Please use this identifier to cite or link to this item:
標題: 24GHz射頻接收機之前端電路設計
Front-End Circuits Design for 24GHz Radio-Frequency Receiver
作者: 吳易達
Wu, Yi-Ta
關鍵字: 射頻接收機之前端電路;front-end circuits design for 24GHz radio-frequency receiver;低雜訊放大器;主動式Balun;混頻器;low noise amplifier;active balun;mixer
出版社: 電機工程學系所
引用: 參考文獻 [1] Electromagnetic compatibility and Radio spectrum Matters (ERM) ; Short Range Devices ; Road Transport and Traffic Telematics (RTTT) ; Short range radar equipment operating in the 24GHz range ; Part1: Technical requirements and methods of measurement, ETSI Std. ETSI EN 302 288-1V1.2.1. [2] M. Klotz and H. Rohling, “24 GHz radar sensors for automotive applications,” 2000 Microwave Radar and Wireless Communications Conference Dig., vol. 1, pp. 359-362, May 2000. [3] A. Tessmann, L. Verweyen, M. Neumann, H. Massler, W. H. Haydl, A. Hulsmann, and M. Schechtweg, “A 77 GHz GaAs pHEMT transceiver MMIC for automotive sensor applications,” in 1999 GaAs IC Symp. Dig., pp. 207-210, 1999. [4] R. LaBelle, R. Girard, and G. Arbery, “A 94 GHz RF Electronics Subsystem for the CloudSat Cloud Profiling Radar,” IEEE European Microwave Conference, vol.3, pp. 1139-1142 Oct. 2003. [5] R. Kozhuharov, A. Jirskog, N. Penndal, and H. Zirath, ” Single-Chip 24-GHz Synthesizer for a Radar Application,” IEEE Compound Semiconductor Integrated Circuit Symposium, pp. 205-208, Nov. 2006. [6] J.-G. Kim, S.-H. Sim, S. Cheon, and S. Hong, “24GHz circularly polarized Doppler radar with a single antenna,” IEEE European Microwave Conference, vol.2, pp. 4-6 Oct. 2005. [7] B. Razavi, RF Microelectronics, Prentice Hall, 1977. [8] D. M. Pozar, Microwave Engineering, 3rd edition, Addison Wesley, 2005 [9] 徐邱祥,“磁耦合效應於元件設計及射頻電路應用之研究”,國立中興大學電機工程研究所碩士論文,2012。 [10] 林宥佐,“低雜訊放大器及除頻器於射頻系統晶片之設計與應用”,國立台灣大學電子工程研究所碩士論文,2003。 [11] T. K. Nguyen, C. H. Kim, G. J. Ihm, M. S. Yang, and S. G. Lee, “CMOS low- noise amplifier design optimization techniques,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 5, pp. 1433 - 1442, May 2004. [12] X. Fan, H. Zhang, and E. S. Sinencio, “A Noise Reduction and Linearity Improvement Technique for a Differential Cascode LNA,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 588-599, March 2008. [13] B. Gilbert, “The Micromixer: A Highly Linear Variant of the Gilbert Mixer Using a Bisymmetric Class-AB Input Stage,” IEEE J. Solid-State Circuits, vol. 32, no. 9, pp. 1412 - 1413, Sept. 1997. [14] K. L. Fong, C. D. Hull, and R. G. Meyer, “Monolithic RF active mixer design,” IEEE Trans. Circuits and Systems II, vol. 46, no. 3, pp. 231 - 239, Mar. 1999. [15] 黃家洋,應用於無線區域網路802.11a、24GHz與60GHz之射頻接收前端電路設計,國立中興大學電機工程學系碩士學位論文,2011年7月。 [16] H. Darabi and A. A. Abidi, “Noise in RF-CMOS mixer: a simple physical model,” IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 15 - 25, Jan. 2000. [17] M. T. Terrovitis and R. G. Meyer, “Noise in current-commutating CMOS mixer,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 772 - 783, June 1999. [18] D. Ahn, D. W. Kim, and S. Hong, “A K-Band High-Gain Down-Conversion Mixer in 0.18um CMOS Technology,” IEEE Microwave and Wireless Component Letter, vol. 19, no. 4, pp. 227 - 229, April 2009. [19] A. Verma, L. Gao, K. K. O, and J. Lin, “A K-Band Down-Conversion Mixer with 1.4-GHz Bandwidth in 0.13um CMOS Technology,” IEEE Microwave and Wireless Component Letter, vol. 15, no. 8, pp. 493 - 495, Aug. 2005. [20] R. M. Kodkani and L. E. Larson, “A 24-GHz CMOS Direct-Conversion Sub- Harmonic Downconverter,” IEEE RFIC symposium, pp. 485 - 488, June 2007. [21] V. Vidojkovic, J. van der Tang, A. Leeuwenburgh, and A. van Roermund, “A Low-Voltage Folded-Switching Mixer in 0.18-um CMOS,” IEEE Journal of Solid-State Circuits, vol. 40, no. 6, pp. 1259 - 1264, 2005. [22] K.-W. Yu, Y.-L. Lu, D. Huang, D.-C. Chang, V. Liang, and M. F. Chang, “24 GHz Low-Noise Amplifier in 0.18µm CMOS teachnology,” Electronics Letters, Vol. 39 No.22. October 2003. [23] J.-H. Lee, C.-C. Chen, and Y.-S. Lin, “3.7 mW 24 GHz LNA with 10.1 dB gain and 4.5 dB NF in 0.18 µm CMOS technology,” Electronics Letters, Vol. 46 No. 19, September 2010. [24] G. Xiang and A. Hajimiri, “A 24-GHz CMOS front-end,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368–373, 2004. [25] S. C. Shin, M. D. Tsai, R. C. Liu, K. Y. Lin, and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18µm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 448–450, 2005. [26] D. Ahn, D.-W. Kim, and S. Hong, “A K-Band High-Gain Down-Conversion Mixer in 0.18 um CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, April 2009. [27] Ashok Verma, Li Gao, Kenneth K. O, and Jenshan Lin, “A K-Band Down- Conversion Mixer With 1.4-GHz Bandwidth in 0.13-um CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 8, August 2005. [28] H.-R. Bae, C. S. Cho, J. W. Lee, and J. Kim, “A 24GHz dual-gate mixer using sub-harmonic in 0.18µm CMOS technology,” in Asia-Pacific Microwave Conference (APMC 2009), pp. 1739 - 1742. Dec. 2009. [29] J. Yoon, H. Kim, C. Park, J. Yang, H. Song, S. Lee, and B. Kim, “A New RF CMOS Gilbert Mixer With Improved Noise Figure and Linearity,” IEEE Trans. On Microwave Theory and Techniques, vol. 56, no. 3, March 2008.

This thesis presents front-end circuits design for 24GHz radio-frequency receiver. It is composed of five chapters. At first, a brief introduction of wireless radio- frequency system and the applications of 24GHz frequency band in industry are introduced. Then, we discuss the basic theories of the low noise amplifier (LNA) and the measured results of an implemented LNA chip. Following the LNA, the basic theories of the mixer and the implemented mixer chip are introduced. In the process of our study, we are not successful all the way. Therefore, we discuss the possible reasons of two failed ICs: the first on is a low noise amplifier for 24GHz applications, while the second one is front-end circuits design for 24GHz radio-frequency receiver, which includes a low noise amplifier, an active balun, and the mixer. Finally, a general review is drawn.
其他識別: U0005-0108201309303500
Appears in Collections:電機工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.