Please use this identifier to cite or link to this item:
標題: Assessing the source descriptions of bottled deep-sea drinking waters by chemical and isotopic approaches
作者: Wen-Jui Liang
關鍵字: Source description;Deep-sea water;Hydrogen and oxygen isotopes;Trace elements;Principal component analysis;來源標示;深層海水;氫氧同位素;微量元素;主成份分析
引用: 陳鎮東(1994)海洋化學。茂昌圖書有限公司。 台灣海洋深層水股份有限公司(2014)深層水知識庫。 光隆生技事業股份有限公司(2014)海洋深層水的獨特性。 經濟部標準檢驗局花蓮分局(2014)深層海水驗證資訊。 長庚生物科技(2014)水中礦物質微量元素。 文永植(2014)微量元素與人體健康。國際微量元素醫學會。 賴文龍(2014)微量元素對人體之健康。農委會台中區農業改良場。 衛生福利部食品藥物管理署(2015)國人膳食營養素參考攝取量查詢(DRIs)。 台灣營養學院(2015)營養先修館。 Bertoldi, D., Bontempo, L., Larcher, R., Nicolini, G., Voerkelius, S., Lorenz, G. D., Ueckermann, H., Froeschl, H., Baxter, M. J., Hoogewerff, J., and Brereton P. (2011) Survey of the chemical composition of 571 European bottled mineral waters. Journal of Food Composition and Analysis 24: 376-385. Birke, M., Reimann, Demetriades, A., Rauch, U., Lorenz, H., Harazim, B., and Glatte, W. (2010) Determination of major and trace elements in European bottled mineral water – Analytical methods. Journal of Geochemical Exploration 107: 217-226. Bong, Y.S., Ryu, J. S., and Lee, K. S. (2009) Characterizing the origins of bottled water on the South Korean market using chemical and isotopic compositions. Analytica Chimica Acta 631:189-195. Bowen, G. J., Winter, D. A., Spero, H. J., Zierenberg, R.A., Mathew D. Reeder, M. D., Cerling, T. E. and James R. Ehleringer, J. R. (2005) Stable hydrogen and oxygen isotope ratios of bottled waters of the world. Rapid Commun. Mass Spectrom. 19: 3442–3450. Brencic, M., and Polona, V. (2006) Identification of sources and production processes of bottled waters by stable hydrogen and oxygen isotope ratios. Rapid Commun. Mass Spectrom. 20: 3205-3212. Calderone, G., and Guillou, C. (2008) Analysis of isotopic ratios for the detection of illegal watering of beverages. Food Chemistry 106: 1399-1405. Camin, F., Bontempo, L., Perini, M., Tonon, A., Breas, O., Guillou, C., Moreno-Rojas, J. M., and Gagliano, G., (2013) Control of wine vinegar authenticity through δ18O analysis. Food Control 29: 107-111. Chesson, L. A., Valenzuela, L. O., O'Grady, S. P., Cerling, T. E., and Ehleringer, J. R. (2010) Links between purchase location and stable isotope ratios of bottled water, soda, and beer in the United States. J. Agric. Food Chem. 58:7311-7316. Cicchella, D., Albanese, S., De Vivo, B., Dinelli, E., Giaccio, L., Lima, A., and Valera, P. (2010) Trace elements and ions in Italian bottled mineral waters: Identification of anomalous values and human health related effects. Journal of Geochemical Exploration 107: 336-349. Clark, I. D., and Fritz, P. (1997) Environmental Isotopes in Hydrogeology. Florida: CRC Press. Criss, R. E. (1999) Principles of Stable Isotope Distribution. New York: Oxford University Press. Dansgaard, W. (1964) Stable isotopes in precipitation: Tellus, 16, 436-468. Dinelli, E., Lima, A., De Vivo, B., Albanese, S., Cicchella, D., and Valera, P. (2010) Hydrogeochemical analysis on Italian bottled mineral waters: Effects of geology. Journal of Geochemical Exploration 107: 317-335. Gat, J. R. (2010) Isotope Hydrology: A Study of the Water Cycle, Series on Environmental Science and Management 6. London: Imperial College Press. Hoefs, J. (1987) Stable Isotope Geochemistry. 3rd, Springer-Verlag, Berlin, 241pp. Ingraham, N. L. (1998) Isotopic Variatins in Precipitation, Chapter 3, In: C. Kendall and J. J. Mcdonnell (Eds.), Isotope Tracers in Catchment Hydrology, Elesvier, Amsterdam, p, 87-118. Jalali, M., and Khanlari, Z. V. (2008) Major ion chemistry of groundwaters in the Damagh area, Hamadan, western Iran. Environ. Geol. 54: 87-93. Karagiannis, I. C., and Soldatos, P. G. (2008) Water desalination cost literature: review and assessment. Desalination 223: 448-456. Lis, G., Wassenaar, L. I., and Hendry, M. J. (2008) High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Anal. Chem. 80, 287-293. Liu, C. W., Jang, C. S., Chan, C. P., Lin, C. N., and Lou, K. L. (2008) Characterization of groundwater quality in Kinmen Island using multivatiate analysis and geochemical modeling. Hydrol. Process 22: 376-383. Mohammadi, T., and Kaviani, A. (2003) Water shortage and seawater desalination by electrodialysis. Desalination 158: 267-270. Morell. I., Gimenez, E., and Esteller, M. V. (1996) Application of principal components analysis to the study of salinization on the Castellon Plain (Spain). Sci. Total Environ. 177: 161-171. Nisan, S., Commercon, B., and Dardour, S. (2005) A new method for the treatment of the reverse osmosis process, with preheating of the feedwater. Desalination 182: 483-495. Peng, T. R., Huang, C. C., Wang, C. H., Liu, T. K., Lu W. C., and Chen, K. Y. (2012) Using oxygen, hydrogen, and tritium isotopes to assess pond water's contribution to groundwater and local precipitation in the pediment tableland areas of northwestern Taiwan. J. Hydrol., 450-451: 105-116. Peng, T. R., Wang, C. H., Hsu, S. M., Wang, G. S., Su, T. W., and Lee, J. F. (2010) Identification of groundwater sources of a local-scale creep slope: Using environmental stable isotopes as tracers. J. Hydrol., 381: 151-157. Rangarajan, R., and Ghosh, P. (2011) Tracing the source of bottled water using stable isotope techniques. Rapid Commun. Mass Spectrom 25:3323-3330. Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R. (1993) Isotopic patterns in modern global precipitation. In: Swart P K, Lohmann KC, Mckenzie J, Savin S, editors. Climate Change in Continental Isotopic Record. Washington: American Geohphysical Union, p, 1-36. Sadrzadeh, M., and Mohammadi, T. (2008) Sea water desalination using electrodialysis. Desalination 221: 440-447. Selle, B., Schwientek, M., and Lischeid, G. (2013) Understanding processes governing water quality in catchments using principal component scores. J. Hydrol., 486: 31-38. Sharp, Z. (2007) Principles of Stable Isotope Geochemistry. New Jersey: Pearson Education. Spangenberg, J. E., and Vennemann, T. W. (2008) The stable hydrogen and oxygen isotope variation of water stored in polyethylene terephthalate (PET) bottles. Rapid Commun. Mass Spectrom 22:672-676. Yurtsever, Y., and Gat, J. R. (1981) Atmospheric Waters. In: Gat J. R., Gonfiantini R (eds) Stable isotope Hydrology: deuterium and oxygen-18 in the Water Cycle. IAEA Technical Reports Series No.210: 103-142.
Deep-sea water industry is one of the economic activities that actively promotes by the government in recent years, and the most remarkable output of products is bottled drinking water desalted from deep-sea water. Some commercial deep-sea drinking waters (DSDW) are suspected to be manufactured with terrestrial freshwater duo to the production cost. Since the descriptions of counterfeit products are labelled from 100% deep-sea water, it will cause mislabeling. Because of the isotopic fractionation, hydrogen and oxygen isotopic compositions (δ2H and δ18O) of sea water are significantly different from those of terrestrial freshwater. For this, the purpose of this study is to confirm whether the commercial DSDW comes from seawater through analyzing the isotopic compositions of bottled samples, and further speculating reasons for deviation of the hydrogen and oxygen isotopic values by desalination processes. On the other hand, the commercial DSDW always brags that it contains rich minerals and trace elements that benefit human beings; however, all commercial DSDW have not marked the details including elemental kinds and concentrations on the labels. Therefore, another obligation of this study is to chemically characterize the commercial DSDW by determining the kinds and concentrations of trace elements with principal component analysis (PCA). The isotopic results indicate that samples from 100% deep-sea water exhibit δ2H and δ18O values around 0‰, respectively, and it means that the descriptions are correct. Samples from 100% deep-sea water are added brine with different doses through EC values. By comparison, the mislabeling samples display δ2H and δ18O values around -51 and -8‰, respectively, which are in the ranges of terrestrial freshwater. Also, the mislabeling samples are not added brine through EC values. Furthermore, The PCA results indicate that the scores of principal components (PCs) of the mislabeling samples are in the ranges between samples with correct descriptions and reverse osmosis water or deionized water in laboratory, and are identical to a mixed-water product manufactured by purified terrestrial freshwater adulterated with few amount of brine. This similarity implies that the mislabeling samples are manufactured by the same procedures as the mixed-water product. This study demonstrates a combined method involving stable isotopes and trace elements with PCA analysis which is applicable in assessing the source description of commercial DSDW. And it should be of great interest to similar future studies elsewhere.

深層海水產業之開發利用為政府近年來積極推展之經濟活動之一,而將深層海水經淡化處理製成包裝飲用水是現今最具商品特色之產業,由於成本考量,部分商品利用陸域淡水為原水取代深層海水充填,瓶身卻標示來自100%深層海水,造成來源標示不實之虞。由於水文環境之同位素分化作用,海水之氫、氧同位素組成會與陸域淡水之組成不同,因此本研究擬測定各海洋水源商品之氫、氧同位素值,藉以評估商品之來源,並進一步地透過海水淡化方式推測樣品之氫、氧同位素值的偏離原因。另ㄧ方面,深層海水包裝飲用水業者常標榜其富含豐富之礦物質及微量元素,但市售商品多未標示其所含之元素種類與含量,因此本研究亦擬定分析各海洋水源商品之微量元素含量,再利用主成份分析(Principal Component Analysis, PCA)進行數據統計。由同位素值結果顯示來自100%深層海水之飲用水樣品中,其δ2H和δ18O值皆為0‰左右,表示其水源地之標示為正確的,透過EC值則證明皆有添加不同劑量之海水濃縮礦物質液。相反的,來源標示不實的樣品之δ2H和δ18O值則約為-51‰和-8‰,其值之範圍及特性與陸域淡水相似,透過EC值則顯示未添加海水濃縮礦物質液。另一方面,主成份分析結果顯示來源標示不實之樣品,其主成份得點分數約介於水源地標示正確之樣品與實驗室之逆滲透水及去離子水樣品之間,並與來源標示為混合水體的樣品之得點分數相似,而混合樣品為經淡化處理後之陸域淡水為主體,且僅添加少量海水濃縮礦物質液之商品,因此該現象指出來源標示不實的樣品之成份是陸域淡水為主體,且未添加或僅添加少量海水濃縮礦物質液。因此,本研究已成功發展利用穩定氫、氧同位素與微量元素之分析,並結合主成份分析之數據統計,驗證市售深層海水包裝飲用水之來源標示之技術。
Rights: 同意授權瀏覽/列印電子全文服務,2015-06-11起公開。
Appears in Collections:土壤環境科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101039019-1.pdf1.74 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.