Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90183
標題: 以反應曲面法探討糖質克弗爾多醣/小麥澱粉混合膜之物理及機械特性
Characterization of the Physical and Mechanical Properties of Sugary Kefir Polysaccharide/Wheat Starch Edible Films by Using Response Surface Methodology
作者: 林詩涵
Lin Shih-Han
關鍵字: Edible film;sugary kefir polysaccharide;wheat starch;response surface methodology;可食膜;糖質克弗爾多醣/小麥澱粉;反應曲面法
引用: 廖志倫(2000)脫色仙草膠與澱粉間凝膠作用之研究。國立中興大學食品暨應用生物科技學系 碩士論文,台中,台灣。 江幸芳(2001)脫色仙草膠溶液及其與小麥澱粉混合系統黏彈性之研究。國立中興大學食品暨應用生物科技學系 碩士論文,台中,台灣。 林慶文(2003)神仙禮物克弗爾。元氣齋出版社有限公司,台灣。 李幸宜(2003)添加脂肪酸或蠟質對羥丙基甲基纖維素可食性薄膜之物化特性探討。國立屏東科技大學食品科學系 碩士論文,屏東,台灣。 郭卿雲(2004,七月)另類的發酵乳-克弗爾。科學發展,台灣。 鍾金湯、劉仲康(2005,一月)梅契尼科夫-細胞免疫學大師。科學發展,台灣。 顏國欽、劉展冏、韓建國、劉冠汝、李嘉展、陳建元、孫芳明、蘇敏昇、馮惠萍、謝秋蘭、饒家麟、梁弘人、林聖敦、江伯源、李政達、盧更煌、周志輝(2007)食品化學。華格納出版有限公司,台灣。 陳健賢(2009)脫色仙草葉膠對樹薯澱粉可食膜物性之影響。國立中興大學食品科學技應用生物科技學系 博士論文,台中,台灣。 吳宛諭(2010)不同介面活性劑對樹薯澱粉/脫色仙草葉膠可食性薄膜的物性影響。國立中興大學食品暨應用生物科技學系 碩士論文,台中,台灣。 余淑惠、謝昊穎、?效澄、郭子鴻、王沛然(2011)可食性的活性?色包裝材?開發研究。萬能科技大學高分子材?系,桃園,台灣。 曾秋婷(2012)Lactobacillus reteri微膠囊化方法的探討及最適化。國立中興大學食品暨應用生物科技學系 碩士論文,台中,台灣。 王淯湞、賴麗旭(2014)糖液克弗爾粒水萃多醣之理化特性。台灣農業化學學會,第52屆論文海報,台灣。 Abraham, A. G., & De Antoni, G. L. (1999). Characterization of kefir grains grown in cows' milk and in soya milk. Journal of Dairy Research, 66, 327–333. Al-Hassan, A. A., & Norziah, M. H. (2012). Starch-gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers. Food Hygrocolloids, 26, 108-117. Al-Muhtaseb, A. H., Mcminn, W. A. M., & Magee, T. R. A. (2002). Moisture Sorption Isotherm Characteristics of Food Products: A Review. Food and Bioproducts Processing, 80, 118-128. Alves, V. D., Mali, S., Beleia, A., & Grossmann, M. V. E. (2007). Effect of glycerol and amylose enrichment on cassava starch film properties. Journal of Food Engineering, 78, 941-946. Alves, V. D., Ferreira, A. R., Costa, N., Freitas, F., Reis, M. A. M., & Coelhoso, I. M. (2011). Characterization of biodegradable films from the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol by product. Carbohydrate Polymers, 83, 1582-1590. ASTM (2000a). Standard test methods for tensile properties of thin plastic sheeting, method D 882-00. Philadelphia, PA: American Society for Testing and Materials. ASTM (2000b). Standard test methods for water vapor transmission of materials, method E 96-00. Philadelphia, PA: American Society for Testing and Materials. Bertuzzi, M. A., Armada, M., & Gottifredi, J. C. (2007). Physicochemical characterization of starch based films. Journal of Food Engineering, 82, 17-25. Bezerra, M. A., Santelli, R. E., Oliverira, E. P., Villar, L. S. & Escaleira, L. A. (2008). Response surface methodology (RSM) as tool for optimization in analytical chemistry. Talanta, 76, 965-977. Bourtoom, T., Chinnan, M. S., Jantawat, P., & Sanguandeekul, R. (2006). Effect of plasticizer type and concentration on the properties of edible film from water-soluble fish proteins in surimi wash-water. Food Science and Technology International, 12, 119-126. Box, G. E. P. & Behnken, D. W. (1960). Some new three level design for the study of quantitative variables. Technometrics 2,455-475. Carneiro-da-Cunha, M. G., Cerqueira, M. A., Bartolomeu, W. S. S., Souza, M. P., Teixeira, J. A., & Vicente, A. A. (2009). Physical properties of edible coatings and films made with a polysaccharide from Anacardium occidentale L. Journal of Food Engineering, 95, 379–385. Chang, Y., Abdkarim, A., & Seow, C. (2006). Interactive plasticizing–antiplasticizing effects of water and glycerol on the tensile properties of tapioca starch films. Food Hydrocolloids, 20, 1-8. Chen, C. H., & Lai L. S. (2008). Mechanical and water vapor barrier properties of tapioca starch/decolorized hsian-tsao leaf gum films in the presence of plasticizer. Food Hydrocolloids, 1584-1595. Chen, C. H., Kuo, W. S., & Lai, L. S. (2009). Effect of surfactants on water barrier and physical properties of tapioca starch/decolorized hsian-tsao leaf gum films. Food Hydrocolloids, 23, 714-721. Chen, G., Liu, B., & Zhang, B. (2014). Characterization of composite hydrocolloid film based on sodium cellulose sulfate and cassava starch. Journal of Food Engineering, 125, 105-111. Chillo, S., Flores, S., Mastromatteo, M., Conte, A., Gerschenson, L., & Nobile, M, A, D. (2008). Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Enginnering, 88, 159-168. Chiu, P. E., & Lai, L. S. (2010). Antimicrobial activities of tapioca starch/decolorized hsian-tsao leaf gum coatings containing green tea extracts in fruit-based salads, romaine hearts and pork slices. International Journal of Food Microbiology, 139, 23-30. Cho, S. Y., & Rhee, C. (2002). Sorption characteristics of soy protein films and their relation to mechanical properties. LWT - Food Science and Technology, 35, 151-157. Debeaufort, F., & Voilley, A. (1995). Effect of surfactants and drying rate on barrier properties of emulsified edible films. Int. Journal of Food Science and Technology, 30, 183-190. Debeaufort, F., & Voilley, A. (1997). Methycellulose-based edible films and coatings: Mechanical and thermal properties as a function of plasticizer content. Journal of Agriculture and Food Chemistry, 45, 685-689. de Vrese, M., A. Stegelmann, B. Richter, S. Fenselau, C. Laue, and J. Schrezenmeir. (2001). Probiotics-compensation for lactase insufficiency. Am. J. Clin. Nutr, 73, 421S-429S Donhowe, I. G., & Fennema, O. (1994). Edible film and coating: characteristics, formation, defintions, and testing methods. In: Krochta, J. M., Baldwin, E. A. & Nisperos-Carriedo, M. (Eds.), Edible coatings and films to improve food quality. Technomic Publishing Company, Inc., Lancaster, Pen., U.S.A. pp, 1-24. Embuscado, M. E and Huber, K. C (2009). Edible Films and Coatings for Food Application. Springer Science+Business Media, New York, U.S.A. Fadini, A. L., Rocha, F. S., Alvim, I, D., Sadahira, M. S., Queiroz, M. B., & Silva, L. B. (2013). Mechanical properties and water vapour permeability of hydrolysed collagen-cocoa butter edible films plasticised with sucrose. Food Hydrocolloids, 30, 625-631. Farnworth, E. R. (2005). Kefir—A complex probiotic. Food Science and Technology Bulletin. Functional Foods, 2, 1–17. Fama, L., Rojas, A. M., Goyanes, S., & Gerschenson, L. (2005). Mechanical properties of tapioca-starch edible films containing sorbates. LWT - Food Science and Technology, 38, 631-639. Fennema, O. R., Parkin, L. K., & Damodaran, S. (2007). Food Chemistry. CRC Press, Taylor & Francis Group, USA. Gerschenson, L., & Goyanes, S. (2009). Starch–vegetable fibre composites to protect food products. Carbohydrate Polymers, 75, 230–235. Ghasemlou, M., Khodaiyan, F., Oromiehie, A., & Yarmand, M. S. (2011). Development and characterization of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chemistry, 127, 1496-1502. Ghasemlou, M., Khodaiyan, F., Oromiehie, A. (2011). Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydrate Polymers, 84, 477-483. Ghasemlou, M., Khodaiyan, F., Oromiehie, A., & Yarmand, M. S. (2011). Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. International Journal of Biological Macromolecules, 49, 378-384. Gialamas, H., Zinoviadou, K. G., Biliaderis, C. G., & Koutsoumanis, K. P. (2010). Development of a novel bioactive packaging based on the incorporation of Lactobacillus sakei into sodium-caseinate films for controlling Listeria monocytogenes in foods. Food Research International, 43, 2402-2408. Giovanni, M. (1983). Response surface methodology and product optimization. Food Technology, 37, 41-45. Gontard, N., Guilbert, S., & Cuq, J, L. (1993). Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. Journal of Food Science, 58, 206-211. Gomes, T., Barradas, C., Dias, T., Verdial, J., Morais, J, S., Ramalhosa, E., & Estevinho, L. M. (2013). Optimization of mead production using response surface methodology. Food and Chemical Toxicology, 59, 682-686. Han, J. H., & Floros, J. D. (1997). Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. Journal of Plastic Film Sheet, 13, 287–298. Hanani, N. Z. A., McNzmara, J., Roos, Y. H., & Kerry, J. P. (2013). Effect of plasticizer content on the functional properties of extruded gelatin-based composite films. Food Hydrocolloids, 31, 264-269. Haq, M. A., Hasnain, A., & Azam, M. (2014). Characterization of edible gum cordia film: Effects of plasticizers. LWT-Food Science and Technology, 55, 163-169. Hoque, S. M., Benjakul, S., & Prodpran, T. (2011). Effects of partial hydrolysis and plasticizer content on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Food Hydrocolloids, 25,, 82-90. Hu, G. F., Chen, J. Y., & Gao, J. P. (2009). Preparation and characteristics of oxidized potato starch films. Carbohydrate Polymers, 76, 291-298. Hyun, J. P., Young, J. B., Young, T. K., Scott Whiteside, W., & Bae, H. J. (2014). Processes and Applications for Edible Coating and Film Materials from Agropolymers. Innovations in Food Packaging (Second Edition), 257-275 Jangchud, A., & Chinnan, M. S. (1999). Peanut protein film as affected by drying temperature and pH of film forming solution. Journal of Food Science, 64, 153-157. John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71, 343–364. Jung, H. H. (2014). Edible Films and Coatings: A Review. Innovations in Food Packaging (Second Edition), 213-255 Kim, S. J., & Ustunol, Z. (2001). Solubility and moisture sorption isotherms of whey protein based edible films as influenced by lipid and plasticizer incorporation. Journal of Agricultural and Food Chemistry, 49, 438–439. Khazaei, N., Esmaiili, M., Djomeh, Z. E., & Ghasemlou, M. (2014). Characterization of new biodegradable edible film made from basilseed (Ocimum basilicum L.) gum. Carbohydrate Polymers, 102, 199-206. Khuri, A. I., & Mukhopadhyay, S. (2010). Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 128-149. Liyana-Pathirana, C., and Shahidi, F. (2005). Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chemistry, 93,47-56. Liu, Z., & Han, J. H. (2005). Film-forming characteristics of starches. Journal of Food Science, 70, E31-E36. Mail, S., Grossmann, M. V. E., Garcia, M, A., Martino, M. N., & Zaritzky, N. E. (2002). Microstructural characterization of yam starch films. Carbohydrate Polymers, 50, 379-386. Maeda, H., Zhu, X., Omura, K., Suzuki, S., & Kitamura, S. (2004). Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. Biofactors, 22, 197–200. Maran, J. P., Sivakumar, V., & Prince, I, V. (2013). Development of model for mechanical properties of tapioca starch based edible films. Industrial Crops and Products, 42, 159-168. Maran, J. P., Sivakumar, V., Sridhar, R., & Thirugnanasambandham, K. (2013). Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydrate Polymers, 92, 1335-1347. Maria, B. P, Jong-Whan, R. (2014). Edible Coating and Film Materials: Lipid Bilayers and Lipid Emulsions. Innovations in Food Packaging (Second Edition), 325-350. Mathew. S., & Araham. T. E. (2008). Characterisation of ferulic acid incorporated starch–chitosan blend films. Food Hydrocolloids, 22, 826-835. Matsuzaki, T. 1998. Immunomodulation by treatment with Lactobacillus casei strain Shirota. Int. J. Food Microbiol, 41, 133-140. Meriem, B., Consolate N., & Jiang, B. (2010). Effect of fermentation conditions and homogenization pressure on the rheological properties of Kefir. LWT-Food Science and Technology, 43, 1180-1184. Mir, M. A., & Nath, N. (1995). Sorption isotherms of fortified bars. Journal of Food Engineering, 25, 141–150. Micheli, L., Uccelletti, D., Palleschi, C., & Crescenzi, V. (1999). Isolation and characterization of a ropy Lactobacillus strain producing the exopolysaccharide kefiran.Applied Microbiology and Biotechnology, 53, 69–74. Monedero, F. M., Fabra, M. J., Talens, P., & Chiralt, A. (2009). Effect of oleic acid-beeswax mixtures on mechanical, optical and water barrier properties of soy protein isolate based films. Journal of Food Engineering, 91, 509-515. Monique, L., Khanh, D. V. (2014). Edible Coating and Film Materials: Proteins. Innovations in Food Packaging (Second Edition), 277-304. Montgomery, D. C. (2009). Design and Analysis of Experiments. 7th ed., John Wiley & Sons Inc. Motedayen. A, A., Khodaiyan. F., & Salehi. E. A. (2013). Development and characterization of composite films made from kefiran and starch. Food Chemistry, 136, 1231-1238. Murofushi, M., Shiomi, M., & Aibara, K. (1983). Effect of orally administered polysaccharide from kefir grain on delayed-type hypersensitivity and tumor growth in mice. Japanese Journal of Medical Science & Biology, 36, 49–53. Myers, R. H., and Montgomery, D. C. (1995). Response Surface Ethodology : Process and Product Optimization Using Designed Experiments. John Wiley & Sons Inc. Park, H. J., Byun, Y. J., Kim, Y. T., Whiteside, W. S., & Bae H. J. (2014). Processes and Applications for Edible Coating and Film Materials from Agropolymers. Innovations in Food Packaging (Second Edition), 257-275. Park, J. W., Whiteside, W. S., & Cho, S. Y. (2008). Mechanical and water vapor barrier properties of extruded and heat-pressed gelatin films. Lebensmittel Wissenschaftund Technologie, 41, 692-700. Parra, D. F., Tadini, C. C., Ponce, P., & Lugap, A, B. Mechanical properties and water vapor transmission in some blends of cassava starch edible films. Carbohydrate Polymers, 58, 475-481. Peressini, D., Bravin, B., Lapasin, R., Rizzotti, C., & Sensidoni , A. (2003). Starch-methylcellulose based edible films: rheological properties of film-forming dispersion. Journal of Food Engineering, 59, 25-32. Piermaria, J. A., Canala, M. L., Abraham, A. G. (2008). Gelling properties of kefiran, a food-grade polysaccharide obtained from kefir grain. Food Hydrocolloids, 22, 1520-1527. Piermaria, J. A., Pinotti, A., Garcia, M. A., & Abraham, A. G. (2009). Films based on kefiran, an exopolysaccharide obtain from kefir grain: Development and Characterization. Food Hydrocolloids, 23, 684-690. Piermaria, J., Bosch, A., Pinotti, A., Yantorno, O., Garcia, M. A., & Abraham, A. G. (2011). Kefiran films plasticized with sugars and polyols: water barrier and mechanical properties in relation to their microstructure analyzed by ATR/FT-IR spectroscopy. Food Hydrocolloids, 25, 1261-1269. Rimada, P. S., & Abraham, A. G. (2001). Polysaccharide production by kefir grains during whey fermentation. Journal of Dairy Research, 68, 653–661. Rodrigues, K. L., Caputo, L. R. G., Carvalho, J. C. T., Evangelista, J., & Schneedorf, J. M. (2005). Antimicrobial and healing activity of kefir and kefiran extract. International Journal of Antimicrobial Agents, 25, 404-408. Salleh, E. & Muhamad, I. I. (2007). Mechanical properties and antimicrobial analysis of antimicrobial starch-based film. In International conference on advancement of materials and nanotechnology, Langkawi. Sanders, M. E., and T. R. Klaenhammer. 2001. Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J. Dairy Sci, 84, 319-331. Shiomi, M., Sasaki, K., Murofushi, M., & Aibara, K. (1982). Antitumor activity in mice of orally administered polysaccharide from kefir grain. Japanese Journal of Medical Science and Biology, 35, 75-80. Sindhu, M., & Abraham, T. E. (2008). Characterisation of ferulic acid incorporated starch-chitosan blend films. Food Hydrocolloids, 22, 826-835. Talja, R. A., Helen, H., Roos, Y. H., & Jouppila, K. (2007). Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydrate Polymers, 67, 288-295. Tong, Q., Xiao, Q., & Lim, L. T. (2008). Preparation and properties of pullulan – alginate – carboxymethylcellulose. Food Research International, 41, 1007-1014. Tsen, J. H., Lin, Y. -P., & King, V. A. E. (2009). Response surface methodology optimisation of immobilized Lactobacillus acidophilus banana puree fermentation. International Journal of Food Science and Technology, 44,120-127. Vasconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan-tapioca starch based edible films and coatings. Food Research International, 42, 762-769. Villalobos, R., Hernandez-Munoz, P., & Chiralt, A. (2006). Effect of surfactants on water sorption and barrier properties of hydroxypropyl methylcellulose films. Food Hydrocolloids, 20, 502–509. Wang, S., Chen, F., Wu, J., Wang, Z., Liao, X., & Hu, X. (2007). Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology. Journal of Food Engineering, 78, 693-700. Wei, Z. J., Liao, A. M., Zhang, H. X., Liu, J., & Jiang, S. T. (2009). Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology. Bioresource Technology, 100,4214-4219. Yachuan, Z., Curtis, R., & Derek, M. (2014). Edible Coating and Film Materials: Carbohydrates. Innovations in Food Packaging (Second Edition), 305-323. Zhang, Y., & Han, J. H. (2006). Plasticization of pea starch films with monosaccharides and polyols. Journal of Food Science, 71, 253–261.
摘要: 
The sugary kefir polysaccharide (K) was extracted from sugary kefir grains and mixed with wheat starch (S) to form composite edible films. The effect of total solid, K/S ratio and glycerol content in the mixed system on the mechanical and other physical properties as well as water vapor permeability (WVP) of the resulting films were investigated by using Box-Behnken design of response surface methodology. The results revealed that the mechanical strength (including tensile strength and puncture force) of K/S films was enhanced with increasing total solid content and decreasing K/S ratio or glycerol content, accompanied with a decrease in elongation and puncture deformation. Moreover, the WVP of edible films decreased with increasing total solid content or decreasing glycerol content. However, the WVP of composite films decreased when K/S ratio decreased from 75/25 to 50/50, then increased when K/S ratio further decreased to 25/75. Edible films with lower total solid and glycerol content and higher K/S ratio generally showed larger water contact angle. Moisture sorption isotherm results revealed that edible films with a total solid-K/S ratio-glycerol value of 1.25-50-20 and 0.75-50-10 had the highest and lowest equilibrium moisture content among the treatments, respectively. Edible films with higher glycerol content and lower K/S ratio generally showed higher moisture content and solubility, accompanied with enhanced opacity and lightness. Microstructural examination by using scanning electron microscopy (SEM) revealed that films prepared under lower K/S ratio showed grainy surface and occasional pores. However, films with different glycerol content did not show a significant difference in terms of microstructure. Optimization analysis based on the mechanical strength and WVP results revealed that the optimal film forming condition could be obtained under a total solid content of 1.25%, K/S ration of 37/63, and glycerol content of 10%. Validation test revealed that films prepared under the optimal condition showed a tensile strength of 20.60±2.19 MPa, puncture force of 3.01±0.40 N and WVP of 3.86±0.18×10-11 gm-1s-1Pa, which were not significantly different from the prediction results by response surface model. Such results implied the appropriateness of the response surface model obtained.

本研究萃取糖質克弗爾粒中之糖質克弗爾多醣與小麥澱粉混合製成混合可食膜,利用反應曲面法之Box-Behnken Design實驗設計,探討總固形物、多醣/澱粉混合比例及甘油量對可食膜機械、物理性質及水氣阻隔性之影響。實驗結果發機械強度(包含抗張強度及穿刺強度)皆隨總固形物量提高、多醣/小麥澱粉混合比例及甘油添加量降低而增強,但卻造成延展度及穿刺形變量降低。此外,WVP會隨著總固形物提高及甘油添加量降低而下降;當多醣/澱粉混合比例由75/25降至50/50時,可食膜水氣阻隔性(WVP)首先降低,當比例再降至25/75時,WVP則提高。可食膜於低總固形物含量、甘油添加量及多醣/澱粉混合比例高時擁有較大的水接觸角。可食膜之等溫吸濕曲線以總固形物1.25%、多醣/澱粉比例50/50及甘油添加20% 組別(1.25-50-20)之平衡水分含量最高;以0.75-50-10組別最低。可食膜水分含量及溶解度皆隨著甘油添加量提高及混合比例降低時,有提高趨勢,亦會提高可食膜之不透明度及提高薄膜亮度。以SEM觀察可食膜之微結構發現,混合比例低的可食膜其結構越粗糙且有些微孔洞產生,而不同甘油添加量之間對於微結構並無明顯影響。以機械強度及阻隔性作為可食膜之重要應用因子,得出最適合製膜條件為1.25-37-10組別,實驗值分別為抗張強度20.60±2.19 MPa、穿刺強度3.01±0.40 N以及水氣透過性3.86±0.18×10-11 gm-1s-1pa,其預測值及實驗值之間並無明顯差異,顯示反應曲面模式對於可食膜機械性質及水氣透過性之適切性。
URI: http://hdl.handle.net/11455/90183
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-31起公開。
Appears in Collections:食品暨應用生物科技學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101043003-1.pdf5.37 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.