Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90145
標題: Effects of endophytic plant growth promoting bacteria on the growth of maize (Zea mays L.)
促進植物生長之內生菌對玉米生長之效應
作者: Chun-Tse Chang
張鈞喆
關鍵字: Zea mays L.;endophyte;玉米;內生菌
引用: 王巧貞。2013。不同施肥下玉米根內菌群落變化之研究。國立中興大學土壤環境科學系碩士論文。 吳正宗。2010。無土栽培的營養管理。國立中興大學土壤環境科學系。 周瑞興。2009。含羞草屬植物之β-根瘤菌Burkholderia與Cupriavidus間結瘤的競爭作用。國立中興大學土壤環境科學系博士論文。 帕妮。2013。土壤酵母菌對農業生產及其對植物養分的影響。國立中興大學土壤環境科學系。 林詩耀。2011。碳氫化合物降解與植物生長促進細菌之系統分類及分子生物偵測技術建立。國立中興大學土壤環境科學系博士論文。 楊秋忠。2011。土壤與肥料 (第九版)。農世股份有限公司。台中。 劉湘美,張峰義。2008。大腸桿菌和腸內菌的致病性、臨床表現及抗藥性機轉。感染控制雜誌第11卷第3期。社團法人台灣感染管制學會。 賴威安。2010。Azospirilu rugosum新種與耐鹽根圈細菌的植物生長促進特性之篩選及對植物接種的效益。國立中興大學土壤環境科學系博士論文。 謝于婷。2014。不同水稻品種及土壤種類對植體內生菌群落組成之研究。國立中興大學土壤環境科學系碩士論文。 曾清田及詹碧連。2000。食用白玉米新品種台南 22 號之育成。臺南區農業改良場研究彙報37期。臺南區農業改良場。p. 17-39。 行政院農業委員會農糧署。肥料管理法。 羅秋雄。2005。作物施肥手冊。行政院農業委員會農糧署。 Ahemad. M., and M.S. Khan. 2009. Effects of quizalafop-p-ethyl and clodinafop on plant growth promoting activities of rhizobacteria from mustard rhizosphere. Ann. Plant Prot. Sci. 17: 175–180. Ahmad, F., I. Ahmad, and M.S. Khan. 2005. Indole Acetic Acid Production by the Indigenous Isolates of Azotobacter and Fluorescent Pseudomonas in the Presence and Absence of Tryptophan. Turk. J. Biol. 29: 29–34. Akhtar, M.S., and Z.A. Siddiqui. 2009. Use of plant growth-promoting rhizobacteria for the biocontrol of root-rot disease complex of chickpea. Australas. Plant Pathol. 38: 44–50. Ashrafuzzaman, M., F.A. Hossen, M.R. Ismail, A. Hoque, M.Z. Islam, S.M. Shahidullah, and S. Meon. 2009. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr. J. Biotechnol. 8: 1247-1252. Basra, A.S., and others. 2006. Handbook of seed science and technology. Food Products Press. Bbioo. 2009. Focus on PCR. Bbioo. http://www.bbioo.com. Latest update 1 September 2009. Belimov, A.A., V.I. Safronova, T.A. Sergeyeva, T.N. Egorova, V.A. Matveyeva, V.E. Tsyganov, A.Y. Borisov, I.A. Tikhonovich, C. Kluge, A. Preisfeld, K.-J. Dietz, and V.V. Stepanok. 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 47: 642–652. Beneduzi, A., A. Ambrosini, and L.M.P. Passaglia. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35: 1044–1051. Bhattacharyya, P.N., and D.K. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28: 1327–1350. Bianco, P.A., C. Marzachi, R. Musetti, and V. Naor. 2013. Perspectives of endophytes as biocontrol agents in the management of phytoplasma diseases. New Perspect. Phytoplasma Dis. Manag.: 69. Cakmakci, R., M.F. Donmez, and U. Erdoğan. 2007. The Effect of Plant Growth Promoting Rhizobacteria on Barley Seedling Growth, Nutrient Uptake, Some Soil Properties, and Bacterial Counts. Bitki Gelişmesini Teşvik Eden Bakterilerin Arpa Gelişimi Besin Alımı Bazı Toprak Ozellikleri Ve Bakteri Sayısına Etkisi 31: 189–199. Canellas, L.P., D.M. Balmori, L.O. Medici, N.O. Aguiar, E. Campostrini, R.C. Rosa, A.R. Facanha, and F.L. Olivares. 2013. A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant Soil 366: 119–132. Chaiharn, M., S. Chunhaleuchanon, A. Kozo, and S. Lumyong. 2008. Screening of rhizobacteria for their plant growth promoting activities. KMITL Sci Tech J 8: 18–23. Chelius, M.K., and E.W. Triplett. 2001. The Diversity of Archaea and Bacteria in Association with the Roots of Zea mays L. Microb. Ecol. 41: 252–263. Chen, M.-H., S.-Y. Sheu, E.K. James, C.-C. Young, and W.-M. Chen. 2013. Azoarcus olearius sp. nov., a nitrogen-fixing bacterium isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 63: 3755–3761. Chen, Y.P., P.D. Rekha, A.B. Arun, F.T. Shen, W.-A. Lai, and C.C. Young. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34: 33–41. Chiarini, L., A. Bevivino, C. Dalmastri, C. Nacamulli, and S. Tabacchioni. 1998. Influence of plant development, cultivar and soil type on microbial colonization of maize roots. Appl. Soil Ecol. 8: 11–18. Egamberdiyeva, D. 2005. Plant-growth-promoting rhizobacteria isolated from a Calcisol in a semi-arid region of Uzbekistan: biochemical characterization and effectiveness. J. Plant Nutr. Soil Sci. 168: 94–99. Esitken, A., H.E. Yildiz, S. Ercisli, M. Figen Donmez, M. Turan, and A. Gunes. 2010. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci. Hortic. 124: 62–66. Esitken, A., S. Ercisli, H. Karlidag, F. Sahin, A. Libek, E. Kaufmane, A. Sasnauskas, and others. 2005. Potential use of plant growth promoting rhizobacteria (PGPR) in organic apricot production. p. 90–97. In Proceedings of the international scientific conference: Environmentally friendly fruit growing, Polli, Estonia. Tartu University Press. Feng, Y., D. Shen, and W. Song. 2006. Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J. Appl. Microbiol. 100: 938–945. Gangwar, M., and G. Kaur. 2009. Isolation and characterization of endophytic bacteria from endorhizosphere of sugarcane and ryegrass. Internet J. Microbiol. 7: 139–144. Garbeva, P., L.S. Van Overbeek, J.W.L. Van Vuurde, and J.D. Van Elsas. 2001. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb. Ecol. 41: 369–383. Gholami, A., S. Shahsavani, and S. Nezarat. 2009. The effect of plant growth promoting rhizobacteria ( PGPR ) on germination, seedling growth and yield of maize. Int. J. Biol. Life Sci. 1: 35–40. Gutierrez-Zamora, M.L., and E. Martınez-Romero. 2001. Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J. Biotechnol. 91: 117–126. Hardoim, P.R., L.S. van Overbeek, and J.D. van Elsas. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16: 463–471. Hassanein, W.A., N.M. Awny, A.A. El-Mougith, S.H.S. El-Dien, and others. 2009. The antagonistic activities of some metabolites produced by Pseudomonas aeruginosa Sha8. J. Appl. Sci. Res. (April): 404–414. Hoagland, D.R., D.I. Arnon, and others. 1950. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 347. Hoffman, M.T., M.K. Gunatilaka, K. Wijeratne, L. Gunatilaka, and A.E. Arnold. 2013. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PloS One. 8: e73132. IFarzana, Y., and O. Radizah. 2005. Influence of rhizobacterial inoculation on growth of the sweetpotato cultivar. Am. J. Biochem. Biotechnol. 1: 176-179. Jones, D.L., and E. Oburger. 2011. Solubilization of phosphorus by soil microorganisms. p. 169–198. In Phosphorus in Action. Springer Berlin Heidelberg . Kavroulakis, N., S. Ntougias, M.I. Besi, P. Katsou, A. Damaskinou, C. Ehaliotis, G.I. Zervakis, and K.K. Papadopoulou. 2010. Antagonistic bacteria of composted agro-industrial residues exhibit antibiosis against soil-borne fungal plant pathogens and protection of tomato plants from Fusarium oxysporum f. sp. radicis-lycopersici. Plant Soil 333: 233–247. Kennedy, I.R., A. Choudhury, and M.L. Kecskes. 2004. Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol. Biochem. 36: 1229–1244. Khalid, A., M. Arshad, and Z.A. Zahir. 2004. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96: 473–480. Kozdroj, J., and J.D. van Elsas. 2001. Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. J. Microbiol. Methods 43: 197–212. Kusari, P., S. Kusari, M. Spiteller, and O. Kayser. 2013. Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers. 60: 137–151. Lai, W. A., ,M. I. Chen, E. C.Chen, W. S. Huang, F. T.Shen and C. C. Young. 2005. Isolation and identification of protease and IAA producing bacteria from rhizosphere and compost. Proceeding of 43th Conference on Agriculture Chemistry. Agricultural Chemical Society of Taiwan. (in Chinese) Lai, W. A., P.D. Rekha, and C.C. Young. 2007. Growth of garden lettuce by inoculation of nitrogen fixing Azospirillum strains in green house. Proceedings of Management of organic farming system. December 15. Taichung, Taiwan. p.144-145. (in Chinese) Lai, W.-A., P.D. Rekha, A.B. Arun, and C.-C. Young. 2008. Effect of mineral fertilizer, pig manure, and Azospirillum rugosum on growth and nutrient contents of Lactuca sativa L. Biol. Fertil. Soils 45: 155–164. Lester R. Brown. 2014. Many Countries Reaching Diminishing Returns in Fertilizer Use. Earth Policy Institute. www.earth-policy.org. Latest update 8 January 2014. Liddycoat, S.M., B.M. Greenberg, and D.J. Wolyn. 2009. The effect of plant growth-promoting rhizobacteria on asparagus seedlings and germinating seeds subjected to water stress under greenhouse conditions. Can. J. Microbiol. 55: 388–394. Lin, S.-Y., A. Hameed, Y.-C. Liu, Y.-H. Hsu, W.-A. Lai, F.-T. Shen, L.-S. Young, C.-F. Tsai, and C.-C. Young. 2013. Aureimonas ferruginea sp. nov. and Aureimonas rubiginis sp. nov., two siderophore-producing bacteria isolated from rusty iron plates. Int. J. Syst. Evol. Microbiol. 63: 2430–2435. Lin, S.Y., F.T. Shen and C.C. Young*. 2011. Rapid detection and identification of the free-living nitrogen fixing genus Azospirillum by 16S rRNA-gene-targeted genus-specific primers. Antonie Van Leeuwenhoek 99:837-844. Lin, S.-Y., Y.-C. Liu, A. Hameed, Y.-H. Hsu, W.-A. Lai, F.-T. Shen, and C.-C. Young. 2013. Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int. J. Syst. Evol. Microbiol. 63: 3762–3768. Lin, T.-F., and C.-C. Young. 2005. Effect of Soluble Phosphate in the Medium on Phosphate-Solubilizing Activity of Burkholderia cepacia CC-A174. Taiwan. J. Agric. Chem. Food Sci. August 2005 43: 261–270. Liu, Y., S. Zuo, Y. Zou, J. Wang, and W. Song. 2012. Investigation on diversity and population succession dynamics of indigenous bacteria of the maize spermosphere. World J. Microbiol. Biotechnol. 28: 391–396. Masciarelli, O., L. Urbani, H. Reinoso, and V. Luna. 2013. Alternative mechanism for the evaluation of indole-3-acetic acid (IAA) production by Azospirillum brasilense strains and its effects on the germination and growth of maize seedlings. J. Microbiol. 51: 590–597. Mehnaz, S., B. Weselowski, F. Aftab, S. Zahid, G. Lazarovits, and J. Iqbal. 2009. Isolation, characterization, and effect of fluorescent pseudomonads on micropropagated sugarcane. Can. J. Microbiol. 55: 1007–1011. Miethke, M., and M.A. Marahiel. 2007. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71: 413–451. Nakayan, P., A. Hameed, S. Singh, L.-S. Young, M.-H. Hung, and C.-C. Young. 2013. Phosphate-solubilizing soil yeast Meyerozyma guilliermondii CC1 improves maize (Zea mays L.) productivity and minimizes requisite chemical fertilization. Plant Soil 373: 301–315. Narula, N., A. Deubel, W. Gans, R.K. Behl, and W. Merbach. 2006. Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant Soil Environ. 52: 119. Nassar, A.H., K.A. El-Tarabily, and K. Sivasithamparam. 2005. Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol. Fertil. Soils 42: 97–108. Normander, B., N.B. Hendriksen, and O. Nybroe. 1999. Green fluorescent protein-marked Pseudomonas fluorescens: localization, viability, and activity in the natural barley rhizosphere. Appl. Environ. Microbiol. 65: 4646–4651. Peng, G., W. Zhang, H. Luo, H. Xie, W. Lai, and Z. Tan. 2009. Enterobacter oryzae sp. nov., a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia. Int. J. Syst. Evol. Microbiol. 59: 1650–1655. Pereira, P., F. Ibanez, M. Rosenblueth, M. Etcheverry, and E. Martinez-Romero. 2011. Analysis of the bacterial diversity associated with the roots of maize (Zea mays L.) through culture-dependent and culture-independent methods. ISRN Ecol. Perotti, R. 1926. On the limits of biological enquiry in soil science. Proc Int Soc Soil Sci. 2: 146–161. Petrini, O. 1991. Fungal endophytes of tree leaves. p. 179–197. In Microbial ecology of leaves. Springer. Pires, A.C., D.F. Cleary, A. Almeida, A. Cunha, S. Dealtry, L.C. Mendonca-Hagler, K. Smalla, and N.C. Gomes. 2012. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples. Appl. Environ. Microbiol. 78: 5520–5528. Piromyou, P., B. Buranabanyat, P. Tantasawat, P. Tittabutr, N. Boonkerd, and N. Teaumroong. 2011. Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. Eur. J. Soil Biol. 47: 44–54. Prakamhang, J., K. Minamisawa, K. Teamtaisong, N. Boonkerd, and N. Teaumroong. 2009. The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Appl. Soil Ecol. 42: 141–149. Rajkumar, M., M.N. Vara Prasad, H. Freitas, and N. Ae. 2009. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit. Rev. Biotechnol. 29: 120–130. Ramesh, R., A.A. Joshi, and M.P. Ghanekar. 2009. Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J. Microbiol. Biotechnol. 25: 47–55. Ramos, C., L. Molbak, and S. Molin. 2000. Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl. Environ. Microbiol. 66: 801–809. Reinhold-Hurek, B., and T. Hurek. 1998. Life in grasses: diazotrophic endophytes. Trends Microbiol. 6: 139–144. Rijavec, T., A. Lapanje, M. Dermastia, and M. Rupnik. 2007. Isolation of bacterial endophytes from germinated maize kernels. Can. J. Microbiol. 53: 802–808. Rocha, F.R., F.S. Papini-Terzi, M.Y. Nishiyama, R.Z. Vencio, R. Vicentini, R.D. Duarte, V.E. de Rosa, F. Vinagre, C. Barsalobres, A.H. Medeiros, and others. 2007. Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics 8: 71. Rodriguez, H., R. Fraga, T. Gonzalez, and Y. Bashan. 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287: 15–21. Roesch, L.F.W., L.M.P. Passaglia, F.M. Bento, E.W. Triplett, and F.A.O. Camargo. 2007. Diversity of diazotrophic endophytic bacteria associated with maize plants. Rev. Bras. Cienc. Solo 31: 1367–1380. Ryall, B., H. Mitchell, D. Mossialos, and H.D. Williams. 2009. Cyanogenesis by the entomopathogenic bacterium Pseudomonas entomophila. Lett. Appl. Microbiol. 49: 131–135. Ryu, R.J., and C.L. Patten. 2008. Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. J. Bacteriol. 190: 7200–7208. Saharan, B.S., and V. Nehra. 2011. Plant growth promoting rhizobacteria: a critical review. Life Sci. Med. Res. 21: 1–30. Sambrook, J., and D.W. Russell. 2006. Agarose gel electrophoresis. Cold Spring Harb. Protoc. 2006: pdb–prot4020. Sarwar, M., and W.T. Frankenberger Jr. 1994. Influence of L-tryptophan and auxins applied to the rhizosphere on the vegetative growth of Zea mays L. Plant Soil 160: 97–104. Schmidt, M.A., E.M. Souza, V. Baura, R. Wassem, M.G. Yates, F.O. Pedrosa, and R.A. Monteiro. 2011. Evidence for the endophytic colonization of Phaseolus vulgaris (common bean) roots by the diazotroph Herbaspirillum seropedicae. Braz. J. Med. Biol. Res. 44: 182–185. Seghers, D., L. Wittebolle, E.M. Top, W. Verstraete, and S.D. Siciliano. 2004. Impact of agricultural practices on the Zea mays L. endophytic community. Appl. Environ. Microbiol. 70: 1475–1482. Selvakumar, G., P. Joshi, S. Nazim, P.K. Mishra, J.K. Bisht, and H.S. Gupta. 2009. Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia (Bratisl.) 64: 239–245. Sessitsch, A., P. Hardoim, J. Doring, A. Weilharter, A. Krause, T. Woyke, B. Mitter, L. Hauberg-Lotte, F. Friedrich, M. Rahalkar, and others. 2012. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol. Plant. Microbe Interact. 25: 28–36. Shah, S., J. Li, B.A. Moffatt, and B.R. Glick. 1998. Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can. J. Microbiol. 44: 833–843. Shen, J., L. Yuan, J. Zhang, H. Li, Z. Bai, X. Chen, W. Zhang, and F. Zhang. 2011. Phosphorus dynamics: from soil to plant. Plant Physiol. 156: 997–1005. Sheng, H.M., H.S. Gao, L.G. Xue, S. Ding, C.L. Song, H.Y. Feng, and L.Z. An. 2011. Analysis of the composition and characteristics of culturable Endophytic bacteria within subnival plants of the Tianshan mountains, Northwestern China. Curr. Microbiol. 62: 923–932. Siddiqui, Z.A. 2006. PGPR: prospective biocontrol agents of plant pathogens. p. 111–142. In PGPR: biocontrol and biofertilization. Springer. Singh, M.K., D.P. Singh, S. Mesapogu, B.K. Babu, and C. Bontemps. 2011b. Concomitant colonization of nifH positive endophytic Burkholderia sp. in rice (Oryza sativa L.) promotes plant growth. World J. Microbiol. Biotechnol. 27: 2023–2031. Singh, S., P.D. Rekha, A.B. Arun, Y.-M. Huang, F.-T. Shen, and C.-C. Young. 2011a. Wastewater from monosodium glutamate industry as a low cost fertilizer source for corn (Zea mays L.). Biomass Bioenergy 35: 4001–4007. Steffen, W., R.A. Sanderson, P.D. Tyson, J. Jager, P.A. Matson, B. Moore III, F. Oldfield, K. Richardson, H.J. Schellnhuber, B.L. Turner, and others. 2006. Global change and the earth system: a planet under pressure. Springer. Sturz, A.V., B.R. Christie, and J. Nowak. 2000. Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci. 19: 1–30. Sun, L., F. Qiu, X. Zhang, X. Dai, X. Dong, and W. Song. 2008. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb. Ecol. 55: 415–424. Tian, F., Y. Ding, H. Zhu, L. Yao, and B. Du. 2009. Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. Braz. J. Microbiol. 40: 276–284. Tilak, K., N. Ranganayaki, K.K. Pal, R. De, A.K. Saxena, C.S. Nautiyal, S. Mittal, A.K. Tripathi, and B.N. Johri. 2005. Diversity of plant growth and soil health supporting bacteria. Curr. Sci. 89: 136–150. Torsvik, V., and L. Ovrea as. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5: 240–245. Tsavkelova, E.A., T.A. Cherdyntseva, S.Y. Klimova, A.I. Shestakov, S.G. Botina, and A.I. Netrusov. 2007. Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Arch. Microbiol. 188: 655–664. Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571–586. Wilson, K.J. 1995. Molecular techniques for the study of rhizobial ecology in the field. Soil Biol. Biochem. 27: 501–514. Xiao, Y., G.-M. Zeng, Z.-H. Yang, Y.-H. Ma, C. Huang, Z.-Y. Xu, J. Huang, and C.-Z. Fan. 2011. Changes in the actinomycetal communities during continuous thermophilic composting as revealed by denaturing gradient gel electrophoresis and quantitative PCR. Bioresour. Technol. 102: 1383–1388. Yang, J., J.W. Kloepper, and C.-M. Ryu. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14: 1–4. Young, C. C. 2005. Development and application of Biofertilizers in Taiwan. Multi-country study mission on business potential for agricultural biotechnology products. The Asia Productivity Organization. 7: 67-74. Young, C. C., C. L. Chen and C. C. Chao. 1990. Effect of Rhizobium, VA mycorrhiza and phosphate solubilizing bacteria on yield and mineral phosphate uptake on crops in subtropical-tropical soils. 14th International Congress of Soil Science. Symposium session of Commission Ⅲ: 55-60. Young, C.C. 1984. Autointoxication in root exudates of Asparagus officinalis L. Plant Soil 82: 247–253. Young, C.C., and L.F. Chen. 1997. Polyamines in humic acid and their effect on radical growth of lettuce seedlings. Plant Soil 195: 143–149. Young, C.C., J.Y. Chang, and C.C. Chao. 1988. Physiological and symbiotic characteristics of Rhizobium fredii isolated from subtropical-tropical soils. Biol. Fertil. Soils 5: 350–354. Young, L.-S., A. Hameed, S.-Y. Peng, Y.-H. Shan, and S.-P. Wu. 2013. Endophytic establishment of the soil isolate Burkholderia sp. CC-Al74 enhances growth and P-utilization rate in maize (Zea mays L.). Appl. Soil Ecol. 66: 40–47. Young. C. C. 2014. Soil and Fertilizer: Concepts and Practice. Airiti Press Inc. Zaidi, A., M.S. Khan, M. Ahemad, and M. Oves. 2009. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol. Immunol. Hung. 56: 263–284. Zakria, M., A. Ohsako, Y. Saeki, A. Yamamoto, and S. Akao. 2008. Colonization and growth promotion characteristics of Enterobacter sp. and Herbaspirillum sp. on Brassica oleracea. Soil Sci. Plant Nutr. 54: 507–516. Zhou, J., B. Xia, H. Huang, D.S. Treves, L.J. Hauser, R.J. Mural, A.V. Palumbo, and J.M. Tiedje. 2003. Bacterial phylogenetic diversity and a novel candidate division of two humid region, sandy surface soils. Soil Biol. Biochem. 35: 915–924. Zhu, B., M.-M. Lou, G.-L. Xie, G.-F. Wang, Q. Zhou, F. Wang, Y. Fang, T. Su, B. Li, and Y.-P. Duan. 2011. Enterobacter mori sp. nov., associated with bacterial wilt on Morus alba L. Int. J. Syst. Evol. Microbiol. 61: 2769–2774.
摘要: 
Maize (Zea mays L.) as one of the important grain is currently the world's highest producted food crops. With the increasing of the total human population on the earth, increment of demand for grain and hence higher application rate of synthetic fertilizers may cause soil degradation. To improve agricultural practices, application of plant growth promoting bacteria (PGPB) may be a friendly way to earth's environment by reducing the application of fertilizers, pesticides and contribute to sustainable agricultural development. Endophyte as a PGPB in this study can promote plant growth and reduce application of chemical fertilizers, and improve agricultural production and contribute to sustainable development of agriculture management. The aim of this study was to characterize endophytes that were isolated from Oryza sativa and Brassica oleracea var. capitata on growth promotiion of maize (Zea mays L.), Tainan No. 22. Seed germination bioassy of two strains with higher IAA production (Enterobacter ludwigii LSY-E2 and Enterobacter mori LSY-3A31) can increase the length of hypocotyl by 22%, 11%, and radicle by 18%, 34%, respectively. The 16S-rDNA denaturing gradient gel electrophoresis (DGGE) was performed as extracted maize DNA to reveal the colonization pattern of inoculated endophytes and their effects on endophytic bacteria communities. Enterobacter sp. was found to be a natural endophytic colonizer of maize Tainan No. 22, which indicates that LSY-E2 and LSY-3A31 may been the competent endophytes in miaze and exhibit plant growth promoting effects. Endophytic microorganism communities in maize were also affected by endophytic inoculations. Maize inoculated with strains LSY-E2 and LSY-3A31 under half-strength nutrient solution grew as well as treatments at full-strength nutrient solution in the greenhouse for a month. Therefore, the strains LSY-E2 and LSY-3A31 in this study have the potential to promote plant growth and reduce chemical fertilizers.

玉米是目前全世界總產量最高的糧食作物,為重要的穀類之一。隨著地球上人類總人口數增加,糧食需求及化學合成肥料的施用量隨之增加,導致生活的土壤環境受到汙染物嚴重的破壞。為了尋找對地球環境較友善的方法改善農業活動,減少肥料及農藥對環境的影響,促進植物生長細菌 (plant growth promoting bacteria, PGPB) 為一種可作為永續農業發展的微生物應用方式。而植物內生菌 (endophyte) 為PGPB的一類,本論文所使用之植物內生菌具有促進植物生長以及減少化學肥料施用的功能,能夠改善現今的農業生產,並有助於永續農業糧食的經營。本研究的目的為利用從水稻及高麗菜所分離之植物內生菌接種於白玉米台南22號,篩選能促進玉米生長之植物內生菌。研究結果顯示,所分離之植物內生菌IAA生產能力較高的菌株Enterobacter ludwigii LSY-3A31及Enterobacter mori LSY-E2於種子發芽試驗分別能夠促進胚莖生長22 %、11% 及胚根生長18%、34% 。本研究利用萃取玉米植體中的內生菌DNA與16S-rDNA變性梯度膠體電泳 (DGGE) 的方法,分析植物內生菌接種於玉米體內的拓殖 (colonization) 情形以及對於玉米植體內微生物群落變化影響。由DGGE實驗結果發現,Enterobacter sp. 易於白玉米台南22號植體內拓殖,顯示出LSY-3A31及LSY-E2可能作為主動型內生菌於玉米體內拓殖,並具有促進植物生長的效果,並發現玉米植體內微生物群落可能會受到植物內生菌接種的影響。經由玉米於溫室盆栽生長一個月之實驗,在肥料施用半量的條件下,玉米接種植物內生菌LSY-3A31及LSY-E2之處理皆可達到與肥料施用全量之處理有相同的效果。因此於本研究中,植物內生菌LSY-3A31及LSY-E2具有促進玉米初期生長及減少化學肥料施用的效益。
URI: http://hdl.handle.net/11455/90145
Rights: 同意授權瀏覽/列印電子全文服務,2018-01-29起公開。
Appears in Collections:土壤環境科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101039008-1.pdf4.98 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.