Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90287
標題: Effect of nano silicate platelets as a mycotoxin fumonisin B1 binder on the protein profiling in the liver of broilers
奈米矽片作為黴菌伏馬毒素B1吸附劑對雞隻肝臟蛋白質表現之影響
作者: Chiao-Wei Yuan
袁喬葦
關鍵字: 白肉雞;肝臟;伏馬鐮孢毒素B1;奈米矽片;蛋白質體;broiler;liver;fumonisin B1;nano silicate platelets;proteome
引用: 王翰聰。2012。新月形黴菌毒素群之毒性體外評估系統建立與組合式黴菌毒素降 解生物製劑開發─酵母菌與乳酸菌混合飼料添加劑在新月黴菌毒素處理之應用。行政院國家科學委員會專題研究計畫成果報告。 吳立信。2010。伏馬鐮孢毒素導致高膽固醇血症的機制。碩士論文。台灣大學。 台北。 游雅晴。2006。以溶液分散法與原位總體聚合法製備聚甲基丙烯酸甲酯/黏土奈米複合材料及其性質研究。碩士論文。中原大學。桃園。 蔡宗燕。1998。奈米級無機材料的發展與應用。化工資訊。2:28-42。 簡大鈞。2008。各類有機改質蒙脫土/聚琥珀酸丁酯奈米複合材料之研究。碩士論文。朝陽科技大學。台中。 鄭崇偲。2012。快速評估奈米材料對動物細胞之細胞毒性。碩士論文。中興大學。台中。 Akelah, A., N. Salah El-Deen, A. Hiltner, E. Baer, and A. Moet. 1995. Organophilic rubber-montmorillonite nanocomposites. Mater. Lett. 22:97-102. Ationu, A., and A. Humphries. 1999. The feasibility of replacement therapy for inherited disorder of glycolysis: triosephosphate isomerase deficiency. Int. J. Mol. Med. 2:701-704. Azim, S. A., H. A. Darwish, M. Z. Rizk, S. A. Ali, and M. O. Kadry. 2015. Amelioration of titanium dioxide nanoparticles-induced liver injury in mice: Possible role of some antioxidants. Exp. Toxicol. Pathol. 67:305-314. Beere, H. M., B. B. Wolf, K. Cain, D. D. Mosser, A. Mahboubi, T. Kuwana, P. Tailor, R. I. Morimoto, G. M. Cohen, and D. R. Green. 2000. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat. Cell Biol. 2:469-475. Ben-Yoseph, O., P. A. Boxer, and B. D. Ross. 1996. Assessment of the role of the glutathione and pentose phosphate pathways in the protection of primary cerebrocortical cultures from oxidative stress. J. Neurochem. 66:2329-2337. Bezuidenhout, S. C., W. C. A. Gelderblom, C. P. Gorst-Allman, R. M. Horak, W. F. O. Marasas, G. Spiteller, and R. Vleggaar. 1988. Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. J. Chem. Soc. Chem. Commun. 11:743-745. Broomhead, J. N., D. R. Ledoux, A. J. Bermudez, and G. E. Rottinghaus. 2002. Chronic effects of fumonisin B1 in broilers and turkeys fed dietary treatments to market age. Poult. Sci. 81:56-61. Busolo, M. A., P. Fernandez, M. J. Ocio, and J. M. Lagaron. 2010. Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Addit. Contam. Part A 27:1617-1626. Butkeraitis, P, C. A. Oliveira, D. R. Ledoux, R. Ogido, R. Albuquerque, J. F. Rosmaninho, and G. E. Rottinghaus. 2004. Effect of dietary fumonisin B1 on laying Japanese quail. Br. Poult. Sci. 45:798-801. Callens, M., D. A. Kuntz, and F. R. Opperdoes. 1991. Kinetic properties of fructose bisphosphate aldolase from Trypanosoma brucei compared to aldolase from rabbit muscle and Staphylococcus aureus. Mol. Biochem. Parasitol. 47:1-9. Cassar-Malek, I., B. Picard, C. Bernard, and J. F. Hocquette. 2008. Application of gene expression studies in livestock production systems: a European perspective. Aust. J. Exp. Agric. 48:701-710. Chadwick, A. V., and S. L. P. Savin. 2008. X-ray absorption studies of nanocomposites. Nanocomposites 10:205-225. Chan, K. T., S. J. Creed, and J. E. Bear. 2011. Unraveling the enigma: progress towards understanding the coronin family of actin regulators. Trends Cell Biol. 21:481-488. Chen, B. 2004. Polymer-clay nanocomposites: an overview with emphasis on interaction mechanisms. Br. Ceram. Trans. 6:241-249. Cheng, Y. H., S. T. Ding, and M. H. Chang. 2006. Effect of fumonisins on marcrophage immune functions and gene expression of cytokines in broiler. Arch. Anim. Nutr. 60:267-276. Cheng, Y. H., J. F. Wu, D. N. Lee, and C. M. Yang. 2002. Prevalence of fumonisin contamination in corn and corn-based feeds in Taiwan. Asian-Australasian J. Anim. Sci. 15:610-614. Colantonio, D. A., and D. W. Chan. 2005. The clinical application of proteomics. Clin. Chim. Acta 24:151-158. Coleman, N. J., A. H. Bishop, S. E. Booth, and J. W. Nicholson. 2009. Ag+- and Zn2+-exchange kinetics and antimicrobial properties of 11 angstrom tobermorites. J. Eur. Ceram. Soc. 29:1109-1117. Denault, J., and B. Labrecque. 2004. Technology group on polymer nanocomposites PNC-Tech. Industrial materials institute. Québec. Canada. Deshmukh, S., R. K. Asrani, D. R. Ledoux, G. E. Rottinghaus, A. J. Bermudez, and V. K. Gupta. 2007. Pathologic changes in extrahepatic organs and agglutinin response to Salmonella gallinarum infection in Japanese quail fed Fusarium verticillioides culture material containing known levels of fumonisin B1. Avian Dis. 51:705-712. El-Desouky, T. A., A. M. A. Sharoba, A. I. El-Desouky, H. A. El-Mansy, and K. Naguib. 2012. Effect of ozone gas on degradation of aflatoxin B1 and aspergillus flavus fungal. J. Anal. Toxicol. 2:1-7. Ferguson, J. J., M. Boll, and H. Holzer. 1967. Yeast malate dehydrogenase: enzyme inactivation in catabolite repression. Eur. J. Biochem. 1:21-25. Forni, F., V. Iannuccelli, G. Coppi, and M. T. Bernabei. 1989. Effect of momtmorillonite on drug release from polymeric matrices. Arch. Pharm. 322:789-793. Gailiusis, J., R. W. Rinne, and C. R. Benedict. 1964. Pyruvate-Oxaloacetate exchange reaction in baker's yeast. Biochim. Biophys. Acta Spec. Sect. Enzymol. Subj. 92:595-601. Ge, Y., M. Bruno, K. Wallace, W. Winnik, and R. Y. Prasad. 2011. Proteome profiling reveals potential toxicity and detoxification pathways following exposure of BEAS-2B cells to engineered nanoparticle titanium dioxide. Proteomics 11:2406-2422. Gelderblom, W. C. A., K. Jaskiewicz, W. F. O., P. G. Thiel, M. J. Horak, R. Vleggaar, and N. P. J. Kriek. 1988. Fumonisins-novel mycotoxins with cancer promoting activity produced by Fusarium moniliforme. Appl. Environ. Microbiol. 54:1806-1811. Giannelis, E. P. 1996. Polymer layered silicate nanocomposites. Adv. Mater. 8:29-35. Grim, R. E. 1962. Clays in refining and preparation of organic materials. Page 321 in Applied clay mineralogy. McGraw-Hill. New York. Harrison, L. R., B. M. Colvin, J. T. Green, L. E. Newman, and J. R. Cole. 1990. Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme. J. Vet. Diagn. Invest. 2:217-221. Havlis, J., H. Thomas, M. Sebela, and A. Shevchenko. 2003. Fast-response proteomics by accelerated in-gel digestion of proteins. Anal. Chem. 75:1300-1306. Henry, M., H. R. D. Wyatt, and O. J. Fletchert. 2000. The toxicity of purified fumonisin B1 in broiler chicks. Poult. Sci. 79:1378-1384. Huang, S. Y., J. H. Lin, Y. H. Chen, C. K. Chuang, E. C. Lin, M. C. Huang, H. F. S. Sun, and W. C. Lee. 2005. A reference map and identification of porcine testis proteins using 2-DE and MS. Proteomics 5:4205-4212. Huang, J., X. Tang, J. Ruan, H. Ma, and S. Zou. 2010. Use of comparative proteomics to identify key proteins related to hepatic lipid metabolism in broiler chickens: evidence accounting for differential fat deposition between strains. Lipids 45:81-89. Huwig, A., S. Freimund, O. Käppeli, and H. Dutler. 2001. Mycotoxin detoxication of animal feed by different adsorbents. Toxicol. Lett. 122:179-188. Izard, T., A. Aevarsson, M. D. Allen, A. H. Westphal, R. N. Perham, A. de Kok, and W. G. Hol. 1999. Principles of quasi-equivalence and Euclidean geometry govern the assembly of cubic and dodecahedral cores of pyruvate dehydrogenase complexes. Proc. Natl. Acad. Sci. 96:1240-1245. Janer, G., E. Fernández-Rosas, E. M. del Molino, D. González-Gálvez, G. Vilar, C. López-Iglesias, V. Ermini, and S. Vázquez-Campos. 2014. In vitro toxicity of functionalised nanoclays is mainly driven by the presence of organic modifiers. Nanotoxicology 8:279-294. Janmey, P. A., C. Chaponnier, S. E. Lind, K. S. Zaner, T. P. Stossel, and H. L. Yin. 1985. Interactions of gelsolin and gelsolin-actin complexes with actin. Effects of calcium on actin nucleation, filament severing, and end blocking. Biochemistry 24:3714-3723. Jaskiewicz, K., W. F. O. Marasas, and F. E. van der Walt. 1981. Oesophageal and other main cancer patterns in four districts of Transkei. S. Afr. Med. J. 72:27-30. Jouany, J. P. 2007. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Anim. Feed Sci. Technol. 137:342-362. Kathirvelu, S., L. D'Souza, and B. Dhurai. 2008. Nanotechnology applications in textiles. Indian J. Sci. Technol. 5:1-10. Kiang, J. G., and G. C. Tsokos. 1998. Heat Shock Protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol. Ther. 80:183-201. Kim, I. H., K. Kim, and S. G. Rhee. 1989. Induction of an antioxidant protein of Saccharomyces cerevisiae by O2, Fe3+, or 2-mercaptoethanol. Proc. Natl. Acad. Sci. U. S. A. 86:6018-6022. Komarneni, S. 1992. Feature article. Nanocomposites. J. Mater. Chem. 2: 1219-1230. Koya, R., H. Fujita, S. Shimizu, M. Ohtsu, M. Takimoto, and Y. Tsujimoto. 2000. Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. J. Biol. Chem. 275:15343-15349. Kriek, N. P., T. S. Kellerman, and W. F. Marasas. 1981a. A comparative study of the toxicity of Fusarium verticillioides (= F. moniliforme) to horses, primates, pigs, sheep, and rats. Onderstepoort J. Vet. Res. 48:129-131. Kriek, N. P. J., W. F. O. Marasas, and P. G. Thiel. 1981b. Hepato- and cardiotoxicity of Fusarium verticillioides (F. moniliforme) isolates from southern African maize. Food Cosmet. Toxicol. 19:447-456. Kusano, H., S. Shimizu, R. Koya, H. Fujita, S. Kamada, and N. Kuzumaki. 2000. Human gelsolin prevents apoptosis by inhibiting apoptotic mitochondrial changes via closing VDAC. Oncogene 19:4807-4814. Lai, C. Y., A. Groth, S. Gray, and M. Duke. 2014. Preparation and characterization of poly (vinylidene fluoride)/nanoclay nanocomposite flat sheet membranes for abrasion resistance. Water Res. 57:56-66. Lai, Z. W., Y. Yan, F. Caruso, and E. C. Nice. 2012. Emerging techniques in proteomics for probing nano-bio interactions. ACS Nano 6:10438-10448. Ledoux, D. R., T. P. Brown, T. S. Weibking, and G. E. Rottinghaus. 1992. Fumonisin toxicity in broiler chicks. J. Vet. Diagn. Invest. 4:330-333. Legrain, P., R. Aebersold, A. Archakov, A. Bairoch, K. Bala, L. Beretta, J. Bergeron, C. H. Borchers, G. L. Corthals, C. E. Costello, E. W. Deutsch, B. Domon, W. Hancock, F. He, D. Hochstrasser, G. Marko-Varga, G. H. Salekdeh, S. Sechi, M. Snyder, S. Srivastava, M. Uhlén, C. H. Wu, T. Yamamoto, Y. K. Paik, and G. S. Omenn. 2011. The human proteome project: current state and future direction. Mol. Cell Proteomics 10:1-5. Lemke, S. L., P. G. Grant, and T. D. Phillips. 1998. Adsorption of zearalenone by organophilic montmorillonite clay. J. Agric. Food Chem. 46:3789-3796. Lemmer, E. R., P. de la Motte Hall, N. Omori, M. Omori, E. G. Shephard, W. C. Gelderblom, J. P. Cruse, R. A. Barnard, W. F. Marasas, R. E. Kirsch, and S. S. Thorgeirsson. 1999. Histopathology and gene expression changes in rat liver during feeding of fumonisin B1, a carcinogenic mycotoxin produced by Fusarium moniliforme. Carcinogenesis 20:817-824. Li, Y. Z., C. S. Cheng, C. J. Chen, Z. L. Li, Y. T. Lin, S. E. Chen, and S. Y. Huang. 2014. Functional annotation of proteomic data from chicken heterophils and macrophages induced by carbon nanotube exposure. Intl. J. Mol. Sci. 15:8372-8392. Li, Y. C., D. R. Ledoux, A. J. Bermudez, K. L. Fritsche, and G. E. Rottinghaus. 1999. Effects of fumonisin B1 on selected immune responses in broiler chicks. Poult. Sci. 78:1275-1282. Li, P. R., J. C. Wei, Y. F. Chiu, H. L. Su, F. C. Peng, and J. J. Lin. 2010. Evaluation on cytotoxicity and genotoxicity of the exfoliated silicate nanoclay. ACS Appl. Mater. Interfaces 2:1608-1613. Liang, J. J., J. C. Wei, Y. L. Lee, S. H. Hsu, J. J. Lin, and Y. L. Lin. 2014. Surfactant-modified nanoclay exhibits an antiviral activity with high potency and broad spectrum. J. Virol. 88:4218-28. Liao, Y. J., J. R. Yang, S. E. Chen, S. J. Wu, S. Y. Huang, J. J. Lin, L. R. Chen, and P. C. Tang. 2014. Inhibition of fumonisin B1 cytotoxicity by nanosilicate platelets during mouse embryo development. PLoS ONE 9:e112290. Lieberman, M. A., M. D. A. Marks, and A. Peet. 2009. Liver metabolism. Page 868-882 in Marks' basic medical biochemistry. Lieberman M. A., and A. Marks Ed., Fourth ed., Lippincott Williams & Wilkins. Philadelphia, PA. Lin, J. J., C. C. Chu, M. L. Chiang, and W. C. Tsai. 2006. First isolation of individual silicate platelets from clay exfoliation and their unique self-assembly into fibrous arrays. J. Phys. Chem. 110:18115-18120. Lin, Z., L. Ma, X. ZG, H. Zhang, and B. Lin. 2013. A comparative study of lung toxicity in rats induced by three types of nanomaterials. Nanoscale Res. Lett. 8:521. Liska, D. J. 1998. The detoxification enzyme systems. Altern. Med. Rev. 3:187-198. Liu, H., F. Ye, H. Cao, G. Ji, J. Y. Lee, and J. Yang. 2013. A core-shell templated approach to the nanocomposites of silver sulfide and noble metal nanoparticles with hollow/cage-bell structures. Nanoscale 5:6901-6907. Lordan, S., J. E. Kennedy, and C. L. Higginbotham. 2011. Cytotoxic effects induced by unmodified and organically modified nanoclays in the human hepatic HepG2 cell line. J. Appl. Toxicol. 31:27-35. Lüders, J, J. Demand, and J. Höhfeld. 2000. The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J. Biol. Chem. 275:4613-4617. Makaula, N. A., W. F. O. Marasas, F. S. Venter, C. J. Badenhorst, D. Bradshaw, and S. Swanevelder. 1996. Oesophageal and other cancer patterns in four selected districts of Transkei, southern Africa: 1985-1990. Afr. J. Health Sci. 3:11-15. Marasas, W. F. O., T. S. Kellerman, J. G. Pienaar, and T. W. Naude. 1976. Leukoencephalomalacia: a mycotoxicosis of Equidae caused by Fusarium moniliforme Sheldon. Onderstepoort J. Vet. Res. 43:113-122. Marasas, W. F. O., N. P. J. Kriek, J. E. Fincham, and S. J. van Rensburg. 1984. Primary liver cancer and oesophageal basal cell hyperplasia in rats caused by Fusarium moniliforme. Int. J. Cancer 34:383-387. Marasas, W. F. O., F. C. Wehner, S. J. van Rensburg, and D. J. van Schalkwyk. 1981. Mycoflora of corn produced in human esophageal cancer areas in Transkei, southern Africa. Phytopathology 71:792-796. McKenzie, K. S., L. F. Kubena, A. J. Denvir, T. D. Rogers, and G. D. Hitchens. 1998. Aflatoxicosis in turkey poults is prevented by treatment of naturally contaminated corn with ozone generated by electrolysis. Poult. Sci. 77:1094-1102. Moshtaghian, J., C. M. Parsons, R. W. Leeper, P. C. Harrison, and K. W. Koelkebeck. 1991. Effect of sodium aluminosilicate on phosphorus utilization by chicks and laying hens. Poult. Sci. 70:955-962. Nabeshi, H., T. Yoshikawa, K. Matsuyama, Y. Nakazato, S. Tochigi, S. Kondoh, T. Hirai, T. Akase, K. Nagano, Y. Abe, Y. Yoshioka, H. Kamada, N. Itoh, S. Tsunoda, and Y. Tsutsumi. 2011. Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes. Part. Fibre. Toxicol. 8:1. Napierska, D., V. Rabolli, L. C. Thomassen, D. Dinsdale, C. Princen, L. Gonzalez, K. L. Poels, M. Kirsch-Volders, D. Lison, J. A. Martens, and P. H. Hoet. 2012. Oxidative stress induced by pure and iron-doped amorphous silica nanoparticles in subtoxic conditions. Chem. Res. Toxicol. 25:828-837. Neuhoff, V., N. Arold, D. Taube, and W. Ehrhardt. 1988. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255-62. Nice, E. C., J. Rothacker, J. Weinstock, L. Lim, and B. Catimel. 2007. Use of multidimensional separation protocols for the purification of trace components in complex biological samples for proteomics analysis. J. Chromatogr. 1168:190-210. Perkins, D. N., D. J. Pappin, D. M. Creasy, and J. S. Cottrell. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551-3567. Pettit, F. H., J. W. Pelley, and L. J. Reed. 1975. Regulation of pyruvate dehydrogenase kinase and phosphatase by acetyl-CoA/CoA and NADH/NAD ratios. Biochem. Biophys. Res. Commun. 65:575-582. Pimpukdee, K., L. F. Kubena, C. A. Bailey, H. J. Huebner, E. Afriyie-Gyawu, and T. D. Phillips. 2004. Aflatoxin-induced toxicity and depletion of hepatic vitamin A in young broiler chicks: protection of chicks in the presence of low levels of NovaSil PLUS in the diet. Poult. Sci. 83:737-744. Raj, H. G., and T. A. Venkitasubramanian. 1974. Carbohydrate metabolism in aflatoxin B1 toxicity. Environ. Physiol. Biochem. 4:181-187. Ramos, A. J., J. Fink-Gremmels, and E. Hernandez. 1996. Prevention of toxic effects of mycotoxins be means of nonnutritive adsorbent compounds. J. Food Prot. 59:631-641. Rhee, S. G., K. S. Yang, S. W. Kang, H. A. Woo, and T. S. Chang. 2005. Controlled elimination of intracellular H2O2: regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid. Redox Signal. 7:619-626. Rheeder, J. P., W. F. Marasas, and H. F. Vismer. 2002. Production of fumonisin analogs by Fusarium species. Appl. Environ. Microbiol. 68:2101-2105. Rieger, R., C. I. Lasmézas, and S. Weiss. 1999. Role of the 37 kDa laminin receptor precursor in the life cycle of prions. Transfus. Clin. Biol. 6:7-16. Ross, D. 1988. Glutathione, free radicals and chemotherapeutic agents. Mechanisms of free-radical induced toxicity and glutathione-dependent protection. Pharmacol. Ther. 37:231-249. Sambongi, Y., Y. Iko, M. Tanabe, H. Omote, A. Iwamoto-Kihara, I. Ueda, T. Yanagida, Y. Wada, and M. Futai. 1999. Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 286:1722-1724. Sastre, J., F. V. Pallardo, and J. Vina. 1996. Glutathione, oxidative stress, and aging. Age 19:129-139. Schomaker, S., R. Warner, J. Bock, K. Johnson, D. Potter, and J. Van Winkle. 2013. Assessment of emerging biomarkers of liver injury in human subjects. Aubrecht. Toxicol. Sci. 132:276-283. Sheehan, D. 2007. The potential of proteomics for providing new insights into environmental impacts on human health. Rev. Environ. Health 22:175-194. Shi, Y. H., Z. R. Xu, and C. Z. Wang. 2006. Efficacy of modified montmorillonite nanocomposite to reduce the toxicity of aflatoxin in broiler chicks. Anim. Feed Sci. Technol. 129:138-148. Slee, E. A., C. Adrain, and S. J. Martin. 2001. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J. Biol. Chem. 276:7320-7326. Smith, J. E., and R. S. Henderson. 1984. Toxigenic Fusaria. Page 119-140 in Mycotoxins and animal foods. W. F. O. Marasas, ed. Henderson. Pennsylvania State University Press, PA. Soriano, J. M., L. González, and A. I. Catalá. 2005. Mechanism of action of sphingolipids and their metabolites in the toxicity of fumonisin B1. Prog. Lipid Res. 44:345-356. Tyers, M., and M. Mann. 2003. Overview from genomics to proteomics. Nature 422:193-197. Vaia, R. A., H. Ishii, and E. P. Giannelis. 1993. Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater. 5:1694-1696. Wang, Z. G., M. K. Jia, H. Cao, P. Bian, and X. D. Fang. 2013. Knockdown of Coronin-1C disrupts Rac1 activation and impairs tumorigenic potential in hepatocellular carcinoma cells. Oncol. Rep. 29:1066-1072. Wang, E., W. P. Norred, C. W. Bacon, R. T. Riley, and A. H. Merrill. 1991. Inhibition of sphingolipid biosynthesis by fumonisins: Implications for diseases associated with Fusarium moniliforme. J. Biol. Chem. 266:14486-14490. Wu, C. S., Y. J. Huang, T. H. Hsieh, P. T. Huang, B. Z. Hsieh, Y. K. Han, and K. S. Ho. 2008. Studies on the conducting nanocomposite prepared by in-situ polymerization of aniline monomers in a neat (aqueous) synthetic mica clay. Polym. Chem. 46:1800-1809. Yang, J., F. Bai, K. Zhang, S. Bai, X. Peng, X. Ding, Y. Li, J. Zhang, and L. Zhao. 2012. Effects of feeding corn naturally contaminated with aflatoxin B1 and B2 on hepatic functions of broilers. Poult. Sci. 91:2792-2801. Yousef, J. M., and A. M. Mohamed. 2015. Prophylactic role of B vitamins against bulk and zinc oxide nano-particles toxicity induced oxidative DNA damage and apoptosis in rat livers. Pak. J. Pharm. Sci. 28:175-184. Yuan, J., H. Gao, J. Sui, H. Duan, W. N. Chen, and C. B. Ching. 2012. Cytotoxicity evaluation of oxidized single-walled carbon nanotubes and graphene oxide on human hepatoma HepG2 cells: an iTRAQ-coupled 2D LC-MS/MS proteome analysis. Toxicol. Sci. 126:149-161. Zheng, D. L., B. W. Peng, Q. L. Huang, and J. Y. Lin. 2003. Expression of 67kD laminin receptor in human hepatocellular carcinoma cells. Chin. J. Cancer 22:248-252. Zia, K. M., M. Zuber, M. Barikani, R. Hussain, T. Jamil, and S. Anjum. 2011. Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites. Int. J. Biol. Macromol. 49:1131-1136.
摘要: 
黴菌毒素係飼料穀物中真菌產生的有毒次級代謝產物,伏馬鐮孢毒素B1 (fumonisin B1, FB1)為Fusarium moniliforme產生之黴菌毒素,FB1汙染穀物,威脅畜禽的健康並造成經濟損失。矽鋁酸(aluminosilicates)鹽類常被作為黴菌毒素吸附劑,添加於飼料中以減少FB1吸收,為業界使用且符合成本效益的方法之一。本研究之目的為探討由蒙脫石(montmorillonite)脫層(exfoliated)製成之奈米矽片(nano silicate platelets, NSP),作為FB1吸附劑對雞隻肝臟蛋白質表現之影響,以作為評估NSP生物毒性之基礎。試驗使用12隻一日齡雄性白肉雞,接受四種不同飼糧及飲水處理(n=3),分別為對照組、FB1添加處理組、NSP水溶液處理組及FB1添加NSP水溶液處理組。雞隻於處理42日後犧牲並採集肝臟組織供蛋白質分析。每個肝臟樣品分別取800 μg總蛋白質進行二維電泳分析,電泳膠片上之蛋白質點以二維電泳影像分析軟體進行定量。結果顯示,在所有定量的679個肝臟蛋白質點中,有68個蛋白質點表現量具顯著的處理間差異(P<0.05),經蛋白質胜肽指紋分析可成功鑑定63個蛋白質點之身份,此等蛋白質點分屬45個不同蛋白質。生物資訊分析結果顯示,在FB1處理組之差異表現蛋白質主要參與細胞構成(33%)、代謝過程(33%)與緊迫反應(17%)等生物過程:這些差異表現蛋白質大部份位於細胞核(33%)且與催化活性(67%)及蛋白質結合(16%)等分子功能有關,其中triosephosphate isomerase參與糖解作用。在NSP處理組中,差異表現蛋白質主要參與代謝過程(61%),大部份位於細胞質(54%)且與催化活性(24%)、蛋白質結合(24%)及離子結合(20%)等分子功能有關,其中ATP synthase subunit beta、pyruvate carboxylase、fructose-bisphosphate aldolase C及malate dehydrogenase參與代謝過程,peroxiredoxin-1參與氧化磷酸化過程;肝臟解毒作用的關鍵酵素glutathione S-transferase及參與代謝過程的pyruvate dehydrogenase E1 component subunit beta則在FB1處理組及NSP處理組皆有顯著差異表現。由本研究結果可知,FB1可能影響與肝癌相關蛋白質之表現量,並可能促進肝臟解毒作用及影響肝細胞之代謝。NSP會改變雞隻肝臟蛋白質之表現,可能造成肝細胞氧化緊迫,而肝細胞可能藉由調控糖質新生、糖解作用與TCA cycle等路徑改變能量代謝,以應付此氧化緊迫。但當NSP與FB1結合時則會同時減低對肝細胞蛋白質表現的負面影響。

Mycotoxins are a group of secondary fungal metabolites that are toxic to animals and thereby tend to cause significant financial losses in the industry. Mycotoxin fumonisin B1 (FB1) is a metabolites produced by Fusarium moniliforme. Dietary supplementation of aluminosilicates is a practical and effectively method in the industry to reduce absorption and ameliorate the toxicity of mycotoxins. This study was aimed to investigate the effect of nano silicate platelets (NSP) exfoliated from montmorillonites as a FB1 binder on the protein expression profile in the liver of broilers. Results of the study may further be applied to assess biosafety of NSP. One-day-old male broilers were assigned to the following four dietary treatments: control feed and water without NSP, feed containing 40 ppm of FB1 and water without NSP, control feed and water containing 40 ppm of NSP, and feed containing 40 ppm FB1 and water with 40 ppm NSP solution. Three birds from each group were sacrificed after 42 days of treatment and the liver samples were collected for proteomic analysis. A total of 800 μg proteins were subjected to two-dimensional gel electrophoresis and image analysis. Results showed 68 out of 679 quantified protein spots differing significantly among treatments (P<0.05). Sixty-three differentially expressed protein spots were identified by peptide mass fingerprinting and classified into to 45 distinct proteins. Gene ontology analysis with FB1 treatment revealed that most of the differentially expressed proteins participate in biological processes of cellular component organization (33%), metabolic process (33%), and response to stimulus (17%). Most of these proteins were located in the nucleus (33%). Molecular functions analysis suggested that these differentially expressed proteins are involved in catalytic activity (67%) and protein binding (16%). Among the differentially expressed proteins in FB1 treated group, triosephosphate isomerase is involved in glycolysis. Gene ontology analysis with NSP showed that most of the differentially expressed proteins participate in biological processes of cellular metabolic process (61%). Most of these proteins were located in the cytoplasm (54%). Molecular functions analysis suggested that these differentially expressed proteins are involved in catalytic activity (24%), protein binding (24%), and ion binding (20%). In the differentially expressed proteins in NSP treated group, ATP synthase subunit beta, pyruvate carboxylase, fructose-bisphosphate aldolase C, and malate dehydrogenase are involved in metabolic process and peroxiredoxin-1 is related to oxidative phosphorylation. Glutathione S-transferase, a key enzyme functioning in the detoxification of liver and pyruvate dehydrogenase E1 component subunit beta involved in metabolic process, are both differentially expression in NSP treated group and FB1 treated group. In summary, results of this study indicated that FB1 might change the expression of proteins which are related to hepatic carcinoma, FB1 might also enhance the detoxification and influence the metabolism of liver. NSP treatment altered the protein expression in the liver, with which hepatic energy-related processes including gluconeogenesis, glycolysis, and TCA cycle are altered in response to the oxidative insults induced by NSP, NSP might also increase the apoptosis of hepatocytes. When NSP and FB1 both exist, the detrimental effects on liver which caused by the NSP and FB1 will be reduced.
URI: http://hdl.handle.net/11455/90287
Rights: 同意授權瀏覽/列印電子全文服務,2017-07-17起公開。
Appears in Collections:動物科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101037005-1.pdf2.57 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.