Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorLih-Shiuh Laien_US
dc.contributor.authorPo-Hsiang Fongen_US
dc.identifier.citation陳建賢(2009) 脫色仙草膠對樹薯澱粉可食膜物性之影響。國立中興大學食品暨應用生物科技學系博士論文,台中,臺灣 吳宛諭(2010) 不同界面活性劑對樹薯澱粉/脫色仙草葉膠可食性薄膜的物性影響。國立中興大學食品暨應用生物科技學系碩士論文,台中,臺灣 林詩涵(2014) 以反應曲面法探討糖質克弗爾多醣/小麥澱粉混合膜之物理及機械特性。國立中興大學食品暨應用生物科技學系碩士論文,台中,臺灣 黃義承(2012) 黑糖液克弗爾顆粒的增量與利用其分離菌株PU01生產多醣。靜宜大學食品營養學系碩士論文,台中,臺灣 Al-Muhtaseb, A. H., McMinn, W. A. M., & Magee, T. R. A. (2002). Moisture sorption isotherm characteristics of food products: a review. Food and Bioproducts Processing, 80(2), 118-128. Alves, V. D., Ferreira, A. R., Costa, N., Freitas, F., Reis, M. A. M., & Coelhoso, I. M. (2011). Characterization of biodegradable films from the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohydrate Polymers, 83(4), 1582-1590. Andreuccetti, C., Carvalho, R. A., Galicia-García, T., Martínez-Bustos, F., & Grosso, C. R. F. (2011). Effect of surfactants on the functional properties of gelatin-based edible films. Journal of Food Engineering, 103(2), 129-136. Andreuccetti, C., Carvalho, R. A., & Grosso, C. R. F. (2010). Gelatin-based films containing hydrophobic plasticizers and saponin from Yucca schidigera as the surfactant. Food Research International, 43(6), 1710-1718. Andreuccetti, C., Carvalho, R. A., & Grosso, C. R. F. (2009). Effect of hydrophobic plasticizers on functional properties of gelatin-based films. Food Research International, 42(8), 1113-1121. Araujo-Farro, P. C., Podadera, G., Sobral, P. J. A., & Menegalli, F. C. (2010). Development of films based on quinoa (Chenopodium quinoa, Willdenow) starch. Carbohydrate Polymers, 81(4), 839-848. Arık Kibar, E. A., & Us, F. (2013). Thermal, mechanical and water adsorption properties of corn starch–carboxymethylcellulose/methylcellulose biodegradable films. Journal of Food Engineering, 114(1), 123-131. Arnon, H., Granit, R., Porat, R., & Poverenov, E. (2015). Development of polysaccharides-based edible coatings for citrus fruits: A layer-by-layer approach. Food Chemistry, 166, 465-472. ASTM (2000). Standard test methods for water vapour transmission of materials, method E 96-00. Annual book of ASTM standards. Philadelphia, PA: American Society for Testing and Materials. Baldwin, E. A., & Hagenmaier, R. (2012). Chapter 1 - Introduction. In Baldwin, E. A., Hagenmaier, R. & Bai, J. (Ed.), Edible coatings and films to improve food quality (Second Edition), 1-12. Boca Raton, Florida : CRC Press Bensmira, M., Nsabimana, C., & Jiang, B. (2010). Effects of fermentation conditions and homogenization pressure on the rheological properties of Kefir. LWT - Food Science and Technology, 43(8), 1180-1184. Bilbao-Sáinz, C., Avena-Bustillos, R. J., Wood, D. F., Williams, T. G., & McHugh, T. H. (2010). Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles. Journal of Agricultural and Food Chemistry, 58(6), 3753-3760. Blahovec, J. (2004). Sorption isotherms in materials of biological origin mathematical and physical approach. Journal of Food Engineering, 65(4), 489-495. Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2013). Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. Journal of Food Engineering, 114(3), 303-312. Bourtoom, T. (2009). Edible protein films: properties enhancement. International Food Research Journal, 16(1), 1-9. Chen, C.-H., Kuo, W.-S., & Lai, L.-S. (2009). Effect of surfactants on water barrier and physical properties of tapioca starch/decolorized hsian-tsao leaf gum films. Food Hydrocolloids, 23(3), 714-721. Chick, J., & Ustunol, Z. (1998). Mechanical and barrier properties of lactic acid and rennet precipitated casein-based edible films. Journal of Food Science, 63, 1024-1027. Debeaufort, F., Quezada-Gallo, J.-A., Delporte, B., & Voilley, A. (2000). Lipid hydrophobicity and physical state effects on the properties of bilayer edible films. Journal of Membrane Science, 180(1), 47-55. Debeaufort, F., Quezada-Gallo, J.-A., & Voilley, A. (1998). Edible Films and Coatings: Tomorrow's Packagings: A Review. Critical Reviews in Food Science and Nutrition, 38(4), 299-313. Dick, M., Costa, T. M. H., Gomaa, A., Subirade, M., Rios, A. d. O., & Flôres, S. H. (2015). Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydrate Polymers, 130, 198-205. Donhowe, I. G., & Fennema, O. (1994). Chapter 1 - Edible films and coatings: Characteristics, formation, definitions, and testing methods. In Baldwin, E. A., Hagenmaier, R., Bai, J. & Krochta, J. M. (Ed.), Edible coatings and films to improve food quality, 1-21. Boca Raton, Florida : CRC Press Embuscado, M. E., & Huber, K. C. (2009). Edible films and coatings for food applications. Berlin, Heidelberg : Springer. Ghasemlou, M., Khodaiyan, F., Jahanbin, K., Gharibzahedi, S. M. T., & Taheri, S. (2012). Structural investigation and response surface optimisation for improvement of kefiran production yield from a low-cost culture medium. Food Chemistry, 133(2), 383-389. Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011a). Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydrate Polymers, 84(1), 477-483. Ghasemlou, M., Khodaiyan, F., Oromiehie, A., & Yarmand, M. S. (2011b). Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. Int J Biol Macromol, 49(3), 378-384. Ghasemlou, M., Khodaiyan, F., Oromiehie, A., & Yarmand, M. S. (2011c). Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chemistry, 127(4), 1496-1502. Giavasis, I. (2013). Chapter 16 - Production of microbial polysaccharides for use in food. In B. McNeil, D. Archer, I. Giavasis & L. Harvey (Eds.), Microbial Production of Food Ingredients, Enzymes and Nutraceuticals, 413-468. Sawston, Cambridge : Woodhead Publishing. Gontard, N., Guilbert, S., & Cuq, J. L. (1992). Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. Journal of Food Science, 57(1), 190-195. Han, J. H. (2014a). Chapter 1 - A review of food packaging technologies and innovations. In Han, J. H. (Ed.), Innovations in Food Packaging (Second Edition), 3-12. San Diego: Academic Press. Han, J. H. (2014b). Chapter 9 - Edible films and coatings: A review. In J. H. Han (Ed.), Innovations in Food Packaging (Second Edition), 213-255. San Diego: Academic Press. Haq, M. A., Hasnain, A., & Azam, M. (2014). Characterization of edible gum cordia film: Effects of plasticizers. LWT - Food Science and Technology, 55(1), 163-169. Hasenhuettl, G. L. (2013). Chapter 1 – Overview of food emulsifiers. In Hasenhuettl, G. L. & Hartel, R. W. (Ed.), Food emulsifiers and their applications,1-10. Berlin, Heidelberg : Springer. Hazaveh, P., Mohammadi Nafchi, A., & Abbaspour, H. (2015). The effects of sugars on moisture sorption isotherm and functional properties of cold water fish gelatin films. International Journal of Biological Macromolecules, 79, 370-376. Horisberger, M. (1969). Structure of the dextran of the Tibi grain. Carbohydrate Research, 10(3), 379-385. Jo, H.-J., Park, K.-M., Na, J. H., Min, S. C., Park, K. H., Chang, P.-S., & Han, J. (2015). Development of anti-insect food packaging film containing a polyvinyl alcohol and cinnamon oil emulsion at a pilot plant scale. Journal of Stored Products Research, 61, 114-118. Jones, D. M., & Huck, W. T. (2001). Controlled Surface‐Initiated Polymerizations in Aqueous Media. Advanced Materials, 13(16), 1256-1259. Karbowiak, T., Debeaufort, F., & Voilley, A. (2007). Influence of thermal process on structure and functional properties of emulsion-based edible films. Food Hydrocolloids, 21(5–6), 879-888. Khazaei, N., Esmaiili, M., Djomeh, Z. E., Ghasemlou, M., & Jouki, M. (2014). Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydrate Polymers, 102, 199-206. Kokoszka, S., Debeaufort, F., Hambleton, A., Lenart, A., & Voilley, A. (2010). Protein and glycerol contents affect physico-chemical properties of soy protein isolate-based edible films. Innovative Food Science & Emerging Technologies, 11(3), 503-510. Kolybaba, M., Tabil, L. G., Panigrahi, S., Crerar, W. J., Powell, T., & Wang, B. (2003). Biodegradable polymers: past, present, and future. In An ASAE Meeting Presentation. Kurt, A., & Kahyaoglu, T. (2014). Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydrate Polymers, 104, 50-58. Lacroix, M., & Vu, K. D. (2014). Chapter 11 - Edible coating and film materials: Proteins. In Han, J. H. (Ed.), Innovations in Food Packaging (Second Edition), 277-304. San Diego: Academic Press. Li, X., & Liu, Y. (2009). Contact Angle Model and Wettability on the Surfaces with Microstructures. Materials Review, 24, 033. Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009). Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids, 23(5), 1328-1333. Maran, J. P., Sivakumar, V., Sridhar, R., & Thirugnanasambandham, K. (2013). Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydrate Polymers, 92(2), 1335-1347. Micheli, L., Uccelletti, D., Palleschi, C., & Crescenzi, V. (1999). Isolation and characterisation of a ropy Lactobacillus strain producing the exopolysaccharide kefiran. Applied Microbiology and Biotechnology, 53(1), 69-74. Mir, M. A., & Nath, N. (1995). Sorption isotherms of fortified mango bars. Journal of Food Engineering, 25(1), 141-150. Motedayen, A. A., Khodaiyan, F., & Salehi, E. A. (2013). Development and characterisation of composite films made of kefiran and starch. Food Chemistry, 136(3-4), 1231-1238. Pérez-Gago, M. B., & Rhim, J.-W. (2014). Chapter 13 - Edible coating and film materials: Lipid bilayers and lipid emulsions. In J. H. Han (Ed.), Innovations in Food Packaging (Second Edition), 325-350. San Diego: Academic Press. Peressini, D., Bravin, B., Lapasin, R., Rizzotti, C., & Sensidoni, A. (2003). Starch–methylcellulose based edible films: rheological properties of film-forming dispersions. Journal of Food Engineering, 59(1), 25-32. Piermaria, J. A., de la Canal, M. L., & Abraham, A. G. (2008). Gelling properties of kefiran, a food-grade polysaccharide obtained from kefir grain. Food Hydrocolloids, 22(8), 1520-1527. Piermaria, J. A., Pinotti, A., Garcia, M. A., & Abraham, A. G. (2009). Films based on kefiran, an exopolysaccharide obtained from kefir grain: Development and characterization. Food Hydrocolloids, 23(3), 684-690. Razavi, S. M. A., Mohammad Amini, A., & Zahedi, Y. (2015). Characterisation of a new biodegradable edible film based on sage seed gum: Influence of plasticiser type and concentration. Food Hydrocolloids, 43(0), 290-298. Rodríguez, M., Osés, J., Ziani, K., & Maté, J. I. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, 39(8), 840-846. Serafini, F., Turroni, F., Ruas-Madiedo, P., Lugli, G. A., Milani, C., Duranti, S., . . . Ventura, M. (2014). Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression. International Journal of Food Microbiology, 178, 50-59. Shaw, D. J. (1992). Introduction to Colloid and Surface Chemistr. Waltham, Massachusettsy: Butterworth-Heinemann. Shih, F. F., Daigle, K. W., & Champagne, E. T. (2011). Effect of rice wax on water vapour permeability and sorption properties of edible pullulan films. Food Chemistry, 127(1), 118-121. Shuai Cheng, D. Y., and Zhang Xiangjun. (2007). Study of the Influence of Apparent Contact Angle on Regular Rough Surface Considering Liquid Wetting Properties. Mechanical Science and Technology for Aerospace Engineering, 26(7), 822-827. Skurtys, O., Acevedo, C., Pedreschi, F., Enrione, J., Osorio, F., & Aguilera, J. (2010). Food Hydrocolloid Edible Films and Coatings. Hauppauge, New York: Nova Science Publishers. Sothornvit, R., & Krochta, J. M. (2005). Chapter 23 - Plasticizers in edible films and coatings. In J. H. Han (Ed.), Innovations in Food Packaging, 403-433. London: Academic Press. Sung, Y. H., Kim, Y. D., Choi, H.-J., Shin, R., Kang, S., & Lee, H. (2015). Fabrication of superhydrophobic surfaces with nano-in-micro structures using UV-nanoimprint lithography and thermal shrinkage films. Applied Surface Science, 349, 169-173. Villalobos, R., Hernández-Muñoz, P., & Chiralt, A. (2006). Effect of surfactants on water sorption and barrier properties of hydroxypropyl methylcellulose films. Food Hydrocolloids, 20(4), 502-509. Wang, S. Y., Chen, H. C., Liu, J. R., Lin, Y. C., & Chen, M. J. (2008). Identification of Yeasts and Evaluation of their Distribution in Taiwanese Kefir and Viili Starters. Journal of Dairy Science, 91(10), 3798-3805. Wani, A. A., Singh, P., & Langowski, H. C. (2014). Food Technologies: Packaging. In Y. Motarjemi (Ed.), Encyclopedia of Food Safety, 211-218. Waltham: Academic Press. Zhang, B.-Z., Inngjerdingen, K. T., Zou, Y.-F., Rise, F., Michaelsen, T. E., Yan, P.-S., & Paulsen, B. S. (2014). Characterisation and immunomodulating activities of exo-polysaccharides from submerged cultivation of Hypsizigus marmoreus. Food Chemistry, 163(0), 120-128. Zhao, Y. (2012). Chapter 10 - Application of commercial coatings. In Baldwin, E. A., Hagenmaier, R. & Bai, J. (Ed.), Edible coatings and films to improve food quality (Second Edition), 319-332. Boca Raton, Florida : CRC Press. Zhu, Z. (2014). Hydrophilicity, wettability and contact angle. Membrane Science and Technology (2), 1-4. Zolfi, M., Khodaiyan, F., Mousavi, M., & Hashemi, M. (2014). The improvement of characteristics of biodegradable films made from kefiran–whey protein by nanoparticle incorporation. Carbohydrate Polymers, 109, 118-125.zh_TW
dc.description.abstractEdible films and coatings made of biodegradable material can be used to package food products and extend their shelf life. Moreover, those films and coatings can be consumed together with foods. Ingredients of edible film include carbohydrate, protein and lipid, which could be obtained from agricultural resources rather than limited petrochemical material. The objective of this research is to study the effect of different types and concentrations of surfactants on the appearance, water vapor permeability, and physical properties of sugary kefir polysaccharide/wheat starch edible films. Increasing the concentration of added surfactant generally increased the thickness of sugary kefir polysaccharide/wheat starch (KS) edible films. Water vapor permeability results revealed that except for the group with Span 80, the water barrier characteristics of KS films were all enhanced by increasing surfactant concentration. The group with 6% Glycerol monostearate (GMS) showed the best water barrier characteristics among . However, the mechanical strength such as tensile and puncture strength was reduced significantly by the addition of surfactants. SEM micrographs showed that adding more surfactant resulted in more uneven and stratified cross-sectional structure. Such results may possibly related to the influence of polysaccharide-starch interaction, and the formation of three-dimensional network structure between polysaccharides and starch.en_US
dc.description.abstract使用生物可分解材質製成的可食膜、可食塗層(edible films and coatings),是種能將食品包裹起來延長食品的保存期限亦可與食品一同食用的食品包裝。本研究探討糖質克弗爾多醣/小麥澱粉可食膜加入不同種類及濃度的界面活性劑,對於糖質克弗爾多醣/小麥澱粉可食膜的外觀、水氣阻隔性、物理性質等影響。使用的界面活性劑包含2-6%的Glycerol monostearate (GMS)、Span 80、Sucrose ester S-770、Sucrose ester S-1170、Sucrose ester S-1570 (HLB值分別為3.8、4.3、7、11、15),並與未添加界面活性劑者(控制組)比較。實驗結果顯示,隨著界面活性劑濃度的上升,可食膜的厚度亦會隨之增加;在親水性相關試驗中,GMS具有降低親水性的效果,S-1170、S-1570則增加親水性;水氣阻隔性試驗除了Span80外其它界面活性劑皆有提高阻隔水氣之效果,其中又以6% GMS最為顯著;微結構觀察得出界面活性劑的添加對於可食膜斷面產生層狀結構的增加;在穿刺以及拉伸性質試驗,隨界面活性劑濃度的上升,可食膜的機械強度均隨之降低,推測此結果與改變多醣和澱粉間的立體網狀結構有關。zh_TW
dc.description.tableofcontents摘要 i Abstract ii 目錄 iii 圖目錄 vii 表目錄 x 壹、 前言 1 貳、 文獻回顧 4 一、 可食膜(Edible film) 4 (一) 背景 4 (二) 定義 4 (三) 可食膜材料 4 (四) 可食膜的製備 13 (五) 可食膜的應用 13 二、 克弗爾(Kefir) 17 (一) 背景 17 (二) 克弗爾多醣(Kefiran) 18 (三) 黑糖液克弗爾 20 三、 等溫吸濕曲線(Moisture sorption isotherm, MSI) 23 四、 水氣透過性質 26 五、 可食膜機械性質(Mechanical Properties) 30 參、 材料與方法 34 一、 糖質克弗爾多醣(sugary kefir grains) 34 (一) 糖質克弗爾粒培養 34 (二) 糖質克弗爾多醣純化 36 二、 界面活性劑 37 (一) Glycerol Monostearate (GMS) 37 (二) Span 80 37 (三) Sucrose ester S-770、S-1170、S-1570 37 三、 可食膜溶液及可食膜製備 39 (一) 糖質克弗爾多醣卅小麥澱粉可食膜溶液製備 39 (二) 可食膜製備 39 四、 可食膜性質測定 40 (一) 厚度測定 40 (二) 不透明度分析 40 (三) 場發射掃描式電子顯微鏡結構觀察 40 (四) 水分含量 41 (五) 溶解度 41 (六) 水接觸角 41 (七) 水氣透過性質 42 (八) 等溫吸濕曲線 42 (九) 穿刺試驗 44 (十) 抗張試驗 44 (十一) 統計分析 45 肆、 結果與討論 46 一、 添加界面活性劑對可食膜成形之影響 46 二、 可食膜外觀 49 三、 可食膜厚度 54 四、 可食膜不透明度 57 五、 可食膜微結構觀察 61 六、 可食膜水分含量及溶解度 67 七、 可食膜之水接觸角 72 八、 可食膜之等溫吸濕曲線 77 九、 可食膜水氣透過性質 83 十、 可食膜之機械性質 89 (一) 穿刺試驗 89 (二) 拉伸試驗 94 伍、 結論 100 陸、 參考文獻 103zh_TW
dc.subjectEdible filmen_US
dc.subjectWheat starchen_US
dc.titleEffect of Surfactants on the Physical Properties of Sugary Kefir Polysaccharide/Wheat Starch Edible Filmsen_US
dc.typeThesis and Dissertationen_US
item.openairetypeThesis and Dissertation-
item.fulltextwith fulltext-
Appears in Collections:食品暨應用生物科技學系
Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7102043007-1.pdf3.16 MBAdobe PDFThis file is only available in the university internal network   
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.