Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90187
標題: 以果蠅動物模型研究咖啡的抗氧化能力及對睡眠與睡眠剝奪後學習記憶的影響
Effects of Coffee on Anti-oxidation and Learning and Memory after Sleep Deprivation in Drosophila Models
作者: 王神寶
Shen-Pao Wang
關鍵字: coffee;caffeine;antioxidant;sleep;sleep deprivation;learning and memory;Drosophila;咖啡;咖啡因;抗氧化;睡眠;睡眠剝奪;學習記憶;果蠅
引用: 1 Rourk, J. P. Coffee production in Africa. (Foreign Agricultural Service, U.S. Dept. of Agriculture, 1975). 2 Rothfos, B. Coffee production. (Gordian-Max-Rieck, 1980). 3 Tucker, C. M. Coffee culture : local experiences, global connections. (Routledge, 2011). 4 Pendergrast, M. Uncommon grounds : the history of coffee and how it transformed our world. (Basic Books, 1999). 5 Miscellaneous Pamphlet Collection (Library of Congress). A sketch of the history of coffee, with the best method of preparing it for drinking. (Printed for Robinson and Co., 1808). 6 Pare, W. The effect of caffeine and seconal on a visual discrimination task. J Comp Physiol Psychol 54, 506-509, (1961). 7 Smith, A. Effects of caffeine on human behavior. Food Chem Toxicol 40, 1243-1255, (2002). 8 Peeling, P. & Dawson, B. Influence of caffeine ingestion on perceived mood states, concentration, and arousal levels during a 75-min university lecture. Adv Physiol Educ 31, 332-335, (2007). 9 Brunye, T. T., Mahoney, C. R., Lieberman, H. R. & Taylor, H. A. Caffeine modulates attention network function. Brain Cogn 72, 181-188, (2010). 10 Egawa, T. et al. Caffeine acutely activates 5'adenosine monophosphate-activated protein kinase and increases insulin-independent glucose transport in rat skeletal muscles. Metabolism 58, 1609-1617, (2009). 11 van Dam, R. M. Coffee consumption and risk of type 2 diabetes, cardiovascular diseases, and cancer. Appl Physiol Nutr Metab 33, 1269-1283, (2008). 12 Bode, A. M. & Dong, Z. The enigmatic effects of caffeine in cell cycle and cancer. Cancer Lett 247, 26-39, (2007). 13 Celik, T., Iyisoy, A. & Amasyali, B. The effects of coffee intake on coronary heart disease: ongoing controversy. Int J Cardiol 144, 118, (2010). 14 Robertson, D. et al. Effects of caffeine on plasma renin activity, catecholamines and blood pressure. N Engl J Med 298, 181-186, (1978). 15 Tsuang, Y. H., Sun, J. S., Chen, L. T., Sun, S. C. & Chen, S. C. Direct effects of caffeine on osteoblastic cells metabolism: the possible causal effect of caffeine on the formation of osteoporosis. J Orthop Surg Res 1, 7, (2006). 16 Rapuri, P. B., Gallagher, J. C., Kinyamu, H. K. & Ryschon, K. L. Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. Am J Clin Nutr 74, 694-700, (2001). 17 Grosso, L. M. & Bracken, M. B. Caffeine metabolism, genetics, and perinatal outcomes: a review of exposure assessment considerations during pregnancy. Ann Epidemiol 15, 460-466, (2005). 18 Costa, M. S. et al. Caffeine improves adult mice performance in the object recognition task and increases BDNF and TrkB independent on phospho-CREB immunocontent in the hippocampus. Neurochem Int 53, 89-94, (2008). 19 Arendash, G. W. et al. Caffeine protects Alzheimer's mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 142, 941-952, (2006). 20 Singh, S. et al. Nicotine and caffeine-mediated modulation in the expression of toxicant responsive genes and vesicular monoamine transporter-2 in 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease phenotype in mouse. Brain Res 1207, 193-206, (2008). 21 Ritchie, K. et al. The neuroprotective effects of caffeine: a prospective population study (the Three City Study). Neurology 69, 536-545, (2007). 22 Luszczki, J. J., Zuchora, M., Sawicka, K. M., Kozinska, J. & Czuczwar, S. J. Acute exposure to caffeine decreases the anticonvulsant action of ethosuximide, but not that of clonazepam, phenobarbital and valproate against pentetrazole-induced seizures in mice. Pharmacol Rep 58, 652-659, (2006). 23 Singh, S. et al. Effect of caffeine on the expression of cytochrome P450 1A2, adenosine A2A receptor and dopamine transporter in control and 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine treated mouse striatum. Brain Res 1283, 115-126, (2009). 24 Mao, X., Chai, Y. & Lin, Y. F. Dual regulation of the ATP-sensitive potassium channel by caffeine. Am J Physiol Cell Physiol 292, C2239-2258, (2007). 25 Pleger, B. et al. Influence of dopaminergically mediated reward on somatosensory decision-making. PLoS Biol 7, e1000164, (2009). 26 Avshalumov, M. V., Chen, B. T., Koos, T., Tepper, J. M. & Rice, M. E. Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels. J Neurosci 25, 4222-4231, (2005). 27 Jones, G. Caffeine and other sympathomimetic stimulants: modes of action and effects on sports performance. Essays Biochem 44, 109-123, (2008). 28 Rossi, S. et al. Caffeine drinking potentiates cannabinoid transmission in the striatum: interaction with stress effects. Neuropharmacology 56, 590-597, (2009). 29 Lage, R., Dieguez, C. & Lopez, M. Caffeine treatment regulates neuropeptide S system expression in the rat brain. Neurosci Lett 410, 47-51, (2006). 30 Chen, X., Lan, X., Roche, I., Liu, R. & Geiger, J. D. Caffeine protects against MPTP-induced blood-brain barrier dysfunction in mouse striatum. J Neurochem 107, 1147-1157, (2008). 31 Nakaso, K., Ito, S. & Nakashima, K. Caffeine activates the PI3K/Akt pathway and prevents apoptotic cell death in a Parkinson's disease model of SH-SY5Y cells. Neurosci Lett 432, 146-150, (2008). 32 Simon, F., Varela, D. & Cabello-Verrugio, C. Oxidative stress-modulated TRPM ion channels in cell dysfunction and pathological conditions in humans. Cell Signal 25, 1614-1624, (2013). 33 Gupta, R. K. et al. Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac J Cancer Prev 15, 4405-4409, (2014). 34 Pohanka, M. Alzheimer s disease and oxidative stress: a review. Curr Med Chem 21, 356-364, (2014). 35 Spector, A. Review: Oxidative stress and disease. J Ocul Pharmacol Ther 16, 193-201, (2000). 36 Anissi, J., El Hassouni, M., Ouardaoui, A. & Sendide, K. A comparative study of the antioxidant scavenging activity of green tea, black tea and coffee extracts: a kinetic approach. Food Chem 150, 438-447, (2014). 37 Seifried, H. E., Anderson, D. E., Fisher, E. I. & Milner, J. A. A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 18, 567-579, (2007). 38 Esposito, E. et al. A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging 23, 719-735, (2002). 39 Vinson, J. A., Bose, P., Proch, J., Al Kharrat, H. & Samman, N. Cranberries and cranberry products: powerful in vitro, ex vivo, and in vivo sources of antioxidants. J Agric Food Chem 56, 5884-5891, (2008). 40 Yashin, Y. I. et al. Creation of a databank for content of antioxidants in food products by an amperometric method. Molecules 15, 7450-7466, (2010). 41 Yoshida, Y., Hayakawa, M. & Niki, E. Evaluation of the antioxidant effects of coffee and its components using the biomarkers hydroxyoctadecadienoic acid and isoprostane. J Oleo Sci 57, 691-697, (2008). 42 Mullen, W. et al. The antioxidant and chlorogenic acid profiles of whole coffee fruits are influenced by the extraction procedures. J Agric Food Chem 59, 3754-3762, (2011). 43 Liang, N. & Kitts, D. D. Antioxidant property of coffee components: assessment of methods that define mechanisms of action. Molecules 19, 19180-19208, (2014). 44 Fukushima, Y. et al. Coffee and green tea as a large source of antioxidant polyphenols in the Japanese population. J Agric Food Chem 57, 1253-1259, (2009). 45 Ishizaka, Y., Yamakado, M., Toda, A., Tani, M. & Ishizaka, N. Relationship between coffee consumption, oxidant status, and antioxidant potential in the Japanese general population. Clin Chem Lab Med 51, 1951-1959, (2013). 46 Smrke, S., Opitz, S. E., Vovk, I. & Yeretzian, C. How does roasting affect the antioxidants of a coffee brew? Exploring the antioxidant capacity of coffee via on-line antioxidant assays coupled with size exclusion chromatography. Food Funct 4, 1082-1092, (2013). 47 Del Pino-Garcia, R., Gonzalez-SanJose, M. L., Rivero-Perez, M. D. & Muniz, P. Influence of the degree of roasting on the antioxidant capacity and genoprotective effect of instant coffee: contribution of the melanoidin fraction. J Agric Food Chem 60, 10530-10539, (2012). 48 Correa, T. A. et al. Medium light and medium roast paper-filtered coffee increased antioxidant capacity in healthy volunteers: results of a randomized trial. Plant Foods Hum Nutr 67, 277-282, (2012). 49 Daglia, M., Papetti, A., Gregotti, C., Berte, F. & Gazzani, G. In vitro antioxidant and ex vivo protective activities of green and roasted coffee. J Agric Food Chem 48, 1449-1454, (2000). 50 del Castillo, M. D., Ames, J. M. & Gordon, M. H. Effect of roasting on the antioxidant activity of coffee brews. J Agric Food Chem 50, 3698-3703, (2002). 51 Perrone, D., Farah, A. & Donangelo, C. M. Influence of coffee roasting on the incorporation of phenolic compounds into melanoidins and their relationship with antioxidant activity of the brew. J Agric Food Chem 60, 4265-4275, (2012). 52 Mullen, W., Nemzer, B., Stalmach, A., Ali, S. & Combet, E. Polyphenolic and hydroxycinnamate contents of whole coffee fruits from China, India, and Mexico. J Agric Food Chem 61, 5298-5309, (2013). 53 Antolovich, M., Prenzler, P. D., Patsalides, E., McDonald, S. & Robards, K. Methods for testing antioxidant activity. Analyst 127, 183-198, (2002). 54 Perez, D. D., Leighton, F., Aspee, A., Aliaga, C. & Lissi, E. A comparison of methods employed to evaluate antioxidant capabilities. Biol Res 33, 71-77, (2000). 55 Llesuy, S., Evelson, P., Campos, A. M. & Lissi, E. Methodologies for evaluation of total antioxidant activities in complex mixtures. A critical review. Biol Res 34, 51-73, (2001). 56 Wolfe, K. L. & Liu, R. H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 55, 8896-8907, (2007). 57 Goya, L., Delgado-Andrade, C., Rufian-Henares, J. A., Bravo, L. & Morales, F. J. Effect of coffee melanoidin on human hepatoma HepG2 cells. Protection against oxidative stress induced by tert-butylhydroperoxide. Mol Nutr Food Res 51, 536-545, (2007). 58 Cooke, M. S., Evans, M. D., Dizdaroglu, M. & Lunec, J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17, 1195-1214, (2003). 59 Abreu, R. V., Silva-Oliveira, E. M., Moraes, M. F., Pereira, G. S. & Moraes-Santos, T. Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains. Pharmacol Biochem Behav 99, 659-664, (2011). 60 Lv, X. et al. Caffeine protects against alcoholic liver injury by attenuating inflammatory response and oxidative stress. Inflamm Res 59, 635-645, (2010). 61 Prasanthi, J. R. et al. Caffeine protects against oxidative stress and Alzheimer's disease-like pathology in rabbit hippocampus induced by cholesterol-enriched diet. Free Radic Biol Med 49, 1212-1220, (2010). 62 Tiwari, K. K., Chu, C., Couroucli, X., Moorthy, B. & Lingappan, K. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro. Biochem Biophys Res Commun 450, 1345-1350, (2014). 63 Jagdeo, J. & Brody, N. Complementary antioxidant function of caffeine and green tea polyphenols in normal human skin fibroblasts. J Drugs Dermatol 10, 753-761, (2011). 64 Li, S. et al. Chlorogenic acid protects MSCs against oxidative stress by altering FOXO family genes and activating intrinsic pathway. Eur J Pharmacol 674, 65-72, (2012). 65 Baeza, G. et al. Green coffee hydroxycinnamic acids but not caffeine protect human HepG2 cells against oxidative stress. Food Research International 62, 1038-1046, (2014). 66 Boettler, U. et al. Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. J Nutr Biochem 22, 426-440, (2011). 67 Boettler, U. et al. Coffees rich in chlorogenic acid or N-methylpyridinium induce chemopreventive phase II-enzymes via the Nrf2/ARE pathway in vitro and in vivo. Mol Nutr Food Res 55, 798-802, (2011). 68 Tsuchiya, T., Suzuki, O. & Igarashi, K. Protective effects of chlorogenic acid on paraquat-induced oxidative stress in rats. Biosci Biotechnol Biochem 60, 765-768, (1996). 69 Zeidman, L. A., Stone, J. & Kondziella, D. New revelations about hans berger, father of the electroencephalogram (EEG), and his ties to the third reich. J Child Neurol 29, 1002-1010, (2014). 70 Haas, L. F. Hans Berger (1873-1941), Richard Caton (1842-1926), and electroencephalography. J Neurol Neurosurg Psychiatry 74, 9, (2003). 71 Brown, R. E., Basheer, R., McKenna, J. T., Strecker, R. E. & McCarley, R. W. Control of sleep and wakefulness. Physiol Rev 92, 1087-1187, (2012). 72 Berry, R. B. & Harding, S. M. Sleep and medical disorders. Med Clin North Am 88, 679-703, ix, (2004). 73 Roehrs, T. Sleep physiology and pathophysiology. Clin Cornerstone 2, 1-15, (2000). 74 McEwen, B. S. & Stellar, E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med 153, 2093-2101, (1993). 75 Saper, C. B., Scammell, T. E. & Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257-1263, (2005). 76 Hajak, G. & Geisler, P. Orchestrating sleep-wake functions in the brain. Nat Med 9, 170-171, (2003). 77 Siegel, J. M. Clues to the functions of mammalian sleep. Nature 437, 1264-1271, (2005). 78 Sweet, J. J., Doninger, N. A., Zee, P. C. & Wagner, L. I. Factors influencing cognitive function, sleep, and quality of life in individuals with systemic lupus erythematosus: a review of the literature. Clin Neuropsychol 18, 132-147, (2004). 79 Horne, J. A. & McGrath, M. J. The consolidation hypothesis for REM sleep function: stress and other confounding factors--a review. Biol Psychol 18, 165-184, (1984). 80 Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373-377, (2013). 81 Fenn, K. M. & Hambrick, D. Z. Individual differences in working memory capacity predict sleep-dependent memory consolidation. J Exp Psychol Gen 141, 404-410, (2012). 82 Diekelmann, S. & Born, J. The memory function of sleep. Nat Rev Neurosci 11, 114-126, (2010). 83 Born, J. & Wilhelm, I. System consolidation of memory during sleep. Psychological Research 76, 192-203, (2012). 84 Walker, M. P. & Stickgold, R. Sleep-dependent learning and memory consolidation. Neuron 44, 121-133, (2004). 85 Stickgold, R. Sleep-dependent memory consolidation. Nature 437, 1272-1278, (2005). 86 Kamdar, B. B., Needham, D. M. & Collop, N. A. Sleep deprivation in critical illness: its role in physical and psychological recovery. J Intensive Care Med 27, 97-111, (2012). 87 Linde, L., Edland, A. & Bergstrom, M. Auditory attention and multiattribute decision-making during a 33 h sleep-deprivation period: mean performance and between-subject dispersions. Ergonomics 42, 696-713, (1999). 88 Drummond, S. P., Gillin, J. C. & Brown, G. G. Increased cerebral response during a divided attention task following sleep deprivation. J Sleep Res 10, 85-92, (2001). 89 Chee, M. W., Tan, J. C., Parimal, S. & Zagorodnov, V. Sleep deprivation and its effects on object-selective attention. Neuroimage 49, 1903-1910, (2010). 90 Harrison, Y. & Horne, J. A. One night of sleep loss impairs innovative thinking and flexible decision making. Organ Behav Hum Decis Process 78, 128-145, (1999). 91 Killgore, W. D., Kahn-Greene, E. T., Grugle, N. L., Killgore, D. B. & Balkin, T. J. Sustaining executive functions during sleep deprivation: A comparison of caffeine, dextroamphetamine, and modafinil. Sleep 32, 205-216, (2009). 92 Rauchs, G., Desgranges, B., Foret, J. & Eustache, F. The relationships between memory systems and sleep stages. J Sleep Res 14, 123-140, (2005). 93 Killgore, W. D. Effects of sleep deprivation on cognition. Prog Brain Res 185, 105-129, (2010). 94 Chang, H. M. et al. Sleep deprivation impairs Ca2+ expression in the hippocampus: ionic imaging analysis for cognitive deficiency with TOF-SIMS. Microsc Microanal 18, 425-435, (2012). 95 Graves, L., Pack, A. & Abel, T. Sleep and memory: a molecular perspective. Trends Neurosci 24, 237-243, (2001). 96 Hernandez, P. J. & Abel, T. A molecular basis for interactions between sleep and memory. Sleep Med Clin 6, 71-84, (2011). 97 Yang, R. H. et al. Paradoxical sleep deprivation impairs spatial learning and affects membrane excitability and mitochondrial protein in the hippocampus. Brain Res 1230, 224-232, (2008). 98 Snell, G. D. & Reed, S. William Ernest Castle, pioneer mammalian geneticist. Genetics 133, 751-753, (1993). 99 Kenney, D. E. & Borisy, G. G. Thomas Hunt Morgan at the marine biological laboratory: naturalist and experimentalist. Genetics 181, 841-846, (2009). 100 Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185-2195, (2000). 101 Myers, E. W. et al. A whole-genome assembly of Drosophila. Science 287, 2196-2204, (2000). 102 Aceves-Pina, E. O. et al. Learning and memory in Drosophila, studied with mutants. Cold Spring Harb Symp Quant Biol 48 Pt 2, 831-840, (1983). 103 Tully, T. et al. Genetic dissection of memory formation in Drosophila melanogaster. Cold Spring Harb Symp Quant Biol 55, 203-211, (1990). 104 Wilson, C. et al. P-element-mediated enhancer detection: an efficient method for isolating and characterizing developmentally regulated genes in Drosophila. Genes Dev 3, 1301-1313, (1989). 105 Quinones-Coello, A. T. et al. Exploring strategies for protein trapping in Drosophila. Genetics 175, 1089-1104, (2007). 106 Parks, A. L. et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet 36, 288-292, (2004). 107 Bellen, H. J. et al. The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167, 761-781, (2004). 108 Thibault, S. T. et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36, 283-287, (2004). 109 Adams, M. D. & Sekelsky, J. J. From sequence to phenotype: reverse genetics in Drosophila melanogaster. Nat Rev Genet 3, 189-198, (2002). 110 Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415, (1993). 111 Pirrotta, V. Vectors for P-mediated transformation in Drosophila. Biotechnology 10, 437-456, (1988). 112 McGuire, S. E., Roman, G. & Davis, R. L. Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet 20, 384-391, (2004). 113 Rubin, G. M. et al. Comparative genomics of the eukaryotes. Science 287, 2204-2215, (2000). 114 Inlow, J. K. & Restifo, L. L. Molecular and comparative genetics of mental retardation. Genetics 166, 835-881, (2004). 115 Mansberg, H. P. & Segarra, J. M. Counting of neurons by flying spot microscope. Ann N Y Acad Sci 99, 309-322, (1962). 116 Gold, K. S. & Brand, A. H. Optix defines a neuroepithelial compartment in the optic lobe of the Drosophila brain. Neural Dev 9, 18, (2014). 117 Quinn, W. G. & Dudai, Y. Memory phases in Drosophila. Nature 262, 576-577, (1976). 118 Zhang, K., Guo, J. Z., Peng, Y., Xi, W. & Guo, A. Dopamine-mushroom body circuit regulates saliency-based decision-making in Drosophila. Science 316, 1901-1904, (2007). 119 van Swinderen, B. Attention-like processes in Drosophila require short-term memory genes. Science 315, 1590-1593, (2007). 120 Krashes, M. J. et al. A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell 139, 416-427, (2009). 121 Kiehn, O. & Kullander, K. Central pattern generators deciphered by molecular genetics. Neuron 41, 317-321, (2004). 122 Martin, G. M. The biology of aging: 1985-2010 and beyond. FASEB J 25, 3756-3762, (2011). 123 Whitworth, A. J. Drosophila models of Parkinson's disease. Adv Genet 73, 1-50, (2011). 124 Chen, K. F. & Crowther, D. C. Functional genomics in Drosophila models of human disease. Brief Funct Genomics 11, 405-415, (2012). 125 Trinh, K. et al. Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkinson's disease through an NRF2-dependent mechanism. J Neurosci 30, 5525-5532, (2010). 126 Sang, T. K. & Jackson, G. R. Drosophila models of neurodegenerative disease. NeuroRx 2, 438-446, (2005). 127 Mackiewicz, M. & Pack, A. I. Functional genomics of sleep. Respir Physiol Neurobiol 135, 207-220, (2003). 128 Tickoo, S. & Russell, S. Drosophila melanogaster as a model system for drug discovery and pathway screening. Curr Opin Pharmacol 2, 555-560, (2002). 129 Greenspan, R. J., Tononi, G., Cirelli, C. & Shaw, P. J. Sleep and the fruit fly. Trends Neurosci 24, 142-145, (2001). 130 Hendricks, J. C. et al. Rest in Drosophila is a sleep-like state. Neuron 25, 129-138, (2000). 131 Manev, H., Dimitrijevic, N. & Dzitoyeva, S. Techniques: fruit flies as models for neuropharmacological research. Trends Pharmacol Sci 24, 41-43, (2003). 132 van Swinderen, B., Nitz, D. A. & Greenspan, R. J. Uncoupling of brain activity from movement defines arousal States in Drosophila. Curr Biol 14, 81-87, (2004). 133 Cirelli, C. Searching for sleep mutants of Drosophila melanogaster. Bioessays 25, 940-949, (2003). 134 Rubin, G. M. & Lewis, E. B. A brief history of Drosophila's contributions to genome research. Science 287, 2216-2218, (2000). 135 Kume, K., Kume, S., Park, S. K., Hirsh, J. & Jackson, F. R. Dopamine is a regulator of arousal in the fruit fly. J Neurosci 25, 7377-7384, (2005). 136 Quinn, W. G., Harris, W. A. & Benzer, S. Conditioned behavior in Drosophila melanogaster. Proc Natl Acad Sci U S A 71, 708-712, (1974). 137 Tully, T. & Quinn, W. G. Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157, 263-277, (1985). 138 Tully, T., Preat, T., Boynton, S. C. & Del Vecchio, M. Genetic dissection of consolidated memory in Drosophila. Cell 79, 35-47, (1994). 139 Margulies, C., Tully, T. & Dubnau, J. Deconstructing memory in Drosophila. Curr Biol 15, R700-713, (2005). 140 Krashes, M. J. & Waddell, S. Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila. J Neurosci 28, 3103-3113, (2008). 141 Everson, C. A., Laatsch, C. D. & Hogg, N. Antioxidant defense responses to sleep loss and sleep recovery. Am J Physiol Regul Integr Comp Physiol 288, R374-383, (2005). 142 Brown, M. K. & Naidoo, N. The UPR and the anti-oxidant response: relevance to sleep and sleep loss. Mol Neurobiol 42, 103-113, (2010). 143 Freedman, N. D., Park, Y., Abnet, C. C., Hollenbeck, A. R. & Sinha, R. Association of coffee drinking with total and cause-specific mortality. N Engl J Med 366, 1891-1904, (2012). 144 Li, Y. M., Chan, H. Y., Huang, Y. & Chen, Z. Y. Green tea catechins upregulate superoxide dismutase and catalase in fruit flies. Molecular nutrition & food research 51, 546-554, (2007). 145 Forman, H. J. Use and abuse of exogenous H2O2 in studies of signal transduction. Free radical biology & medicine 42, 926-932, (2007). 146 Suntres, Z. E. Role of antioxidants in paraquat toxicity. Toxicology 180, 65-77, (2002). 147 Sampayo, J. N., Gill, M. S. & Lithgow, G. J. Oxidative stress and aging--the use of superoxide dismutase/catalase mimetics to extend lifespan. Biochem Soc Trans 31, 1305-1307, (2003). 148 Linford, N. J., Bilgir, C., Ro, J. & Pletcher, S. D. Measurement of lifespan in Drosophila melanogaster. J Vis Exp, (2013). 149 Merino, M. M. et al. Elimination of unfit cells maintains tissue health and prolongs lifespan. Cell 160, 461-476, (2015). 150 Higgins, L. G., Cavin, C., Itoh, K., Yamamoto, M. & Hayes, J. D. Induction of cancer chemopreventive enzymes by coffee is mediated by transcription factor Nrf2. Evidence that the coffee-specific diterpenes cafestol and kahweol confer protection against acrolein. Toxicol Appl Pharmacol 226, 328-337, (2008). 151 Arab, L. et al. Gender differences in tea, coffee, and cognitive decline in the elderly: the Cardiovascular Health Study. J Alzheimers Dis 27, 553-566, (2011). 152 Knee, K. L., Gossett, R., Boehm, A. B. & Paytan, A. Caffeine and agricultural pesticide concentrations in surface water and groundwater on the north shore of Kauai (Hawaii, USA). Mar Pollut Bull 60, 1376-1382, (2010). 153 Singh, J. Effect of caffeine and pesticide--cabaryl (1-naphthyl N-methylcarbamate), on female albino rats. IMS Ind Med Surg 37, 544, (1968). 154 Nathanson, J. A. Caffeine and related methylxanthines: possible naturally occurring pesticides. Science 226, 184-187, (1984). 155 Veal, E. A., Day, A. M. & Morgan, B. A. Hydrogen peroxide sensing and signaling. Mol Cell 26, 1-14, (2007). 156 Abdollahi, M., Ranjbar, A., Shadnia, S., Nikfar, S. & Rezaie, A. Pesticides and oxidative stress: a review. Med Sci Monit 10, RA141-147, (2004). 157 Houze, P. et al. Toxicokinetics of paraquat in humans. Hum Exp Toxicol 9, 5-12, (1990). 158 Onyeama, H. P. & Oehme, F. W. A literature review of paraquat toxicity. Vet Hum Toxicol 26, 494-502, (1984). 159 Moran, J. M., Ortiz-Ortiz, M. A., Ruiz-Mesa, L. M. & Fuentes, J. M. Nitric oxide in paraquat-mediated toxicity: A review. J Biochem Mol Toxicol 24, 402-409, (2010). 160 Zhang, J., Lv, G. & Zhao, Y. The significance of serum xanthine oxidase and oxidation markers in acute paraquat poisoning in humans. Clin Biochem 44, 221-225, (2011). 161 Bonneh-Barkay, D., Reaney, S. H., Langston, W. J. & Di Monte, D. A. Redox cycling of the herbicide paraquat in microglial cultures. Brain Res Mol Brain Res 134, 52-56, (2005). 162 Fussell, K. C. et al. Redox cycling and increased oxygen utilization contribute to diquat-induced oxidative stress and cytotoxicity in Chinese hamster ovary cells overexpressing NADPH-cytochrome P450 reductase. Free Radic Biol Med 50, 874-882, (2011). 163 Mehdi, S. H. & Qamar, A. Paraquat-induced ultrastructural changes and DNA damage in the nervous system is mediated via oxidative-stress-induced cytotoxicity in Drosophila melanogaster. Toxicol Sci 134, 355-365, (2013). 164 Petrovska, H. & Dusinska, M. Oxidative DNA damage in human cells induced by paraquat. Altern Lab Anim 27, 387-395, (1999). 165 Pavlica, S. & Gebhardt, R. Protective effects of ellagic and chlorogenic acids against oxidative stress in PC12 cells. Free Radic Res 39, 1377-1390, (2005). 166 Lim, J. & Dinges, D. F. A meta-analysis of the impact of short-term sleep deprivation on cognitive variables. Psychol Bull 136, 375-389, (2010). 167 Alhola, P. & Polo-Kantola, P. Sleep deprivation: Impact on cognitive performance. Neuropsychiatr Dis Treat 3, 553-567, (2007). 168 Alkadhi, K., Zagaar, M., Alhaider, I., Salim, S. & Aleisa, A. Neurobiological consequences of sleep deprivation. Curr Neuropharmacol 11, 231-249, (2013). 169 Aldabal, L. & Bahammam, A. S. Metabolic, endocrine, and immune consequences of sleep deprivation. Open Respir Med J 5, 31-43, (2011). 170 Orzel-Gryglewska, J. Consequences of sleep deprivation. Int J Occup Med Environ Health 23, 95-114, (2010). 171 Mullington, J. M., Haack, M., Toth, M., Serrador, J. M. & Meier-Ewert, H. K. Cardiovascular, inflammatory, and metabolic consequences of sleep deprivation. Prog Cardiovasc Dis 51, 294-302, (2009). 172 Nedeltcheva, A. V., Kilkus, J. M., Imperial, J., Schoeller, D. A. & Penev, P. D. Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Intern Med 153, 435-441, (2010). 173 Borota, D. et al. Post-study caffeine administration enhances memory consolidation in humans. Nat Neurosci 17, 201-203, (2014). 174 Laurent, C. et al. Beneficial effects of caffeine in a transgenic model of Alzheimer's disease-like tau pathology. Neurobiology of Aging 35, 2079-2090. 175 Eskelinen, M. H. & Kivipelto, M. Caffeine as a protective factor in dementia and Alzheimer's disease. J Alzheimers Dis 20 Suppl 1, S167-174, (2010). 176 Arendash, G. W. & Cao, C. Caffeine and coffee as therapeutics against Alzheimer's disease. J Alzheimers Dis 20 Suppl 1, S117-126, (2010). 177 Guo, H. F. & Zhong, Y. Requirement of Akt to mediate long-term synaptic depression in Drosophila. J Neurosci 26, 4004-4014, (2006). 178 Guo, H. F., Tong, J., Hannan, F., Luo, L. & Zhong, Y. A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature 403, 895-898, (2000). 179 Zhong, Y. & Wu, C. F. Alteration of four identified K+ currents in Drosophila muscle by mutations in eag. Science 252, 1562-1564, (1991). 180 Guo, H. F., The, I., Hannan, F., Bernards, A. & Zhong, Y. Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuropeptides. Science 276, 795-798, (1997). 181 Rohrbough, J., Pinto, S., Mihalek, R. M., Tully, T. & Broadie, K. latheo, a Drosophila gene involved in learning, regulates functional synaptic plasticity. Neuron 23, 55-70, (1999). 182 Mhatre, S. D. et al. Synaptic abnormalities in a Drosophila model of Alzheimer's disease. Dis Model Mech 7, 373-385, (2014). 183 Li, X., Yu, F. & Guo, A. Sleep deprivation specifically impairs short-term olfactory memory in Drosophila. Sleep 32, 1417-1424, (2009). 184 Seugnet, L., Galvin, J. E., Suzuki, Y., Gottschalk, L. & Shaw, P. J. Persistent short-term memory defects following sleep deprivation in a drosophila model of Parkinson disease. Sleep 32, 984-992, (2009). 185 Bonnet, M. H. et al. The use of stimulants to modify performance during sleep loss: a review by the sleep deprivation and Stimulant Task Force of the American Academy of Sleep Medicine. Sleep 28, 1163-1187, (2005). 186 Alhaider, I. A., Aleisa, A. M., Tran, T. T., Alzoubi, K. H. & Alkadhi, K. A. Chronic caffeine treatment prevents sleep deprivation-induced impairment of cognitive function and synaptic plasticity. Sleep 33, 437-444, (2010). 187 Donlea, J. M., Thimgan, M. S., Suzuki, Y., Gottschalk, L. & Shaw, P. J. Inducing sleep by remote control facilitates memory consolidation in Drosophila. Science 332, 1571-1576, (2011). 188 Bhupathiraju, S. N. et al. Changes in coffee intake and subsequent risk of type 2 diabetes: three large cohorts of US men and women. Diabetologia 57, 1346-1354, (2014). 189 Bidel, S., Hu, G. & Tuomilehto, J. Coffee consumption and type 2 diabetes — An extensive review. cent.eur.j.med 3, 9-19, (2008). 190 Martin, E. D. & Buno, W. Caffeine-mediated presynaptic long-term potentiation in hippocampal CA1 pyramidal neurons. J Neurophysiol 89, 3029-3038, (2003). 191 Alhaider, I. A., Aleisa, A. M., Tran, T. T. & Alkadhi, K. A. Caffeine prevents sleep loss-induced deficits in long-term potentiation and related signaling molecules in the dentate gyrus. Eur J Neurosci 31, 1368-1376, (2010). 192 Wu, M. N. et al. The effects of caffeine on sleep in Drosophila require PKA activity, but not the adenosine receptor. J Neurosci 29, 11029-11037, (2009). 193 Sales, L. V. et al. Cognition and biomarkers of oxidative stress in obstructive sleep apnea. Clinics (Sao Paulo) 68, 449-455, (2013). 194 Mao, P. Oxidative Stress and Its Clinical Applications in Dementia. Journal of Neurodegenerative Diseases 2013, 15, (2013). 195 Villafuerte, G. et al. Sleep deprivation and oxidative stress in animal models: a systematic review. Oxid Med Cell Longev 2015, 234952, (2015).
摘要: 
As one of the world's most consumed beverage, the benefits of coffee to human health has gradually emerged in recent studies. Caffeine, the most widely used psychoactive drug in the world, has been mainly used to improve the efficiency of working and studying for people lacking sleep, eliminating fatigue and reduce the risk for drivers and high-risk operations under sleepiness. Recent authoritative survey in humans demonstrated that in addition to these effects, coffee also has a variety of beneficial effects on human health, including anti-oxidation, reducing the incidence and mortality of human diseases, delaying cognitive impairment in patients with Alzheimer's disease, and extending lifespan. In USA, it was found that coffee is the number one diet resource of anti-oxidants, far more than any other food and beverage. A 13-year long joint investigation by NIH and the American Association of Retired People confirmed that drinking 4-5 cups of coffee per day can reduce the mortality rate of up to 12-16% among the normal population, and up to 25 % among the people with diabetes. Coffee is found to positively regulate various systems, including the cardiovascular system, digestive system, urinary system, nervous system, immune system, etc. However, most previous studies have mainly focused on the effect of caffeine, while the animal experimental studies for coffee itself are limited. In this study, we used Drosophila as an animal model to study the impact of coffee on anti-oxidation, learning and memory after sleep deprivation, and on sleep and sleep homeostasis regulation following sleep deprivation.
Firstly, the results showed that coffee enhanced flies' tolerance to starvation and resistance to oxidative stress caused by hydrogen peroxide to certain extent, and the effect was more obvious in female flies, and the dose of 5 mg/ml (equivalent of two cups of coffee/day for humans) was the most effective. The finding is consistent with the reports that coffee is more effective for women in extending lifespan and delays the cognitive deficits of Alzheimer's disease patients, suggesting that coffee may have more significant beneficial effects on women's health. The antioxidant effects of coffee at low doses may be related to caffeine and other antioxidation components, such as caffeic acid, phytochemicals, ferulic acid, trigonelline, flavonoids and phenolic compounds such as chlorogenic acid. However, its antioxidant effect disappearred at high doses, probably because caffeine is a natural insecticide at high doses. Secondly, coffee significantly improved the 3 h-memory impairments in Drosophila after sleep deprivation, with high efficacy, as only a small dose (1.25 mg / ml) was required to confer dramatic improvement, while the dosage of 10 mg/mL produced the best effect. Thirdly, both coffee and caffeine enhanced long-term synaptic depression (LTD) in Drosophila. Fourthly, low doses of caffeine and coffee, enhanced and stabilized sleep at night. Lastly, after sleep deprivation, low or high dose of caffeine or coffee allowed fruit flies stay awake (with high doses of caffeine producing stronger effects) and maintained homeostatic sleep regulation at nighttime. The effects of coffee on improving memory impairments after sleep deprivation and enhancing long-term synaptic plasticity and sleep regulation are possibly mediated by caffeine, but these effects are relatively mild as compared with those of caffeine. The other components of coffee may help balance the stimulating effect of caffeine. Furthermore, the effects of coffee and caffeine in sleep regulation and improvement of memory deficits after sleep deprivation may be related to their anti-oxidative effects.

咖啡作爲世界上飲用最多的飲料之一,其對人類健康的益處在近年來的研究中已逐漸浮現。咖啡所含的咖啡因是世界上使用最廣的精神刺激藥物,其應用已經有較長的歷史,主要用於改善睡眠不足人群的工作學習效率,解除疲勞,並免除嗜睡狀態下所造成的危險操作的損失。而最近在人類的科學調查研究發現,除了上述作用外,咖啡還具有多種對人類健康的有益效果,包括抗氧化、降低人類疾病的發生率和死亡率、延緩早老性癡呆症患者的認知障礙,並延長正常人群的壽命。一項研究顯示,咖啡是美國第一位的食物抗氧化劑來源,遠遠超過其它飲食。據美國國立衛生研究院(NIH) 與美國退休人員協會的13年的長期大型聯合調查證實,每天喝4-5杯咖啡,可以降低正常人群的死亡率達12-16%,降低糖尿病人群的死亡率達25%。咖啡對身體多種系統都具有正向的調節作用,包括心血管系統、消化系統、泌尿系統、神經系統、免疫系統等。但是,以往的大多數研究主要研究了咖啡因的作用,而對於咖啡本身的動物實驗研究比較有限。本研究以果蠅作爲動物模型,研究咖啡對抗氧化、對睡眠剝奪後的學習記憶、以及對於睡眠和睡眠剝奪後的睡眠穩態調節的的影響。
結果顯示,第一,咖啡可以一定程度的增強果蠅對飢餓的耐受力以及抗過氧化氫造成的氧化壓力的能力,這一效果對於雌性果蠅更爲明顯,而以5 mg/ml (相當於人類 每日兩杯咖啡)的劑量效果較佳。這一發現與國際上的報導,咖啡對於女性的壽命延長以及延緩早老性癡呆的作用,是一致的,表明咖啡可能對女性健康的有益作用更爲顯著。咖啡在低劑量時的抗氧化壓力效應,除與咖啡因有關外,與咖啡中的多種抗氧化成分,如咖啡酸、植化素、阿奎酸、類黃酮化合物、綠原酸等酚類化合物、以及葫蘆巴鹼等有關聯;而在高劑量咖啡時,其抗氧化效果消失,可能因爲咖啡因在高劑量時具有殺蟲效果。第二,咖啡可以明顯改善甚至恢復睡眠剝奪後果蠅的3小時記憶力障礙,而且只需很小的劑量(1.25 mg/ml)就有很好的效果,而以 10 mg/ml 的效果最好。第三,咖啡與咖啡因均增強果蠅神經信號傳遞的長時程突觸抑制。第四,低劑量的咖啡因與咖啡,具有增強並穩定夜間睡眠的作用。第五,睡眠剝奪後,低或高劑量的咖啡因或咖啡都可以使果蠅保持清醒狀態 (以高劑量的咖啡因效果更明顯),而在夜間果蠅保持睡眠的穩態調節。咖啡對睡眠的調節以及睡眠剝奪後的記憶力的影響,以及對神經信號傳遞的突觸可塑性的增強效應,很可能主要通過其中的咖啡因起作用,並可能與其抗氧化壓力的效應有關。但是與咖啡因相比,咖啡的作用較爲溫和,可能咖啡中的其它成分能平衡咖啡因的刺激作用。
URI: http://hdl.handle.net/11455/90187
Rights: 同意授權瀏覽/列印電子全文服務,2015-07-10起公開。
Appears in Collections:食品暨應用生物科技學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-5102043020-1.pdf4.16 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.