Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90149
標題: The Research of applying of arbuscular mycorrhizal fungis (Glomus spp.) on the production and the development of a nursery medium for tomato and muskmelon
叢枝菌根菌(Glomus spp.)應用於番茄與甜瓜之生產與育苗介質開發之研究
作者: Jui-Chang Huang
黃瑞彰
關鍵字: Endomycorrhiza;Tomato;Muskmelon;Biofertilizer;Stress;Soil- borne disease;Nursery medium;內生菌根菌;番茄;洋香瓜;生物性肥料;鹽分逆境;土生性病害;育苗介質
引用: 王均琍。2007。菌根菌應用於經濟果樹之栽培。農業生技產業季刊。12:43-48。 王朝儀。2007。不同番茄品種與栽培介質對叢枝菌根菌接種效應之比較研究。亞洲大學生物科技學系碩士論文。pp.73。 王銀波。土壤及作物營養障礙圖鑑查詢。行政院農業委員會農糧署網站http://www.afa.gov.tw 王銀波、吳正宗。1990。培養液之理論與實際。養液栽培技術講習會專刊第三輯。台灣省農林廳農業試驗所編印。pp.14-26。 王銀波、吳繼光、黃衍龍、趙震慶。1995。污染土壤中囊叢枝菌根菌族群對重金屬耐性之研究。中華農學會報。新169:55-69。 古德業、黃伯恩。1994。生物肥料在永續農業上之應用及展望。微生物肥料之開發與利用研討會專刊。 pp.1-4 。台灣省農業試驗所嘉義分所 。 石海仙、伊東正。2001。氯化鈉添加和營養液濃度對番茄產量和品質的影響。中國蔬菜。4:9-11。 行政院環境保護署。1990。台灣地區現階段土壤污染防治工作之現況與基本策略。行政院環境保護署印行。 朱復慶。1999。台灣鹽漬土的改良利用與管理.土壤與環境。2:99-116。 何小珍。2003。鹽分處理對番茄'農友301'植株生育、產量及果實品質之影響。國立中興大學土壤學研究所碩士論文。 李玉玲。1995。微生物肥料在農業上之應用。嘉義農專農藝學報。27:81-87。 呂斯文。1994。囊叢枝菌根菌之無土介質接種,接種源生產及菌種篩選研究。國立臺灣大學園藝學研究所博士論文。pp.172-191。 呂斯文、張簡秀容、張喜寧。1995。利用穴植盤培育番茄菌根苗及其田間生長之反應。中心園藝41(1):54-67。 呂桂云、陳貴林、齊國輝。2002。黃瓜菌根育苗基質的研究。中國蔬菜4:9-12。 吳繼光。1994。台灣內生菌根資源調查與種緣開發微生物肥料之開發與利用研討會專刊。pp.l31-156。台灣省農業試驗所嘉義分所。 吳繼光、林素楨。1998。台灣內生菌目及繡球菌目之分類學研究。囊叢枝內生菌根菌應用技術手冊。pp.54。 吳繼光、林素楨。1998。囊叢枝內生菌根菌應用技術手冊。台灣省農業試驗所。p.54。 林天枝、洪堂。2002。番茄新品種臺中亞蔬十號之育成。臺中區農業改良場研究彙報。75:41-57。 林素楨、林淑媛、吳繼光。2001。微生物接種對洋桔梗生長與植體磷變化之研究。中華農業研究。50(4):66-73。 陳正次。2002。番茄病蟲害與生理障礙的防治。番茄品種特性與栽培技術全輯。行政院農委會種苗改良繁殖場印行pp.56-78。 陳鴻堂。1992。台灣中部設施栽培土壤鹽分累積之特性及改良。國立中興大學土壤學研究所碩士論文。 莊作權。1997。土壤肥料。三民書局。臺北。pp.272-278。 莊明富、程永雄。1999。泥炭苔對叢枝菌根菌繁殖之影響。中華農學研究。48(4)64~70。 張喜寧。1992。台灣園藝囊叢枝茵根之研究與展望。科學農業40(1-2):45-52。 黃校翊。2007。聖誕紅氮素營養與氮肥診斷之研究。國立臺灣大學園藝學研究所碩士論文. pp.98。 鄔家琪。2003。叢枝菌根對設施蔬菜在環境逆境下生長之影響。國立臺灣大學園藝學研究所碩士論文。pp.90-112。 程永雄、杜金池、鄭安秀、陳紹崇。1991。內生菌根菌在洋香瓜栽培上之應用。台灣農業。27:53-55。 程永雄、莊明富、杜金池。1993。內生菌根菌Glomus clarum應用在洋香瓜生產上之效益評估。中華農業研究。42(1):74-84。 程永雄、莊明富、蔡東篡。2001。洋香瓜囊叢枝內生菌根菌與根瘤線蟲之相互關係。植物病理學會刊。10:19-26。 陳盛義、李美娟、蕭芳蘭、楊佐琦。1999。番茄新品種「種苗七號」--抗青枯病、番茄嵌紋病毒病。台灣農業。35:27-29。 黃榮杰。2005。台灣恆春地區與塞內加爾Kedougou洋香瓜接種菌根菌對其植株生長及產量之影響。國立屏東科技大學農園研究所碩士論文。p.80。 黃瑞彰、林晉卿、孫文章。2009。設施栽培合理化施肥技術。台南區農業改良場技術專刊98-3(NO.138)。p.20 黃瑞彰、林晉卿。2009。微生物在蔬果生產之應用。生物科技產學論壇─生物製劑專刊。國立中興大學生物科技發展中心編印。p.17-24。 黃瑞彰、林晉卿、江汶錦、林經偉、卓家榮。2009。微生物在瓜果類作物生產之應用。台南區農業專訊。70:13-17。 黃炤雄、蔡雲鵬、林奕耀、杜金池、黃修斌。1972。臺灣植物寄生線蟲。中研院植物研究所專刊第一號。p.61。 彭德昌。2000。微生物接種對無子西瓜生育與產量之影響。花蓮區農業改良場研究彙報。18:61-68。 楊秋忠。1997。固氮菌及溶磷菌的應用及發展有益微生物在農業上之應用研討會專刊。p.11-26。 鄭安秀、黃圓滿、黃瑞彰、陳昇寬、彭瑞菊。2009。洋香瓜安全生產管理。台南區農業改良場技術專刊98-3(NO.137)。p.25。 Abbot,.L.K. and A.D. Robson.1985.The effect of pH on the formation of VA mycorrhiza by two species of Glomus .Aust. J. Soil. Res. 23:253-261. Ackerson, R.C. 1981. Osmoregulation in cotton in response to water stress. Plant Physiol. 67:489-493. Adams, P. 1992. Crop nutrition in hydroponics. Acta Hort. 323:289-305. Adams, P. and L. C. Ho. 1993. Effects of environment on the uptake and distribution of calcium in tomato and on the incidence of blossom-end rot. Plant Soil. 154:127-132. Ahromi F, R. Aroca, R. Porcel and J.M. Ruiz-Lozano 2008. Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol., 55(1):45-53. Al-Karaki, G. N. 2000. Growth and mineral acquisition by mycorrhizal tomato grown under salt stress. Mycorrhiza, 10:51–54. Al-Karaki, G..N., A. Al-Raddad, and R.B.Clark. 1998. Water stress and mycorrhizal isolate effects on growth and nutrient acquisition of wheat. J. Plant Nutri., 21:891-902. Al-Karaki, G. N, R. Hammad, and M. Rusan. 2001. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress.Mycorrhiza, 11:43-47. Allen, E.B.and G.L.Cunningham. 1983. Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytol., 93:227- 236. Allen, M. F. and M G.Boosalis. 1983. Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytol., 93:67-76. Allen, M. F., T. S. Jr. Moore, and M. Christensen. 1980. Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. I. Cytokinin increases in the host plant. Can. J. Bot., 58:371-374. Allen, M. F., W. K. Smith, T. S. Jr. Moore, and M. Christensen. 1981. Comparative water relations and photosynthesis of mycorrhizal and non- mycorrhizal Bouteloua gracilis H.B.K. New Phytol., 88:683-693. Angela Campanelli, Claudia Ruta, Anna Tagarelli, Irene Morone-Fortunato. 2011. Nursery inoculation with the arbuscular mycorrhizal fungus Glomus viscosum and its effect on the growth and physiology of hybrid artichoke seedlings. Italian Journal of Agronomy., (6): 159-164. Angela Campanelli, Claudia Ruta, Giuseppe De Mastro, Irene Morone-Fortunato. 2013. The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. Icon. Symbiosis., 59(2):65-76. Anna Dekker. 2009. The role of mycorrhiza for plants in stressed environments. NBS Technical Author. http://www.thenbs.com/topics/DesignSpecification/articles/mycorrhiza.asp, 最後流覽日 2013.06.13. Arafat Abdel Hamed Abdel Latef, He Chaoxing. 2011. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae.127(3):228-233. Aroca, R., J. M. Ruiz-Lozano, Zamarreno, A. M., Paz, and A., Garcia-Mina, J. M., Pozo, M. J., Lopez-Raez, J. A. 2013. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol., 170:47–55. Auge, R. M.. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11:3-42. Auge, R. M., K. A. Schekel, and R. L. Wample. 1986. Osmotic adjustment in leaves of VA mycorrhizal and non-mycorrhizal rose plants in response to drought stress. Plant Physiol., 82:765-770. Auge, R. M., K. A. Schekel, and R. L. Wample. 1987. Leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress. Plant Soil., 99:291-302. Ayers, R.S., D.W. Westcot, 1985. Water quality for agriculture. FAO Irrigation and Drainage Paper No. 29, Rome, Italy, pp. 77–81. Azcon-Aguilar. C. and J. M. Barea. 1996. Arbuscular mycorrhizae and biological control of soil-borne plant pathogens-an overview of the mechanisms involved. Mycorrhiza, 6:457-464. Azcon, R. and F. El-Atrash. 1997. Influence of arbuscular mycorrhizae and phosphorus fertilization on growth, nodulation and N2 fixation (15N) in Medicago sativa at four salinity levels. Biol. Fertil. Soils, 24:81-86. Barakan, F. N. and A. M. Heggo. 1998. Moisture stress, bradyrhizobia, vesicular-arbuscular mycorrhiza and P-fertilizers effects on soybean growth, nutrient content and phosphatase activity under calcareous soil. Ann. Agric. Sci. Cairo., 43: 461-475. Ben-Dor, E., Banin, A. 1989. Determination of organic matter content in arid-zone soils using a simple loss-on-ignition method. Commun Soil Sci. Plant Anal., 20:1675–1695. Berta, G. Fusconi, A. Trotta, A. Scannerini S (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomns strain E3 in the root system of Allium porrwn L. New Phytol, 114:207-215. Bethlenfalvay, G. J., M. S. Brown, R. N. Ames, and R. E. Thomas. 1988. Effect of drought on host and endophyte developement in mycorrhizal soybeans .in relation to water use and Puptake. Physiol. Plant., 72:565-571. Biermann, B. J., Linderman, R. G. 1981. Quantifying vesicular-arbuscular mycorrhizae: a proposed method towards standardization. New Phytol., 87:63–67. Biermann, B. J. and R. G. Linderman. 1983. Increased geranium growth using pre-transplant inoculation with a mycorrhizal fungus. J. Amer. Soc. Hort. Sci., 108:972-976. Bigham, J. M. and J. M. Bartels (eds). 1996. Methods of Soil Analysis, Part 3. Chemical methods. Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, USA. P.. 1390. Bradley, R., A. J. Burt, and D. J. Read. 1982. The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhiza infection in heavy metal resistance. New Phytol. 91:197-209. Bragg, N. C. and B. J. Chambers. 1988. Interpretation and advisory applications of compost air-filled porosity (AFP) measurements. Acta Hort. 221:35-44. Bremner, J. M. 1996. Nitrogen Total. In: D. L. Sparks (ed). Methods of Soil Analysis, part 3: Chemical Methods. Soil Science Society of America Inc., Madison, pp:1085–1121. Carvajal, M., A. Cerda, and V. Martinez. 2000. Modification the response of saline stressed tomato plants by the correction of cation disorders. Plant Growth Regul., 30:37-47. Chang, D. C. N.. 1996. The use of arbuscular mycorrhiza (AM) fungi for horticulture Food and Ferti. Tech. Center Tech. Bull., 144:1-7. Charest, C., Y. Daipe, and A. Brown. 1993. The effect of vesicular-arbuscular mycorrhizae and chilling on two hybrids of Zea mays L.. Mycorrhiza, 4:89-92. Cheeseman, J. M.. 1988. Mechanisms of salinity tolerance in plants. Plant Physiol. 87:547-550. Cho K, H Toler, J Lee, B Ownley, J.C Stutz, J.L. Moore and R.M. Auge 2006. Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J Plant Physiol., 163(5):517-28. Clark R. B. and S. K. Zeto. 1996. Iron acquisition by mycorrhizal maize grown on alkaline soil. J. Plant Nutri., 19:247-264. Colla, G., Y. Rouphael, M.T. Cardarelli, M. Tullio, C.M. Rivera, Rea, E., 2007. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol. Fert. Soils. 44:501–509. Cruz, A. F., T. Ishii, and K. Kadoya. 2000. Effect of arbuscular mycorrhizal fungi on tree growth, leaf water potential, and levels of 1-aminocyclopropane-l-carboxylic acid and ethylene in the roots of papaya under water-stress conditions. Mycorrhiza, 10:121-123. Cuartero, J., Romero-Aranda, R., Yeo, A.R., Flowers, T.J., 2002. Variability for some physiological characters affecting salt tolerance in tomato. Act. Hottic., 573:435–441. Daei G, Ardekani MR, Rejali F, Teimuri S and Miransari M. 2009. Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J. Plant Physiol., 166(6):617-25. Daft. M. J., D. Spencer, and G. E. Thomas. 1987. Infectivity of vesicular-arbuscular mycorrhizal inocula after storage under various environmental conditions. Trans. Br. Myco. Soc., 88:21-27. Daniels, B. A. and D. M. Duff. 1978. Variation in germination and spore morphology among four isolates of the Glomus mosseae. Mycologia, 70:1261-1267. Daniels, B. A. and G. W. T. Wilson. 1989. Suppression of mycorrhizal fungus spore germination in non-sterile soil: relatiomship to mycorrhizal growth response in big bluestem. Mycologia, 81:382-390. Davies, W. J., F. Tardieu, and C. L. Trejo. 1994. How do chemical signals work in plants that grow in drying soil ? Plant Physiol., 104:309-314. Debouba, M., Gouia, H., Suzuki, A., Ghorbel, M. H., 2006. NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato 'Lycopersicon esculentum' seedlings. J. Plant Physiol., 163:1247–1258. Dehne, H. W. 1982. Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology, 72: 1115-1119. Delhaize, E., P. R. Ryan., and P.J. Randall. 1993. Aluminum tolerance in wheat(Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root species. Plant Physiol., 103:695-702. Douds, D. D. and N. C. Schenck. 1991. Germination and hyphal growth of VAM fungi during and after storage in soil at five matric potentials. Soil Biol. Biochem., 23:177-183. Duan, X., D. S. Neuman, J. M. Reiber, C. D. Green, A. M. Saxton, and R. M. Auge.1996. Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J. Exp. Bot., 47: 1541-1550. Dumas, E., V. Gianinazzi-Pearson, and S. Gianinazzi. 1990. Production of new soluble proteins during endomycorrhizae formation. Agri. Ecosys. Environ., 29: 111-114. Ebel, R. C., G. E. Welbaum, M. Gunatilaka, T. Nelson, and R. M. Auge. 1996. Arbuscular mycorrhizal symbiosis and nonhydraulic signaling of soil drying in Vigna unguiculata (L.) Walp. Mycorrhiza, 6: 119-127. Enteshari Shekoofeh, Hajbagheri Sepideh and Razavizadeh Roya. 2012. Role of mycorrhizal fungi and salicylic acid in salinity tolerance of Ocimum basilicum resistance to salinity. African Journal of Biotechnology., 11(9):2223-2235. Epstein, E. 1972. Mineral nutrition of plants: principles and perspectives. Wiley, New York Estaun, M. V. 1989. Effect of sodium choride and mannitol on germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Agri. Eco. Environ. 29: 123-129. Estrada, B. E., R. Aroca, J. M. Barea, and J. M. Ruiz-Lozano, 2013. Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci., 201:43–51. Estaun, M. V. 1991. Effect of NaCl and mannitol on the germination of two isolates of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Abstracts,3rd European Symposium on Mycorrhizas, University of Sheffied, Sheffield, UK. Evelin H., R. Kapoor, and B. Giri 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot., 104(7):1263-1280. Evelin, H., B. Giri , and R. Kapoor, 2012. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza., 22:203–217. Faber, B. A., R. J. Zasoski, D. N. Munns, and K. Shackel. 1991. A method for measuring nutrient and water uptake in mycorrhizal plants. Can. J. Bot. 69:87-94. Fang Han, Xiao-Quan Shan, Jing Zhang, Ya-Ning Xie,Zhi-Guo Pei, Shu-Zhen Zhang, Yong-Guan Zhu, Bei Wen. 2005. Organic acids promote the uptake of lanthanum by barley roots. New Phytologist.165(2): 481-492. Feng, G., F. S. Zhang. X. L. Li, C. Y. Tian, C. Tang, and Z. Rengel. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12: 185-190. Feng, G., Zhang, F.S., Li, X.L., Tian, C.Y., C. Tang, Z. Rengel, 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza. 12, 185–190. Fernandes, T. A., V. lyer, and S. K. Apte.1993. Differential responses of nitrogen-fixing cyanobacteria to salinity and osmotic stress. Appl. Environ. Microbiol., 59:899-904. Furlan, V. and J. A. Fortin. 1977. Effects of light intensity vesicular-arbuscular endomycorrhizas on Allium cepc. New Phytol., 79:335-340. Garcia-sanchez,F.,Martinez,V.,Jifon,J.,Syvertsen,J.P.and Grosser,J.W. 2002. Salinity reduces growth,gas exchange,chlorophyll and nutrient concentrations in diploid sour orange and related alloteraploid somatic hybrids. J. Hort.Sci.Bio., 77(4):379-386. Gemma, J. N., R. E. Koske, E. M. Roberts, N. Jackson, and K. De Antoneis. 1997. Mycorrhizal fungi improve drought resistance in creeping bentgrass. J. Turfgrass Sci., 73: 15-29. Gemma, J. N., R. E. Koske, E. M. Roberts, and S. Hester. 1998. Respose of Taxus×media var. densiformis inoculation with arbuscular mycorrhizal fungi. Can. J. For.Res., 28: 150-153. Feng, G. F. S. Zhang, X. L. Li, C. Y. Tian, C. Tang, Z. Rengel. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in root. Mycorrhiza, 12:185-190. Ghazi N, Al-Karaki. 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10 :51-54. Ghazi, N., Al-Karaki, R., Rusan, H.M., 2001. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza., 11:3–47. Giovannetti, M. and C. Sbrana. 1998. Meeting a non-host: the behaviour of AM fungi Mycorrhiza, 8:123-130. Giovannetti, M., C. Sbrana, A. S. Citemesi, and L. Avio. 1996. Analysis of factors involved in fungal recognition responses to host-derived signals by arbuscular mycorrhizal fungi. New Phytol., 133:65-71. Giri, B., Kapoor, R., and Mukerji, K.G., 2003. Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol. Fert. Soils. 38, 170–175. Giri, B., Kapoor, R., and Mukerji, K.G., 2007. Improved tolerance of Acacia nilotica to salt stress by Arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb. Ecol. 54, 753–760. Goicoechea, N., M. C. Antolin, M. Sanchez-Diaz. 1997. Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought Physiol. Plant, 100:989-997. Goicoechea, N., G. Szalai, M. C. Antolin, M. Sanchez-Diaz, and E. Paldi. 1998.Influence of arbuscular mycorrhizae and Rhizobium on free polyamines and proline levels in water-stressed alfalfa. J. Plant Physiol., 153:706-711. Grattan, S. R. and C. M. Grieve. 1999. Salinity-mineral nutrient relations in horticultural crops. Sci. Hort., 78:127-157. Gupta, R. and K. V. Krishnamurthy. 1996. Response of mycorrhizal and nonmycorrhizal Arachis hypogaea to NaCl and acid stress. Mycorrhiza, 6:145-149. Hakan BAŞAK, Koksal DEMİR, Rezzan KASIM and F.Yeşim OKAY.2011. The effect of endo-mycorrhiza (VAM) treatment on growth of tomato seedling grown under saline conditions. African Journal of Agricultural Research, Vol. 6(11):2532-2538. Hanger, B. C. 1979. The movement of calcium in plants. Commun. Soil Sci.Plant Anal., 10(1&2):171-193. Hasegawa, P.M., Bressan, R.A., Hanada, A.K., 1986. Cellular mechanisms of salinity tolerance. Hort. Sci., 21:1317–1324. Hashem, A. R. .1995. The role of mycorrhizal infection in the resistance of Vaccinium macrocarpon to manganese. Mycorrhiza, 5:289-291. Hayman, D.S. 1987. VA mycorrhizas in field crop systems. pp. 171-192. In G.R.Safir (ed.) Ecophysiology of VA mycorrhizal plants. CRC Press, Inc., Florida, USA. Hayman, D. and S. M. Tavares. 1985. Plant growth responses to vesicular-arbuscular mycorrhiza XV. Influence of soil pH on the symbiotic effciency of different endophytes. New Phytol., 100:367-377. Hirrel, M. C. 1981. The effect of sodium and chloride salts on the germination of Gigaspora margarita. Mycologia, 73: 610-617. Hirrel, M. C. and J. W. Gerdemann. 1978. Improved salt tolerance in bell pepper by two vesicular-arbuscular (VA) mycorrhizal fungi. Agron. Abstr., 140-141. Hirrel, M. C. and J. W. Gerdemann. 1980. Improved growth of onion and bell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi. Soil Sci. Soc. AM. J., 44:654-655. Hussey, R. S., and Roncadori, R. W. 1977. Interactions of Pratylenchus brachyurus and an endomycorrhizal fungus on cotton. J. Nematol., 9:270-271. Incoll, L. D.,and G.C. Whitelam. 1977. The effect of kinetin on stomata of the grass Anthephera pubescens. Nees. Planta., 137:243-245. Jamal-Abad AK and Khara J. 2007. Effects of arbuscular mycorrhizal fungus (Glomus veruciforme) on changes of some physiological parameters in cadmium treated wheat plants. Pak J Biol Sci., 10(23):4279-82. Jin, F., J., A. Cao,. A, Kishita, H. Enomoto, and T, Moriya. 2008. Oxidation reaction of high molecular weight dicarboxylic acidsin sub- and supercritical water. J. Supercrit Fluids., 44:331-340. Johnson, C.R. J.A.Menge, S. Schwab, I.P. Ting (1982) Interaction of photoperiod and vesicular-arbuscular mycorrhizae on growth and metabolism of sweet orange. New Phytol, 90:665-669 Johnson, N.C., and F.L. Pfleger. 1992. Vesicular-arbuscular mycorrhizae and cultural Stresses. In. G.J. Bethlenfalvay, and R.G.Linderman(eds.) Mycorrhizae in sustainable agriculture. Soil Sci. Soc. Amer., Inc. Wisconsin, USA. Juge, C., J. Samson, C. Bastien, H. Vierheiling, A. Coughlan, and Y. Piche. 2002. Breaking dormancy in spores of the arbuscular mycorrhizal fungus Glomus intraradices: a critical cold-storage period. Mycorrhiza, 12:37-42. Juniper, S. and L. K. Abbott. 1993. Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza. 4:45-57. Karin Hage-Ahmed, Johannes Krammer, Siegrid Steinkellner. 2013. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato. Mycorrhiza. http://link.springer.com/article/10.1007%2Fs00572-013-0495-x Katja Boldt, Yvonne Pors, Bastian Haupt, Michael Bitterlich, Christina Kuhn, Bernhard Grimm, Philipp Franken. 2011. Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. Journal of plant physiology., 168(11):1256-1263. Kellam, M.K. and N.C. Schenck. 1980. Interactions between a vesicular-arbuscular mycorrhizal fungus and root-knot nematode on soybean. Phytopathol. 70:293–296. Kjeldahl, J. 1883. A new method for the determination of nitrogen in organic matter. Z. Anal. Chem., 22:366–382. Klironomos, J. N. and M. M. Hart. 2002. Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza, 12: 181-184. Koske, R. E. and J. W. Gemma. 1989. A modified procedure for staining roots to detect VA mycorrhizae. Mycol. Res., 92: 486-505. Koide, R. T. and R. P. Schreiner. 1992. Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Ann. Rev. Plant Physiol. Plant Mol. Biol., 43: 557-581. Kolthoff, I.M., E.B. Sandell, 1964. Textbook of quantitative inorganic Analysis, third ed. Macntllant, New York. Koske, R. E. and J. W. Gemma. 1989. A modified procedure for staining roots to detect VA mycorrhizae. Mycol. Res. 92: 486-505. Kucey, R. M. N. and E. A. Paul. 1982. Carbon flow, photosynthesis, and N2 fixation in mycorrhizal and nodulated faba beans ( Vicia faba L.). Soil Biol. Biochem. 14: 407-412. Levitt, J. 1980. Responses of plants to environmental stresses. 2nd edition. Academic Press. N. Y. Levy, Y. and J. Krikun. 1980. Effect of vesicular-arbuscular mycorrhiza on Citrus jambhiri water relations. New Phytol. 85: 25-31. Li,Y.L.,S. Cecilia., and C. Hugo. 2001. Effect of electrical conductivity and transpiration on production of greenhouse tomato(Lycopersicon esculentum L.)Sci. Hort., 88:11-29. Lin, J. N. and C. H. Kao. 1998. Water stress, ammonium, and leaf senescence in detached rice leaves. Plant Growth Regul. 26: 165-169.Lin, T.C., Hung, S.T., 2002. The development of new tomato variety - Taichung Asveg No. 10. Report of Taichung District Agricultural Research and Extension Station, 75, 41–57. (in Chinese) Linderman, R. G., and E. A. Davis, 2004. Vesicular arbuscular mycorrhizal and plant growth response to soil amendment with composed grape promac or its water extract. Phyton. Anals. Botanicase., 11: 446-450. Lutts. S., J. M. Kinet, and J. Bouharmont. 1996. Effects of salt stress on growth,mineral nutrition and proline accumulation in relation to osmotic adjustment in rice(Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Regul., 19:207-218. Manjunath,A., and D.J. Bagyaraj. 1984. Effect of fungicides on mycorrhizal colonizateion and growth of onion. Plant and Soil, 80:147-150. Maria J. Harrison. 2005. Signaling in the arbuscular mycorrhizal symbiosis. Annual Review of Microbiology., 59:19-42. Mathur, N and A. Vyas. 1995. Influence of VA mycorrhizae on net photosynthesis and transpiration of Ziziphus mauritiana. J. Plant Physiol., 147:328-330. Mathur, N. and A. Vyas. 1996. Biochemical changes in Ziziphus xylopyrus by VA mycorrhizae. Bot. Bull. Acad. Sin., 37:209-212. Mehlich, A. 1984. Mehlich 3 soil test extractant: a modification of Mehlich 2. Comm. Soil Sci. Plant Anal., 15:1409–1416. Miller, R.O., 1998. Nitric–perchloric acid wet digestion in an open vessel, in: Kalra, Y.P. (Ed.) Handbook of reference methods for plant analysis. CRC, Boca Raton, pp. 69–73. Miller, J.C.Jr., S. Rajapokse, and R.K. Garber. 1986. Vesicular-arbuscular mycorrhizae in vegetable crops. Hort Sci., 21:974-984. Sheng Min ,Ming Tang , Fengfeng Zhang and Yanhui Huang. 2011. Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza, 21:423-430. Morselt, A. F. W., W. T. M. Smiths, and T. Limonard. 1986. Histochemical demonstration of heavy metal tolerance in ectomycorrhizal fungi. Plant Soil, 96:417-420. Mozafar, A. 1996. Decreasing the NO3 and increasing the vitamin C contents in spinach by a nitrogen deprivation method. Plant Foods for Human Nutri. 49: 155-162. Mozafar Sharifi, Mahlagha Ghorbanli, and Hassan Ebrahimzadeh. 2007. Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. Journal of Plant Physiology. 164:1144-1151. Nebahat Sarib, Cağdaş Akpinara, and Halit Yetisirc. 2011. Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Scientia Horticulturae.128(2): 92-98. Neera Garg,and Shikha Chandel. 2012. Role of Arbuscular Mycorrhizal (AM) Fungi on Growth, Cadmium Uptake, Osmolyte, and Phytochelatin Synthesis in Cajanus cajan (L.) Millsp. Under NaCl and Cd Stresses. Journal of Plant Growth Regulation., 31(3): 292-308. Nelson, C. E. and G. R. Safir. 1982. Increased drought tolerance of mycorrhizal onion plants caused by improved phosphorus nutrition. Planta, 154:407-413. Nemec, S. and G. Guy. 1982. Carbohydrate status of mycorrhizal and nonmycorrhizal root stocks. Ann. Bot., 47:351-358. Nzanza, B., Marais, D., and Soundy, P., 2011. Tomato (Solanum lycopersicum L.) seedling growth and development as influenced by Trichoderma harzianum and arbuscular mycorrhizal fungi. Afr. J. Microbiol. Res., 5:425–431. Nzanza, B., D. Marais, and P. Soundy, 2012. Response of tomato (Solanum lycopersicum L.) to nursery inoculation with Trichoderma harzianum and arbuscular mycorrhizal fungi under field conditions. Acta. Agr. Scand. B-S P., 62:209–215. Pai, G., D. J. Bagyaraj, T. Padmavathi Ravindra, and T. G. Prasad. 1994. Calcium uptake by cowpea as influenced by mycorrhizal colonization and water stress. Curr.Sci., 66: 444-445. Panwar, J. D. S., 1993. Response of VAM and Azospirillum inoculation to water status and grain yield in wheat under water stress condition. Indian J. Plant Physiol. 36:41-43. Papadopoulos,I. and V. V. Rendig. 1983. Interactive effect of salinity and nitrogen on growth and yield of tomato plants. Plant Soil., 73: 7-57. Parniske M. 2008. The mother of plant root endosymbioses. Nat Rev Microbiol., 6(10):763-75. Paula, M. A. and J. O. Siqueira. 1990. Stimulation of hyphal growth of the VA mycorrhizal fungus Gigaspora margarita by suspension-cultures Pueraria phaseoloides cells and cell products. New Phytol. 115: 69-75. Passam, H.C., I.C. Karapanos, P.J. Bebeli, and D. Savvas, , 2007. A review of recent research on tomato nutrition, breeding and post-harvest technology with reference to fruit quality. Eur. J. Plant Sci. Biotechnol., 1:1–21. Pessarkli, M., and T. C. Tucker. 1988. Dry matter yield and nitrogen-15 uptake by tomatoes under sodium chloride stress. Soil. Sci. Amer. J., 52:698-700. Pierre Mariotte, Claire Meugnier, David Johnson, Aurelie Thebault, Thomas Spiegelberger, Alexandre Buttler. 2013. Arbuscular mycorrhizal fungi reduce the differences in competitiveness between dominant and subordinate plant species. Mycorrhiza., 23(4):267-277. Pond, E.C., J. A. Menge, and W. M. Jarrell. 1984. Improved growth of tomato in salinized soil by vesicular-arbuscular mycorrhizal fungi collected from saline soils. Mycologia, 76:74-84. Porcel, R., R. Aroca, and J. M. Ruiz-Lozano, 2012. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev., 32:181–200. Porras-Soriano, A., Soriano-Martin, M.L., Porras-Piedra, and A., Azcon, R., 2009. Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J. Plant Physiol., 166:1350–1359. Poss, J. A., E. Pond, J. A. Menge, and W. M. Jarrell. 1985. Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant Soil., 88:307-319. Prakash, D., P. Nath and M. Pal. 1995. Composition and variation in vitamin C, carotenoids, protein, nitrate and oxalate contents in Celosia leaves. Plant Foods for Human Nutri., 47: 221-226. Ramakrishnan, B., B. N. John, and R. K. Gupta. 1988. Influence of the VAM fungus Glomus caledonius on free proline accumulationin water-sytressed maize. Curr. Sci., 57:1082-1084. Reid, C.P.P.,and G.D. Bowen, (1979) Effect of soil moisture on VA mycorrhiza formation and root development in Medicago.In:Harley, J.L. Russell, R.S. (eds) The soil-root interface. Academic, London, pp. 211-219 Roger T. Koide,and Barbara Mosse. 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza, 14:145-163. Rosendahl, C. N. and S. Rosendahl. 1991. Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis Sativus L.)to salt tress.Environ. Exp. Bot., 31:313-318. R. Hajiboland. 2013. Role of Arbuscular Mycorrhiza in Amelioration of Salinity. Salt Stress in Plants., pp.301-354. Roghieh Hajiboland, Naser Aliasgharzadeh, Shirin Farsad Laiegh, Charlotte Poschenrieder. 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant and Soil., 331(1-2):313-327. Ruiz-Lozano J.M., R. Porcel, C. Azcon,and R. Aroca, 2012. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J. Exp. Bot., 63(11):4033-4044. Ruiz-Lozano. J. M. and R. Azcon. 1997. Effect of calcium application on the tolerance of mycorrhizal lettuce plants to polyethylene glycol-induced water stress. Symbiosis, 23:9-21. Ruiz-LozanoJ. M., R. Azcon, and M. Gomez. 1995. Effects of arbuscular- mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl. Environ. Microbiol., 61: 456-460. Rupam Kapoor, Heikham Evelin, Piyush Mathur, Bhoopander Giri. 2013. Arbuscular Mycorrhiza: Approaches for Abiotic Stress Tolerance in Crop Plants for Sustainable Agriculture. Plant Acclimation to Environmental Stress.pp.359-401. Sannazzaro, A.I., A.O. Ruiz, E.O. Alberto, and A.B. Menendez, 2006. Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil., 285:279–287. Santamaria, P., A. Elia, and M. Gonnella. 1997. Changes in nitrate accumulation and growth of endive plants during light period as affected by nitrogen level and form. J.Plant Nutri., 20:1255-1266. Schellenbaum, L., J. Muller, T. Boiler, A. Wiemken, and H. Schuepp. 1998. Effects of drought on non-mycorrhizal and mycorrhizal maize: changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools ofamino acids and imino acids. New Phytol., 138:59-66. Schenck, N. C., S. O. Graham, and N. E. Green. 1975. Temperature and light effect on contamination and spore germination of vesicular-arbuscular mycorrhizal fungi.Mycologia, 67:1189-1192. Schussler, J. R. and M. E. Westgate. 1994. Increasing assimilate reserves dose not prevent kernel abortion at low water potential in maize. Crop Sci., 34:1569-1576. Sharifi M, M. Ghorbanli and H. Ebrahimzadeh, 2007. Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol., 164(9):1144-51. Sheng M., M. Tang, H. Chen, B. Yang, F. Zhang and Y. Huang 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza., 18(6-7):287-96. Sheng, M., M. Tang, H. Chen, B. Yang, , Zhang, F., and Huang, Y., 2009. Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Can. J. Microbiol. 55, 879–886. Sheng M, M. Tang, F. Zhang, and Y. Huang, 2011. Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza, 21:423–430. Simoneau, P., J. Viemont, J. C. Moreau, and D. G. Stullu. 1994. Accumulation of new polypeptides in Ri T-DNA-transformed roots of tomato during the development of arbuscular mycorrhizae. Appl. Environ. Microbiol., 6:1810-1813. Singh, S., P. D. Rekha, A. B. Arun, Y.M. Huang, F.T. Shen, and C.C.Young, 2011. Wastewater from monosodium glutamate industry as a low cost fertilizer source for corn (Zea mays L.) Biomass. Bioenerg., 35:4001–4007. Siyal, A.A., A.G. Siyal,and Z.A. Abro, 2002. Salt affected soils their identification and reclamation. Pak J. Appl. Sci., 2:537–540. Smith, S.E. and D.J. Read, 1997. Mycorrhizal symbiosis,2nd ed.London,Uk:Acadeemic Press., pp.605. Smith, G. S. and R. W. Roncadori, 1986. Responses of three vesicular-arbuscular mycorrhizal fungi at four soil temperatures and their effects on cotton growth. NewPhytol., 104: 89-95. Snellgrove, R.C. Splittstoesser, W.E. Stribley, D.P. Tinker, P.B. (1982) The distribution of carbon and the demand of the fungal sym biont in leek plants with vesicular-arbuscular mycorrhizas. New Phytol 92:75-87. Snellgrove, R. C. and D. P. Stribley. 1986. Effects ofpre-inoculation with vesicular-arbuscular mycorrhizal fungus on growth of transplanted to the field as multi-seeded peat modules. Plant Soil, 92: 387-397. Sonneveld, C., and W.H. Welles, 1988. Yield and quality of rockwool-grown tomatoes as affected by variations in EC-value and climatic conditions. Plant Soil., 111:37–42. Sorensen, J. N., A. S. Johansen, and N. Poulsen. 1994. Influence of growth conditions on the value of crisphead lettuce. Plant Foods Human Nutri., 46:1-11. Stetler. D. A.. and W. M. Laetsch, 1965. Kinetin-induced chloroplast maturation in cultures of tobacco t issue.Science., 149:1387-1388. Subramanian, K. S. and C. Charest. 1995. Influence ofarbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza, 5:273-278. Subramanian, K. S. and C. Charest. 1997. Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. Mycorrhiza, 7: 25-32. Subramanian, K. S. and C. Charest. 1998. Arbuscular mycorrhizae and nitrogen assimilation in maize after drought and recovery. Physiol. Plant., 102: 285-296. Sylvia, D. M., L. C. Hammond, J. M. Bennet, J. H. Hass, and S. B. Linda. 1993. Field response of maize to a VAM fungus and water management. Agron J., 85: 193-198. Smith,S.E., and D.J. Read.1997.Mycorrhizal symbiosis,2nd ed.London,Uk:Acadeemic Press., p.605. Smith, G. S. and R. W. Roncadori. 1986. Responses of three vesicular-arbuscular mycorrhizal fungi at four soil temperatures and their effects on cotton growth. New Phytol., 104: 89-95. Taiwan Agricultural Research Institute, 1999. Introduction to a novel crop cultivar. (21). Plant Genetic Resources Newsletter of R.O.C. 4(2) accessed from http://www.npgrc.tari.gov.tw/npgrc-web/publish/newsletter.html (in Chinese) Toby Kiers, E., Duhamel,M., Beesetty,Y., Mensah, J. A., Franken, O., Verbruggen, E., Fellbaum, C.R., Kowalchuk, G. A., Hart, M. M., Bago, A., Palmer, T. M., West, S. A. Vandenkoornhuyse, P., Jan Jansa., and Heike Bucking. 2011. Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis. Science, 333:880-882. Tam, P. C. F. . 1995. Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza, 5:181-187. Tam, P. C. F. and D. A. Griffiths. 1993. Mycorrhizal associations in Hong Kong Fagaceae. IV. The mobilization of organic and poorly soluble phosphates by the ectomycorrhizal fungus Pisolithus tinctorius. Mycorrhiza, 2:133-139. Tardieu, F., J. Zhang, and D. J. G. Gowing. 1993. Stomatal control by both (ABA) in the xylem sap and leaf water status- a test of a model for droughted or ABA-fed field-grown maize. Plant Cell Environ., 16: 413-420. Tian, C., Feng, G., Li, X.L., Zhang, F.S., 2004. Different effects of arbuscular mycorrhizal fungal isolates from, saline or non-saline soil on salinity tolerance of plants. Appl. Soil Ecol. 26, 143–148. Tobar, R. M., R. Azcon, and J. M. Barea. 1994a. Improved nitrogen uptake and transport from N15-labelled nitrate by external hyphae of arbuscular mycorrhizaeunder water-stressd conditions. New Phytol., 126: 119-122. Tobar, R. M., R. Azcon, and J. M. Barea. 1994b. The improved of plant N acquisition from an ammonium-treated, drought-stressd soil by the fungal symbiont in arbuscular mycorrhizae. Mycorrhiza, 4: 105-108. Tommerup, I. C.. 1984. Effects of soil water potential on spore germination by vesicular-arbuscular mycorrhizal fungi. Trans. Br. Mycol. Soc., 83:193-202. Tommerup, I. C.. 1988. Long-term preservation by L-drying and storage of vesicular-arbuscular mycorrhizal fungi. Trans. Br. Mycol. Soc., 90: 585-591. Urrestarazu, M., A. Postigo, M. Salas. A. Sanchez, and G. Carrasco. 1998. Nitrate accumulation reduction using chloride in the nutrient solution on lettuce growing by NFT in semiarid climate conditions. J. Plant Nutri., 21:1705-1714. Van Steveninck, R. F. M. 1976. Effect of hormones and related substances on ion transport. In Transport in plants Π,Part B. Edited bv U. Luttge and M. G. Pittman.Springer- Verlag, New York, NY. pp. 307-342. Venkateswrlu, K., S. M. Al-Garni, and M. J. Daft. 1994. The impact of carbofuran soil application on growth and mycorrizal colonization by Glomus clarum of groundnut.Mycorrhiza, 5: 125-128. Vimard, B., M. St-Arnaud, V. Furlan, and J. A. Fortin. 1999. Colonization potential of in vitro-produced arbuscular mycorrhizal fungus spores compared with a root-segment inoculum from open pot culture. Mycorrhiza, 8: 335-338. Volkmar, K. M. and W. Woodbury. 1988. Effects of soil temperatures and depth on colonization and root and shoot growth of barley inoculated with vesicular-arbuscular mycorrhizae indigenous to Canadian prairie soil. Can. J. Bot., 67: 1702-1707. Von Reichenbach, H. G. and F. Schonbeck. 1995. Influence of VA-mycorrhiza on drought tolerance of flax (Lium usitatissimum L.). II. Effect of VA mycorrhiza on stomatal gas exchange, shoot water potential, phosphorus nutrition and the accumulation of stress metabolites. Angew Bot., 69: 183-188. Walley, F. L. and J. J. Germida. 1996. Failure to decontaminate Glomus clarum NT4 spores is due to spore wall-associated bacteria. Mycorrhiza, 6: 43-49. Wilson, G. W. T., B. A. D. Hetrick, and D. Gerschefske. 1989. Suppression of vesicular-arbuscular mycorrhizal fungus spore germination by nonsterile soil. Can. J Bot., 67:18-23. Wu, G. G., Lin, S. C. 1998. Taxonomic Studies on Endogonales and Glomales Isolated from Taiwan. In: Taiwan Agricultural Research Institute, Wufeng, Taichung, Taiwan, R. O. C (ed). Technical manual of vesicular-arbuscular mycorrhizal fungi, pp: 54. Wyn Jones, R.G.,and J. Gorham,, 1983. Osmoregulation. in: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (Eds.), Physiological plant ecology. III. Responses to chemical and biological environments. New Series 12C. Springer, New York, pp. 35–38. Yano-Melo, A.M., O.J. Saggin, and M.L.Costa, 2003. Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric. Ecosyst. Environ., 95:343–348. Young, C. C., T. C. Juang and C. C. Chao. 1988. Effects of Rhizobium and VA mycorrhizal inoculations on nodulation, symbiotic nitrogen fixation, and yield of soybean in subtropical-tropical fields. Biology and Fertility of Soils, 6:165-169. Young, C. C., T. C. Juang, and H. Y. Guo. 1986. The effects of inoculation with vesicualr-arbuscular mycorrhizal fungi on soybean yield and mineral phophorus utilization in subtropical-tropical soils. Plant and Soil 95:245-253. Young, C.C., C.L. Chen, and C.C. Chao. 1990. Effect of Rhizobium, Vesicular-arbuscular mycorrhiza and phosphate solubilizing bacteria on yield and mineral phosphorus uptahe of crop in subtropical-tropical soils. Transactions of 14th Icss iii:55-60. Yuang, B., Z. Li, H. Liu,, M. Gao, and Y. Zhang, 2007. Microbial biomass and activity in salt affected soils under arid conditions. Appl. Soil Ecol., 35:319–328. Yuncai Hu.and Urs Schmidhalter. 2005. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci., 168:541–549. Yamato M, Ikeda S and Iwase K. 2008. Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza, 18(5):241-9. Yuncai Hu and Urs Schmidhalter. 2005. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci., 168:541-549. Zhu, J.K., 2002. Salt and drought stress signal transduction in plants. Ann. Rev. Plant Biol. 53, 247–273. Zwiazek, J. J., Blake, T. J. 1991. Early detection of membrane injury in black spruce (Picea mariana). Can. J. For. Res., 21:401–404
摘要: 
Abstract
This experiment is attempted to evaluate inoculation of mycorrhizal fungi Funneliformis mosseae [syn. Glomus mosseae)] (Nicol. & Gerd.) Gerdemann & Trappe) (G.m.) to the growth of muskmelon seedlings in the adaption period and its infection rate on different muskmelon varieties, as well as the growth of muskmelon plants after inoculation in field experiment. The investigation material demonstrated that the inoculant mycorrhiza may promote the muskmelon to live the growing trend and the promotion fruit soluble solids, only the output and the juice extraction ratios mutually to have the height. The inoculant mycorrhiza has the negative effect production, because possible the soil nutrient to produce oppresses the resistance, causes the leaf blade etiolution, then influence adult plant light synthetic product production. Because the fungus mycorrhiza needs the host plant to provide the photosynthesis product, therefore any influence photosynthesis product's factor will affect naturally also the clump of fungus root development and the function, when the soil with will apply fertilizer the management not when will affect benefit of the inoculant mycorrhiza adult plant. Another material also discovered that the inoculant mycorrhiza may reduce the wireworm to damage, meets fungus processing to cause nearby the adult plant root circle the insects mouth number to reduce, because whether to meet the fungus adult plant to produce certain materials to suppress the wireworm to reproduce or meets the fungus reduction wireworm invasion to damage blocks its food to originate, the mechanism waits for further studying.
This experiment is attempted to evaluate inoculation of endomycorrhizal fungi Claroideoglomus etunicatum[syn. Glomus etunicatum] Becker & Gerdemann)(G.e.)and Funneliformis mosseae [syn. Glomus mosseae)] (Nicol. & Gerd.) Gerdemann & Trappe) (G.m.) to the growth of tomato seedlings in the adaption period and its infection rate on different tomato varieties, as well as the growth of tomato plants after inoculation in net house under stress condition. Results and effect you treatment on the growth of mycorrhizae –inoculated tomato plants indicated that the fruit yield of TSS 7 decreased under salt stress, but TCAV 10 increased . Better fruit yield was obtained is two tomato varieties inoculated with mycorrhiza whether they are under salt stress or not. When seedlings were not inoculated with mycorrhiza plus salt stress, K+ and Ca2+ in the leaves of too tomato leaves decrease but Na+ inoculated. Without mycorrhiza inoculation plus salt stress, K is the fruits of TCAV 10 increased, but decreased in TSS 7, Ca decreased in both varieties, and Na increased in both varieties. Another tests also showed that inoculation increased K+ and Ca+ absorption and decreased Na+ absorption. Thus, inoculation of mycorrhiza can improve tomato fruit quality and increase its tolerance to salt stress. If the plants were inoculated, Na+ concentration was decreased, It means that inoculated may disturb absorption of Na+. Shoots of TSS7 and TCAV10 grown under saline stress coupled with G.m. treatment showed a
significant decrease in Na content (23 and 34 %, respectively), fruits(24 and 3` %, respectively), roots (29 and 13 %, respectively) as compared with non-inoculated hybrid cultivars grown under saline stress. Under stress condition without salts electorates increased roots of TSS 7 and the electorate increased in TCAV 10. However, under stress condition with salts,the electorates were all increased in all the treatments with sinificant leaking of the electorates. Residual Na in soil and relative permeability were higher in TCAV10 inoculated with G.m. under saline condition compared with the non-inoculated treatments. If the tomato plants grown in the soil under salt stress, the chlorophyll content in the leaves, is usually lower than those in the soil without salt stress whether they were inoculated with mycorrhiza or not.
The experiment is attempted to develop appropriate composition of growth medium to enhence the supplement of various amount of chemical fertilizers. Results of muskmelon experiments indicated that best infection rate i.e. 66 % of the plants infected mycorrhiza was found in the growth medium containing coconut shell fiber (CSF):peat moss(PM):vermiculite(V)at 1:1:2 by volume plus inoculation of G. m. flowed by 60 % with CSF:V at(v/v;1:1) plus inoculation of G. e or G. m., and 39 % with PM:V at(v/v;1:1)plus inoculation of G. e. If G. m. is inoculated to the medium with PM:V at (v/v;1:1), the growth of papaya and tomato plants was better than those without inoculation. However, if G. e. or G. e. + G. m. were inoculated, the growth was worse than those without inoculation. The BC was found with the highest of EC, it should be mixed with materials with low EC and high porosity . High pH was found in vermiculite, it must be mixed CSF or PM which was found with low pH. This experiment showed that the media containing CSF : PM : V at 1 : 1 : 2 ; CSF : PM at 1 : 2 and PM : V at 1 : 2 are recommended. Influence of by three different formula medium of and mold mushroom spawn to organic muskmelons, material demonstration by CSF : V at 1 : 2 plus inoculation of AMF its yield and quality mostly has the promotion effect, in the future if can in CSF : V at 1 : 2 by volume plus inoculation of AMF increases the suitable nutrient to be possible to promote the crops to be good lives the growing trend.
Results indicated that best growth medium for melon plants(TN11)were observed in the medium composed of Favorit : V (v/v, 1 : 2) plus inoculation of mycorrhiza, and the poorest growth in the CSF : V (v/v, 1 : 2) without mycorrhizal inoculation . However, best growth medium for melon plants(Jieyu variety)were observed in the medium composed of CSF : V (v/v, 1 : 2) plus inoculation of mycorrhiza, and the poorest growth in the Favorit : V (v/v, 1 : 2) without mycorrhizal inoculation . However, highest yield and fruit sugar content of both varieties were observed in the medium composed of CSF : V (v/v, 1 : 2) plus inoculation of mycorrhiza, and lowest in Favorit: V (v/v, 1 : 2) without mycorrhizal inoculation.

摘要
甜瓜試驗結果顯示接種菌根菌可促進甜瓜生長勢與提昇果實糖度,惟產量與果實榨汁率則互有高低,其中一處接種菌根菌對產量有負面效果產生,可能因土壤養分產生拮抗性,導致葉片黃化,進而影響植株光合成產物產生。另試驗結果亦顯示接種菌根菌可降低線蟲為害,接菌處理導致植株根圈附近線蟲蟲口數降低,是否為接菌植株產生某些物質抑制線蟲繁殖或因接菌減少線蟲侵入為害阻斷其食物來源,機制有待進一步研究。
接種菌根菌對番茄果實產量與品質之影響,結果顯示二品種番茄產量接菌處理均較未接菌者佳,且果實榨汁率與糖度亦以接菌處理較高,顯示接種菌根菌可提升番茄之果實產量與品質。鹽分處理對菌根番茄生育之影響,試驗結果顯示種苗七號於鹽分逆境下造成產量降低,而台中亞蔬十號則增加,顯示種苗七號對鹽分逆境較敏感,而台中亞蔬十號則較耐鹽分。兩品種未接菌植株地上部鉀及鈣含量於鹽分逆境下均降低,鈉含量則增加,接菌植株減少鈉含量,包括地上部(分別為 23 %與 34 %),果實(分別為 24 與 31 %)和根(分別為 29 % 與13 %),表示接菌處理可降低鈉離子吸收。
另調查鹽分處理對叢枝菌根菌番茄根部電解質之影響,二品種無論於非鹽分與鹽分逆境下接種菌根菌,根部電解質均有增加趨勢,惟其電解質滲漏亦較高。鹽分逆境下台中亞蔬十號接種Funneliformis mosseae.,在土壤中殘留的Na 和相對滲漏率,較未接種處理高。鹽分處理對叢枝菌根番茄葉片相對葉綠素含量之影響,試驗結果顯示兩品種於鹽分逆境下,無論接菌與否其相對葉綠素含量降低,且接菌處理有較高相對葉綠素含量。本試驗結果顯示在非鹽分逆境下,種苗七號 接種Claroideoglomus etunicatum 反應更好,而於鹽分逆境下台中亞蔬十號 接種Funneliformis mosseae. 之效果較佳。因此,宜根據土壤條件和叢枝菌根菌類型相應的效應,選擇番茄品種和叢枝菌根菌菌劑。
不同配方介質與菌種對作物育苗之菌根苗感染率,發現洋香瓜菌根感染以細椰纖:泥碳:蛭石(v/v/v;1:1:2)混合Funneliformis mosseae最高達66 %,細椰纖:蛭石(v/v;1:1)混合Claroideoglomus etunicatum或Funneliformis mosseae感染率同為60 %次之,而以泥炭:蛭石(v/v;1:1)混合Claroideoglomus etunicatum最低,感染率僅39 %。三種作物之生長勢均以樹皮堆肥蛭石(1:1)混合 Funneliformis mosseae最優。亦發現三種作物植株鮮、乾重大多以樹皮堆肥:蛭石(v/v; 1:1)最佳。不同配方介質單獨接種Claroideoglomus etunicatum三種作物植株生長並不佳,大多低於泥炭:蛭石(v/v; 1:1)未加菌之生長。不同單質介質與混合配方的理化性狀資料顯示蛭石的充氣孔隙度最大,細椰纖:蛭石(v/v; 1:2)次之,且樹皮堆肥之 EC最高,可與他種低鹽分與充氣孔隙度大之資材如蛭石或泥炭混合。蛭石的pH值過高,可與pH較低之細椰纖或泥炭混合。
開發可增加菌根菌效能之栽培介質配方,探討二種不同配方介質與菌種對甜瓜之菌根苗感染率情形,試驗結果顯示菌根苗感染率均以細椰纖:蛭石 (v/v;1:2) 接菌最高,分別達53、62及68 %。田間植株生長勢臺南11號則以Favorit:蛭石 (v/v;1:2)接菌最佳,細椰纖:蛭石(v/v;1:2)未接菌最差;嘉玉品種則以細椰纖:蛭石(v/v;1:2)接菌最高,Favorit:蛭石 (v/v;1:2)未接菌最差;果實產量與糖度均以細椰纖:蛭石(v/v;1:2)接菌較佳,Favorit:蛭石(v/v;1:2)未接菌最低;試驗結果亦發現接種菌根菌可降低洋香瓜根圈土壤根瘤線蟲密度。未來若能在細椰纖:蛭石(v/v;1:2)添加適當養分應可促進作物較佳生長勢。
URI: http://hdl.handle.net/11455/90149
Rights: 同意授權瀏覽/列印電子全文服務,2014-02-06起公開。
Appears in Collections:土壤環境科學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-8093039004-1.pdf1.63 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.