considered an important strategy for treating arsenic contaminated sites. Fenton reaction, a well-known pathway of producing the OH radicals through the interaction of Fe(II) with H2O2 at an acidic solution, had been previously used to oxidize As(III). Recently, studies also find that zero-valent aluminum (ZVAl) exhibits an excellent efficiency of oxidizing As(III) in an aerobic system via a Fenton-like reaction. However, the presence of oxide layers on the surfaces of ZVAl would inhibit the OH radical productions, and a catalyst of polyoxometalates (POM) was used to remove the oxide layer and enhance the oxidant formation. The technique still needs some modifications because the POM is expensive and difficult to be recycled and reused. Thus, in the study, we tried to replace POM by Fe ions, including Fe(III) and Fe(III), in the ZVAl/O2 system to promote the Fenton-like reaction and enhance As(III) oxidation. In addition, Al beverage can (ABC) was also used as a substitute for ZVAl to investigate its potential efficiency for As(III) oxidation. Results showed that As(III) oxidation was indiscernible in the ZVAl/O2 system within the 360 min reaction; however, 80 μM As(III) could be completely oxidized in the ABC/O2 system within 120 and 360 min at pH 1 and 2, respectively. With the addition of Fe, 80 μM As(III) would be rapidly oxidized in both ZVAl/Fe(II)/O2 and ZVAl/Fe(III)/O2 system, and As(III) oxidation increased with an increase in Fe concentrations. During As(III) oxidation, the H2O2 accumulation was inhibited, a result demonstrating that Fe(III) could be reduced and reacted rapidly with H2O2 to promote As(III) oxidation. Besides, compared to ZVAl/Fe/O2 system, ABC/Fe(II)/O2 and ABC/Fe(III)/O2 system exhibited a higher oxidative ability at pH 1 and 2 because OH radicals could be produced through both Fenton and Fenton-like (i.e., H2O2 react directly with ABC) reactions. After As(III) oxidation, Al and Fe would co-precipitate with As(V), and 100% As(V) removal could be achieved when the solution pH was increased to 6.0. Because As associates commonly with Fe in the groundwater, the current results may provide a cost-effective method for treating As in the water body.en_US
dc.description.abstract環境中的砷(As)尤其是無機砷(包括As(III)與As(V))的汙染問題是全球關注的環境議題之一,由於As(III)比As(V)有著較高的毒性與移動性,因此如何將As(III)氧化成As(V)並進一步移除已成為受砷汙染地區整治時的主要目標。過去已有許多氧化As(III)的相關報導,其中又以Fenton法最受重視,此法主要是利用Fe(II)與過氧化氫在酸性條件下生成具有高氧化能力的氫氧自由基(OH radical)來氧化As(III)。最近的文獻亦發現使用零價鋁(ZVAl)做為電子來源,在酸性通氧條件下同樣能進行Fenton-like反應產生OH radicals來進行As(III)的氧化,然而ZVAl表面常含有一層金屬氧化層,會抑制該氧化劑的產生,需使用polyoxometalates(POM)來消除此氧化層並促進反應進行,但因POM較為昂貴且有回收上的疑慮,故本實驗擬在ZVAl系統中嘗試加入Fe(III)或Fe(II)來取代POM並促進Fenton-like反應之效率及增強As(III)的氧化,同時也使用生活中常見之鋁罐代替ZVAl作為電子提供者,了解鋁罐系統對於As(III)氧化之效率。結果顯示,在酸性通N2環境下,ZVAl及鋁罐系統均有還原溶液中Fe(III)的能力。在As(III)氧化的實驗中,ZVAl/O2系統無論在pH 1.0或2.0下,360 min內均觀察不到As(III)的氧化;而鋁罐/O2系統在pH 1.0或2.0分別可在120 min及360 min內將80 μM的As(III)完全氧化。當加入Fe離子時,ZVAl/Fe(II)/O2系統及ZVAl/Fe(III)/O2系統均能有效氧化80 μM的As(III),反應速率隨著Fe的添加量而提高,且過程中雙氧水的累積明顯受到抑制,證明無論是Fe(II)或是Fe(III)均較不受氧化層的影響,可迅速生成OH radical氧化As(III)。而鋁罐/Fe(II)/O2系統及鋁罐/Fe(III)/O2系統無論在pH 1.0及2.0下均顯示了非常高之氧化效率,此因鋁罐本身和額外添加之Fe兩者能同時利用雙氧水產生氧化劑,因此有非常高之氧化效率。當As(III)被完全氧化之後,將各反應溶液之pH調整至6.0附近,使Fe/Al產生(氫)氧化物沉澱,並同時移除水溶液中之As(V),結果顯示,所有加入Fe離子的ZVAl與鋁罐通氧系統均能達到100 %之砷移除率,因地下水中鐵與砷常共同存在,此技術未來可利用於處理受地下水砷污染地區的一個便宜有效的方法。zh_TW
dc.description.tableofcontents謝誌……………………………………………….………….………….….....i 中文摘要………………………………………….………….……………....iii Abstract………………………………………….…………….………….….v 目錄.. …………………………………………….…………….…………....vii 圖次……………………………………………….……………………….…xi 表次..………………………………………………………………………..xiv 第一章 緒論 1-1 研究動機…………………………………………….………………1 1-2 研究目的……………………………………………….……………2 第二章 文獻回顧 2-1 砷………………………………………………...……….…...……3 2-1-1 砷的基本性質與環境化學…………………...….….………3 2-1-2 砷的來源…………………………...……...……….….…….8 2-1-3 砷的毒害…………………………...………..……..……….9 2-1-4 砷的汙染………………………………….…..…...………12 2-2 砷汙染的整治………………………………………..…......……15 2-2-1 化學沉降……………………………………….....…...……15 2-2-2 半透膜過濾………………………………..……....…..……15 2-2-3 離子交換……………………………………..…...…...……15 2-2-4 吸附………………………………………..….….….…...…16 2-2-5 活性污泥…………………………………………..…..……16 2-3 零價金屬的應用…………………………………...……….....…17 2-3-1 零價鐵(ZVI) ……………………………………….....…17 2-3-2 Fenton反應……………………………………..….....…19 2-3-3 零價鋁(ZVAl)的應用……………………….…..….....…20 第三章 材料與方法 3-1 研究架構…………………………………………….…….……22 3-1-1 ZVAl是否能還原Fe(III) …………………….…….……23 3-1-2 ZVAl與鋁罐在不同pH及不同型態與不同濃度的鐵離存 在下氧化As(III) ……………………………………..…….……24 3-2 實驗藥品與儀器…………………………………….……….…25 3-2-1 藥品與試劑配製…………………………………………25 3-2-1-1 三價砷氧化實驗……………………………...…….…25 3-2-1-2 氫化物產生器-原子吸收光譜法測砷所用之藥劑…...25 3-2-1-3 二價鐵測定使用之藥劑.. …………………………….26 3-2-1-4 雙氧水測定使用之藥品.. …………………………….26 3-2-2 氣體…………………………………….……………….…27 3-2-3 儀器…………………………………….……………….…27 3-3 實驗流程與方法…………………………….……………….…28 3-3-1 實驗流程…………………………….……………..….…28 3-3-1-1 ZVAl與鋁罐於酸性通氧條件下氧化As(III) ...…..…28 3-3-1-2 ZVAl與鋁罐於酸性通氧條件下生成雙氧水能力探討…………………………….……………………………..….…30 3-3-1-3 ZVAl還原Fe(Ⅲ) 能力探討之實驗步驟……...…..…30 3-3-2 方法……………….……………………………..….……32 3-3-2-1 氫化物產生器-原子吸收光譜法測As(III) …..………32 3-3-2-2 1,10-phenanthroline 顯色法測Fe(Ⅱ) …..……………32 3-3-2-3 DPD比色法測H2O2…………………………..….……33 第四章 結果與討論 4-1 ZVAl氧化As(III)系統中,鐵所扮演的角色..............................35 4-1-1 ZVAl是否能還原Fe(III) ..................................................35 4-1-2 通N2系統中,鋁的溶出...................................................39 4-2 ZVAl與鋁罐於酸性通氧環境下,氧化As(III)的效率..............42 4-2-1 系統中不含鐵離子............................................................42 4-2-1-1 As(III)氧化的效率.......................................................42 4-2-1-2 雙氧水的累積................................................................46 4-2-1-3 鋁的溶出........................................................................50 4-2-2 ZVAl系統中含鐵離子.............................................................53 4-2-2-1 As(III)氧化的效率.........................................................53 4-2-2-2 雙氧水的累積................................................................58 4-2-2-3 Fe(II)的濃度變化...........................................................63 4-2-2-4 鋁離子的溶出................................................................67 4-2-3 鋁罐系統中含鐵離子...............................................................70 4-2-3-1 As(III)氧化的效率.........................................................70 4-2-3-2 雙氧水的累積................................................................75 4-2-3-3 Fe(II)的濃度變化...........................................................80 4-2-3-4 鋁離子的溶出................................................................85 4-3 沉降以移除As...............................................................................87 第五章 結論...............................................................................................89 參考文獻.......................................................................................................91zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2018-08-14起公開。zh_TW
dc.subjectArseniteen_US
dc.subjectZVAlen_US
dc.subjectFenton-like reactionen_US
dc.subjectzh_TW
dc.subject零價鋁zh_TW
dc.subject氧化zh_TW
dc.titleEffects of iron ions and pH on the oxidative removal of arsenite in an aerated zero-valent aluminum systemen_US
dc.title鐵離子及pH影響通氣的零價鋁系統氧化移除水溶液中之三價砷zh_TW
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2018-08-14zh_TW
dc.date.openaccess2018-08-14-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
Appears in Collections:土壤環境科學系
Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101039009-1.pdf1.44 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.