Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90142
標題: Chlorpyrifos Sorption in Tea Tree Soils and Photo-Degradation on Tea Leaves
陶斯松在茶樹土壤中的吸附及在茶樹葉面上的光降解研究
作者: Ting-Yun Yang
楊婷勻
關鍵字: chlorpyrifos;adsorption;Fe oxides;tea trees;photodegradation product;陶斯松;吸附;鐵氧化物;茶樹;光降解;降解產物
引用: 孔虹。2007。毒死蜱在水中的光解和微生物降解研究。安徽農業大學農藥學。 王明光。2000。土壤環境礦物學。藝軒圖書出版社。 申麗、閔順耕、侯聖君、葉升鋒。2006。水溶液中毒死蜱在紫外激發下的快速降解。現代科學儀器:91-93。 林素霞。2005。酸化土在染整廢液之應用。南亞技術學院化工系教專研成果報告。 金紹強。2008。毒死蜱、聯苯菊酯在土壤中的消解及對白蟻防治持效性研究。浙江大學。 張容蓉。2010。針鐵礦吸附腐植酸及類腐植物質。第八屆海峽兩岸土壤肥料學術交流研討會論文集:283-288。 張博智。2000。有機磷與氨基甲酸鹽農藥生物感測器之研究。中國文化大學生物科技研究所碩士學位論文。 許嘉伊。2007。全球生物性農藥市場現況與趨勢發展。生物性肥料與農藥。 陳茹。2002年。農藥化學。北京清華大學出版社。 陳尊賢、陳振鐸、張仲民、千田勝己。1978。臺灣重要土類之水稻田土壤中黏土礦物組成份與土壤氮之無機化作用對水稻發育之關係。中國農業化學會誌第16期:第143-160頁。 黃盈盈。2006。重複萃取腐植酸之結構特性及其對2,4,6-三氯酚吸附之影響。中興大學土壤環境科學碩士論文。 楊秀珠。2007。茶樹整合管理。行政院農業委員會農業藥物毒物試驗所/行政院農業委員會動植物防疫檢疫局。 葉枚耕。1986。農藥生物化學. 國立編譯館。 葛謹。1989。有機磷農藥中毒。當代醫學第189期:572~577。 蔡文珊。2001。農藥毒理特性與管理。行政院農業委員會/統計與出版品/農政與農情。 鄭仲凱。2003。氫氧化鐵吸附水中砷之動力與平衡研究。國立成功大學環境工程學系碩士論文。 蕭素女。從茶樹病蟲害的防治談茶葉的安全衛生。茶業改良場。 韓興、李文朋、王玉軍。2009。毒死啤在土壤中的吸附行為研究。江蘇農業科學:426-428。 魏沙平、李紅陵、陳飛霞。2007。土壤腐殖酸對毒死蜱的吸附。環境科學學報 27:1675-1680。 行政院農業委員會動植物防疫檢疫局/農藥資訊服務網/農藥簡介/農藥簡介內容。 Alvarez, M., C. du Mortier, and A.F. Cirelli. 2013. Behavior of Insecticide Chlorpyrifos on Soils and Sediments with Different Organic Matter Content from Provincia de Buenos Aires, Republica Argentina. Water Air Soil Pollut. 224. Anwar, W.A. 1997. Biomarkers of human exposure to pesticides. Environ. Health Perspect. 105:801-806. Barcelo, D., G. Durand, and N. Debertrand. 1993. photodegradation of the organophosphorus pesticides chlorpyrifos, fenamiphos and vamidothion in water Toxicological and Environmental Chemistry 38:183-199. Baskaran, S., R.S. Kookana, and R. Naidu. 2003. Contrasting behaviour of chlorpyrifos and its primary metabolite, TCP (3,5,6-trichloro-2-pyridinol), with depth in soil profiles. Aust. J. Soil Res. 41:749-760. Bekbolet, M., O. Yenigun, and I. Yucel. 1999. Sorption studies of 2,4-D on selected soils. Water Air Soil Pollut. 111:75-88. Berkowitz, G.S., J. Obel, E. Deych, R. Lapinski, J. Godbold, Z.S. Liu, P.J. Landrigan, and M.S. Wolff. 2003. Exposure to indoor pesticides during pregnancy in a multiethnic, urban cohort. Environ. Health Perspect. 111:79-84. Bootharaju, M.S., and T. Pradeep. 2012. Understanding the degradation pathway of the pesticide, chlorpyrifos by noble metal nanoparticles. Langmuir 28:2671-2679. Castro, J., C. Sanchez-Brunete, J.A. Rodriguez, and J.L. Tadeo. 2002. Persistence of chlorpyrifos and endosulfan in soil. Fresenius Environ. Bull. 11:578-582. Cocker, J., H.J. Mason, S.J. Garfitt, and K. Jones. 2002. Biological monitoring of exposure to organophosphate pesticides. Toxicol. Lett. 134:97-103. Cornell, R.M., and U. Schwertmann. 1996. The iron oxides. Weinheim, New York. Eaton, D.L., R.B. Daroff, H. Autrup, J. Bridges, P. Buffler, L.G. Costa, J. Coyle, G. McKhann, W.C. Mobley, L. Nadel, D. Neubert, R. Schulte-Hermann, and P.S. Spencer. 2008. Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit. Rev. Toxicol. 38:1-125. Elotmani, M., and C.W. Coggins. 1985. Fruit-development and growth-regulator effects on normal alkanes of washington navel orange fruit epicuticular wax J. Agric. Food Chem. 33:656-663. Eskenazi, B., A. Bradman, and R. Castorina. 1999. Exposures of children to organophosphate pesticides and their potential adverse health effects. Environ. Health Perspect. 107:409-419. Felsot, A., and P.A. Dahm. 1979. Sorption of organophosphorus and carbama ATE INSECTICIDES BY SOIL. J. Agric. Food Chem. 27:557-563. Gennari, M., C. Messina, C. Abbate, A. Baglieri, and M. Negre. 2007. Adsorption of chlorpyrifos-methyl on some soil components. Influence of pH, ionic strength and organic acids. Fresenius Environ. Bull. 16:764-769. Hendry, D.G. 1980. Laboratory protocols for evaluating the fate of organic chemicals in air and water. EPA contract No. 58-03-227. Hirahara, Y., H. Ueno, and K. Nakamuro. 2001. Comparative photodegradation study of fenthion and disulfoton under irradiation of different light sources in liquid- and solid-phases. J. Health Sci. 47:129-135. Holmes, M.G., and D.R. Keiller. 2002. Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant Cell Environ. 25:85-93. Jalal, A.M. 2002. The photodegradation of Chlorpyrifos. Master's degree thesis of Zhejiang University. Janice, E. 1992. Organophosphate : chemistry, fate, and effects. Academic Press Jetter, R., and S. Schaffer. 2001. Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiology 126:1725-1737. Jia, Y.F., L.Y. Xu, Z. Fang, and G.P. Demopoulos. 2006. Observation of surface precipitation of arsenate on ferrihydrite. Environ. Sci. Technol. 40:Rapid Commun Mass Spectrom3248-3253. Koch, K., and W. Barthlott. 2006. Plant epicuticular waxes: Chemistry, form, self-assembly and function. Nat. Prod. Commun. 1:1067-1072. Koch, K., C. Neinhuis, H.J. Ensikat, and W. Barthlott. 2004. Self assembly of epicuticular waxes on living plant surfaces imaged by atomic force microscopy (AFM). J. Exp. Bot. 55:711-718. Leng, G., K.H. Kuhn, and H. Idel. 1996. Biological monitoring of pyrethroid metabolites in urine of pest control operators. Toxicol. Lett. 88:215-220. Levin, E.D., N. Addy, A. Nakajima, N.C. Christopher, F.J. Seidler, and T.A. Slotkin. 2001. Persistent behavioral consequences of neonatal chlorpyrifos exposure in rats. Dev. Brain Res. 130:83-89. Liu, J., K. Olivier, and C.N. Pope. 1999. Comparative neurochemical effects of repeated methyl parathion or chlorpyrifos exposures in neonatal and adult rats. Toxicol. Appl. Pharmacol. 158:186-196. Long, L.M., H.P. Patel, W.C. Cory, and A.E. Stapleton. 2003. The maize epicuticular wax layer provides UV protection. Funct. Plant Biol. 30:75-81. Lu, F.C. 1994. Basic Toxicology. 藝軒. Lu, P., Q.F. Li, H.M. Liu, Z.Z. Feng, X. Yan, Q. Hong, and S.P. Li. 2013. Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by Cupriavidus sp DT-1. Bioresour. Technol. 127:337-342. Macalady, D.L., and N.L. Wolfe. 1983. New perspectives on the hydrolytic degradation of the organophosphorothioate insecticide chlorpyrifos J. Agric. Food Chem. 31:1139-1147. Mani, V., and S. Konar. 1988. Pollutional hazards of the pesticide chlorpyrifos on aquatic ecosystem. Environment and Ecology 6:460-462. Meikle, R.W., N.H. Kurihara, and D.H. Devries. 1983. Chlorpyrifos - The photo-decomposition rates in dilute aqueous -solution and on a surface, and the volatilization rate from a surface Arch. Environ. Contam. Toxicol. 12:189-193. Mohan, S.V., K. Sirisha, N.C. Rao, P.N. Sarma, and S.J. Reddy. 2004. Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring. J. Hazard. Mater. 116:39-48. Moretto, A. 1998. Experimental and clinical toxicology of anticholinesterase agents. Toxicol. Lett. 103:509-513. Munoz, A.R., M. Trevisan, and E. Capri. 2009. Sorption and photodegradation of chlorpyrifos on riparian and aquatic macrophytes. J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes 44:7-12. Pirisi, F.M., A. Angioni, M. Cabizza, P. Cabras, and C.F. Cao. 2001. Photolysis of pesticides: influence of epicuticular waxes from Persica laevis DC on the photodegradation in the solid phase of aminocarb, methiocarb and fenthion. Pest Manag. Sci. 57:522-526. Racke, K.D., D.D. Fontaine, R.N. Yoder, and J.R. Miller. 1994. Chlorpyrifos degradation in soil at termiticidal application rates. Pestic. Sci. 42:43-51. Racke, K.D., K.P. Steele, R.N. Yoder, W.A. Dick, and E. Avidov. 1996. Factors affecting the hydrolytic degradation of chlorpyrifos in soil. J. Agric. Food Chem. 44:1582-1592. Racke, K.D., R.N. Lubinski, D.D. Fontaine, J.R. Miller, P.J. McCall, and G.R. Oliver. 1993a. Comparative fate of chlorpyrifos insecticide in urban and agricultural environments Acs Symposium Series 522:g70-85. Racke, K.D., R.N. Lubinski, D.D. Fontaine, J.R. Miller, P.J. McCall, and G.R. Oliver. 1993b. Comparative fate of chlorpyrifos insecticide in urban and agricultural environments Acs Symposium Series 522:70-85. Rahman, M.F., M. Mahboob, K. Danadevi, B.S. Banu, and P. Grover. 2002. Assessment of genotoxic effects of chloropyriphos and acephate by the comet assay in mice leucocytes. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 516:139-147. Robles-Molina, J., M.J.M. de Vidales, J.F. Garcia-Reyes, P. Canizares, C. Saez, M.A. Rodrigo, and A. Molina-Diaz. 2012. Conductive-diamond electrochemical oxidation of chlorpyrifos in wastewater and identification of its main degradation products by LC-TOFMS. Chemosphere 89:1169-1176. Rodriguez, H., and E. Bustos-Obregon. 2000. An in vitro model to evaluate the effect of an organophosphoric agropesticide on cell proliferation in mouse seminiferous tubules. Andrologia 32:1-5. Sarabia, L., I. Maurer, and E. Bustos-Obregon. 2009. Melatonin prevents damage elicited by the organophosphorous pesticide diazinon on mouse sperm DNA. Ecotox. Environ. Safe. 72:663-668. Schuler, F., P. Schmid, and C. Schlatter. 1998. Photodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in cuticular waxes of laurel cherry (Prunus laurocerasus). Chemosphere 36:21-34. Sharom, M.S., J.R.W. Miles, C.R. Harris, and F.L. McEwen. 1980. Behavior of 12 insecticides in soil and aqueous suspensions of soil and sediment Water Res. 14:1095-1100. Simpson, W.M., and S.H. Schuman. 2002. Recognition and management of acute pesticide poisoning. American Family Physician 65:1599-1604. Spieszalski, W.W., H.D. Niemczyk, and D.J. Shetlar. 1994. Sorption of chlorpyrifos and fonofos ON 4 SOILS AND TURFGRASS THATCH USING MEMBRANE FILTERS. J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes 29:1117-1136. Tao, C.J., J.Y. Hu, J.Z. Li, S.S. Zheng, W. Liu, and C.J. Li. 2009. Multi-Residue Determination of Pesticides in Vegetables by Gas Chromatography/Ion Trap Mass Spectrometry. Bull. Environ. Contam. Toxicol. 82:111-115. Ter Halle, A., D. Drncova, and C. Richard. 2006. Phototransformation of the herbicide sulcotrione on maize cuticular wax. Environ. Sci. Technol. 40:2989-2995. Tiwari, M.K., and S. Guha. 2012. Role of Soil Organic Matter on the Sorption and Cosorption of Endosulfan and Chlorpyrifos on Agricultural Soils. J. Environ. Eng.-ASCE 138:426-435. Trumble, J.T., W.G. Carson, and G.S. Kund. 1997. Economics and environmental impact of a sustainable integrated pest management program in celery. Journal of Economic Entomology 90:139-146. Vale, J.A. 1998. Toxicokinetic and toxicodynamic aspects of organophosphorus (OP) insecticide poisoning. Toxicol. Lett. 103:649-652. Van Emmerik, T.J., M.J. Angove, B.B. Johnson, and J.D. Wells. 2007. Sorption of chlorpyrifos to selected minerals and the effect of humic acid. J. Agric. Food Chem. 55:7527-7533. van Wijngaarden, R.P.A., T.C.M. Brock, and M.T. Douglas. 2005. Effects of chlorpyrifos in freshwater model ecosystems: the influence of experimental conditions on ecotoxicological thresholds. Pest Manag. Sci. 61:923-935. Vogelmann, T.C. 1993. Plant tissue optics. Annual Review of Plant Physiol and Plant Molecular Biology:231-251. Walia, S., P. Dureja, and S.K. Mukerjee. 1988. New photodegradation products of chlorpyrifos and their detection on glass, soil, and leaf surfaces. Arch. Environ. Contam. Toxicol. 17:183-188. Wu, J.G., and D.A. Laird. 2004. Interactions of chlorpyrifos with colloidal materials in aqueous systems. J. Environ. Qual. 33:1765-1770. Zepp, R.G., and D.M. Cline. 1977. Rates of direct photolysis in aquatic environment Environ. Sci. Technol. 11:359-366. Zhang, Y.Y., Y.X. Hou, F. Chen, Z.Y. Xiao, J.N. Zhang, and X.S. Hu. 2011. The degradation of chlorpyrifos and diazinon in aqueous solution by ultrasonic irradiation: Effect of parameters and degradation pathway. Chemosphere 82:1109-1115.
摘要: 
Chlorpyrifos [O,O-diethyl-O-(3,5,6-trichloro-2-pyridyl), a phosphorothioate ester, is an efficient and commonly used pesticide in tea-growing regions in Taiwan. Due to its toxicity, the residue and transformation of chlorpyrifos on the leaves of tea trees and in soil planted with tea trees need to be investigated for the safety of tea drinkers and proper functioning of the ecosystems. The research was divides into two parts of (1) sorption and desorption of chlorpyritos on goethite and ferrihydrite, representative of the crystal and amorphous forms of Fe oxides, effect of humic acid and two types of soils grown with tea trees; (2) a direct photolysis and the possible photo-oxidation pathways of chlorpyrifos on the tender and old leaves of the tea trees irradiated by sunlight, ultraviolet light (UV) and visible light. Results showed that chlorpyrifos sorption by ferrihydride was greater than that of goethite, and both iron hydr(o)oxides have more adsorption in lower pH. The present of humic acid can promote the adsorption on goethite. However, the red soil, having high iron hydr(o)oxide contents, exhibited a greater sorptive ability of chlorpyrifos even if it contained lower organic matter. Indifferent to the light sources, the rates of photo-decompositions of chlorpyrifos proceeded more rapid on the surface of tender leaves than those of old ones, even if old ones reflect more light with epicuticular wax. The reason may be that the increasing of temperature on old leaves and the wavelength adsorption of chlorpyrifos itself. Under the photolysis, absorption of chlorpyrifos occurred simultaneously on the surfaces of leaves, and these reactions were enhanced with an increase of leaf temperatures. Our preliminary results of LC/MS/MS analyses indicated that the photo-degradations of chlorpyrifos would lead to the production of product of chloro-2-[pyridinyl-O,O-ethyl] thiophosphate through the dechlorination under the photolysis on solid and aqueous phase. Additonally, chlorpyrifos could transform to chlorpyrifos-oxon by the oxidation of P=S to P=O.It cleavaged.into TCP and DEP under the aqueous phase due to hydrolysis. However, under the solid phase, dechlorination of chlorpyrifos-oxon occurred primary.

陶斯松,化學式為O,O-diethyl-O-(3,5,6-trichloro-2-pyridyl, chlorpyrifos),目前為病蟲害防治上常用之高效有機磷殺蟲劑,它的作用是被廣泛認可的。陶斯松的使用在國內的茶樹種植上尤其常見,雖然已被用來替代其他高毒性農藥,但陶斯松的施用給人類健康、土壤和水環境以及生態安全造成的隱患也是不容忽視的。因此,茶樹葉面上與種植茶樹的土壤中,陶斯松的殘留以及環境行為的研究更是顯得重要,研究分為兩部分:一為探討兩種種植茶樹的酸性土壤,與存在於土壤中之鐵氧化物水合鐵礦與針鐵礦,以及腐植酸對吸附陶斯松行為的影響;二為以紫外光、可見光以及太陽光為光源,研究陶斯松分別在茶樹的老葉及嫩葉葉片與不同基質表面上的直接光降解作用,並且探討固相表面上光降解可能產生的產物以及途徑,比較固相基質與其他降解反應如水溶液與微生物性分解途徑之差異。結果顯示水合鐵礦對陶斯松的吸附反應會大於針鐵礦,且環境pH值對於此兩種鐵氧化物並無太大影響,僅會在較高pH值下因鐵氧化物表面離子化造成吸附量些微降低,在鐵氧化物上有腐植酸的存在會因增加表面的疏水性吸附位置使針鐵礦對陶斯松的吸附量增加。但發現即使土壤有機質含量低,桃園茶改場茶園紅土可能因富含鐵氧化物,而對陶斯松的吸附量較多。茶樹上陶斯松光降解的研究,葉面蠟質、光源的種類與葉面的溫度改變會交互對葉面與不同基質表面上的陶斯松光降解造成影響,蠟質含量較多的老葉,其陶斯松光降解應較慢,但相反的結果可能與蠟質造成葉面的溫度上升有關,且溫度的上升,也會使的部分陶斯松可能進入到葉組織或被熱分解。而在陶斯松光降解路徑研究,在照射UV光後,固相與液相情況下皆會發生陶斯松吡啶環的脫氯反應,而不同的是兩相中在產生陶斯松的氧化物後,液相環境下會傾向水解產生產物,固相環境下則會多進行陶斯松氧化物吡啶環的脫氯反應,此途徑是不照光水溶液與微生物分解上沒有發生的;而另一途徑為陶斯松本身藉由脫氯反應慢慢脫去吡啶環上的氯,也是只在有光照降解下才會有的現象。
URI: http://hdl.handle.net/11455/90142
Rights: 同意授權瀏覽/列印電子全文服務,2017-06-24起公開。
Appears in Collections:土壤環境科學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7100039017-1.pdf2.2 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.