Please use this identifier to cite or link to this item:
標題: The effect of carbon nanotube on fertility and protein expression in testes of male Taiwan country chickens
作者: Zi-Lin Li
關鍵字: 奈米碳管;公雞;睪丸;蛋白質;caebon nanotube;rooster;testes;protein
引用: 黃建盛。2006。奈米碳管簡介。科學新天地 13:1-9。 陳品蓉。2012。雞冷凍精液製備、繁殖力評估及冷凍前後精子蛋白質差異表現之研究。碩士論文。中興大學。台中。 鄭崇偲。2012。快速評估奈米材料之細胞毒性對動物細胞免疫功能與存活。碩士論文。中興大學。台中。 李昀澤。2013。奈米碳管對雞巨噬細胞及異噬球蛋白質表現之影響。碩士論文。中興大學。台中。 Asare, N., C. Instanes, W. J. Sandberg, M. Refsnes, P. Schwarze, M. Kruszewski, and G. Brunborg. 2012. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 291:65-72. Ashby, M. F., P. J. Ferreira, and D. L. Schodek. 2009. Nanomaterials, nanotechnologies and design:chapter 6-nanomaterials: classes and funfamentals. Butterworth-Heinemann. USA. Asai K. 2001. Review of the research of glia maturation factor and cloning of human and rat glia maturation factor-gamma (GMFG) cDNA. Jpn. J. Psychopharmoaol. 21:15-20. Andreeva, L., R. Heads, and C. J. Green. 1999. Cyclophilins and their possible role in the stress response. Int. J. Exp. Pathol .80:305-315. Arndt, D. A., M. Moua, J. Chen, and R. D. Klaper. 2013. Core structure and surface functionalization of carbon nanomaterials alter impacts to daphnid mortality, reproduction, and growth: acute assays do not predict chronic exposure impacts. Environ. Sci. Technol. 47:9444-9452. Bachir, B. G., and K. Jarvi. 2014. Infectious, inflammatory, and immunologic conditions resulting in male infertility. Urol. Clin. North Am. 41:67-81. Bai, Y., Y. Zhang, J. Zhang, Q. Mu, W. Zhang, E. R. Butch, S. E. Snyder, and B. Yan. 2010. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat. Nanotechnol. 5:683-689. Baughman, R. H., A. A. Zakhidov, and W. A. de Heer. 2002. Carbon nanotubes-the route toward applications. Science 297:787-792. Baumann, H., and J. Gauldie. 1994. The acute phase response. Immunol. Today 15:74-80. Barna, J. and M. Mezes. 1994. Evaluation of testosterone response to intramuscular injection of GnRH and its correlation with sperm quality parameters in cockerels. Acta. Vet. Hung. 42:481-485. Bethune, D. S., C. H. Kiang, M. S. De Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers. 1993. Cobalt catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605-607. Beaupre, C. E., C. J. Tressler, S. J. Beaupre, J. L. Morgan, W. G. Bottje, and J. D. Kirby. 1997. Determination of testis temperature rhythms and effects of constant light on testicular function in the domestic fowl (Gallus domesticus). Biol. Reprod. 56:1570-1575. Bianco, A. 2004. Carbon nanotubes for the delivery of therapeutic molecules. Expert Opin. Drug Deliv. 1:57-65. Bianco, A., K. Kostarelos, and M. Prato. 2005. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9:674-679. Blesbois, E., I. Grasseau, F. Seigneurin, S. Mignon-Grasteau, M. Saint Jalme, M. M. Mialon-Richard. 2008. Predictors of success of semen cryopreservation in chickens. Theriogenology 69:252-261. Bottini, M., S. Bruckner, K. Nika, N. Bottini, S. Bellucci, A. Magrini, A. Bergamaschi, and T. Mustelin. 2006. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol. Lett. 160:121-126. Burchmore, R. 2013. Mapping pathways to drug resistance with proteomics. Expert Rev. Proteomics doi:10.1586/14789450.2014.871497 Celis, J. E., M. Ostergaard, N. A. Jensen, I. Gromova, H. H. Rasmussen, and P. Gromov. 1988. Human and mouse proteomic databases: novel resources in the protein universe. FEBS Lett. 430:64-72. Chalah, T., F. Seigneurin, E. Blesbois, and J. P. Brillard. 1999. In vitro comparison of fowl sperm viability in ejaculates frozen by three different techniques and relationship with subsequent fertility in vivo. Cryobiology 39:185-91. Chen, S., J. Zhang, L. Duan, Y. Zhang, C. Li, D. Liu, C. Ouyang, F. Lu, and X. Liu. 2013. Identification of HnRNP M as a Novel Biomarker for Colorectal Carcinoma by Quantitative Proteomics. Am. J. Physiol. Gastrointest Liver Physiol. doi: 10.1152/ajpgi.00328.2013 Chenau, J., F. Fenaille, V. Caro, M. Haustant, L. Diancourt, S. R. Klee, C. Junot, E. Ezan, P. L. Goossens, and F. Becher. 2013. Identification and validation of specific markers of Bacillus anthracis spores by proteomics and genomics approaches. Mol. Cell Proteomics. doi: 10.1074/mcp.M113.032946 Choi, C. H., S. J. Park, S. Y. Jeong, H. S.Yim, and S. O. Kang. 2008. Methylglyoxal accumulation by glutathione depletion leads to cell cycle arrest in Dictyostelium. Mol. Microbiol. 70:1293-1304. Chou, C. C., H. Y. Hsiao, Q. S. Hong, C. H. Chen, Y. W. Peng, H. W. Chen, P. C. Yang. 2008. Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett. 8:437-445. Colborn, T., F. vom Saal, and A. Soto. 1993. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ. Health Perspect. 101:378-384. Coughlin, P., J. Sun, L. Cerruti, H. H. Salem, and P. Bird. 1993. Cloning and molecular characterization of a human intracellular serine proteinase inhibitor. Proc. Natl. Acad. Sci. U.S.A. 90:9417-9421. Cui, D., F. Tian, C. S. Ozkan, M. Wang, and H. Gao. 2005. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett. 155:73-85. Cyrys J., M. Stolzel, J. Heinrich, W. G. Kreyling, N. Menzel, K. Wittmaack, T. Tuch, H. E. Wichmann. 2003. Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany. Sci. Total Environ. 305:143-156. Dalton, A. B., S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, and R. H. Baughman. 2003. Super-tough carbon nanotube fibres. Nature 423:703. Fujitani, T., K. Ohyama, A. Hirose, T. Nishimura, D. Nakae, and A. Ogata. 2012. Teratogenicity of multi-wall carbon nanotube (MWCNT) in ICR mice. J. Toxicol. Sci. 37:81-89. Gao, Y., N. V. Gopee, P. C. Howard, and L. R. Yu. 2011. Proteomic analysis of early response lymph node proteins in mice treated with titanium dioxide nanoparticles. J. Proteomics 74:2745-59. Gonzalez-Iglesias, H., L. Alvarez, M. Garcia, J. Escribano, P. P Rodriguez-Calvo, L. Fernandez-Vega, and M. Coca-Prados. 2013. Comparative proteomic study in serum of patients with primary open-angle glaucoma and pseudoexfoliation glaucoma. J. Proteomics doi: 10.1016/j.jprot. Guo, X, C. Zhao, F. Wang, Y. Zhu, Y. Cui, Z. Zhou, R Huo., and J. Sha. Investigation of human testis protein heterogeneity using 2-dimensional electrophoresis. 2010. J Androl. 31:419-429. Gusev, A. A., E. A. Snegin, I. A. Polyakova, E. B. Gorsheneva, A. G. Tkachev, A. V. Emeliyanov, S. V. Shutova, O. N. Zayceva, A. V. Shuklinov, A. V. Fedorov, T. V. Vasilieva, E. A. Smirnova, E. M. Lazareva, and G. E. Onishenko. 2011. Reproductive toxicity of carbon nanostructured material - a promising carrier of drugs in laboratory mice. J. Physics: Conf. Ser. 291:12-52. Havlis, J., H. Thomas, M. Sebela, and A. Shevchenko. 2003. Fast-response proteomics by accelerated in-gel digestion of proteins. Anal. Chem. 75:1300-1306. Hsieh, W. Y., C. C. Chou, C. C. Ho, S. L. Yu, H. Y. Chen, H. Y. Chou, J. J. Chen, H. W. Chen, and P. C. Yang. 2012. Single-walled carbon nanotubes induce airway hyperreactivity and parenchymal injury in mice. Am J. Respir. Cell Mol. Biol. 46:257-267. Hirsch, A. 2002. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed. Engl. 41:1853-1859. Hone, J., B. Batlogg, Z. Benes, A. T. Johnson, and J. E. Fischer. 2000. Quantized phonon spectrum of single-wall carbon nanotubes. Science 289:1730-1733. Hougaard, K. S., P. Jackson, Z. O. Kyjovska, R. K. Birkedal, P. J. De Temmerman, A. Brunelli, E. Verleysen, A. M. Madsen, A. T. Saber, G. Pojana, J. Mast, A. Marcomini, K. A. Jensen, H. Wallin, J. Szarek, A. Mortensen, and U. Vogel. 2013. Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice. Reprod. Toxicol. 41:86-97. Huang, S. Y., J. H. Lin, Y. H. Chen, C. K. Chuang, E. C. Lin, M. C. Huang, H. F. Sunny Sun, and W. C. Lee. 2005. A reference map and identification of porcine testis proteins using 2-DE and MS. Proteomics 5:4205-4212. Huang, S. Y., J. H. Lin, S. H. Teng, H. S. Sun, Y. H. Chen, H. H. Chen, J. Y. Liao, M. T. Chung, M. Y. Chen, C. K. Chuang, E. C. Lin, and M. C. Huang. 2011. Differential expression of porcine testis proteins during postnatal development. Anim. Reprod. Sci. 123:221-233. Huang, X., F. Zhang, X. Sun, K. Y. Choi, G. Niu, G. Zhang, J. Guo, S. Lee, and X. Chen. 2014. The genotype-dependent influence of functionalized multiwalled carbon nanotubes on fetal development. Biomaterials 35:856-865. Iijima, S. 1991. Helical microtubules of graphitic carbon. Nature 354:56-58. Iijima, S, and T. Ichihashi. 1993. Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603-605. Ivani, S., I. Karimi, and S. R. Tabatabaei. 2012. Biosafety of multiwalled carbon nanotube in mice: a behavioral toxicological approach. J. Toxicol. Sci. 37:1191-205. Jia, F., Z. Sun, X. Yan, B. Zhou, and J. Wang. 2013. Effect of pubertal nano-TiO2 exposure on testosterone synthesis and spermatogenesis in mice. Arch. Toxicol. doi 10.1007/s00204-013-1167-5. Kaplan, R., A. Zaheer, M. Jaye, and R. Lim. 1991. Molecular cloning and expression of biologically active human glia maturation factor-beta. J. Neurochem. 57:483-490. Kam, N. W., and H. Dai. 2005. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127:6021-6026. Kam, N. W., Z. Liu, and H. Dai. 2005. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 127:12492-12493. Kieffer, L. J., T. Thalhammer, and R. E. Handschumacher. 1992. Isolation and characterization of a 40-kDa cyclophilin-related protein. J. Biol. Chem. 267:5503-5507. Kim, U., and D. M. Aslam. 2003. Field emission electroluminescence on diamond and carbon nanotube films. J. Vac. Sci. Technol. B21:1291-1296. Klumpp, C., K. Kostarelos, M. Prato, and A. Bianco. 2006. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta 1758:404-412. Knaapen, A. M., P. J. Borm, C. Albrecht, and R. P. Schins. 2004. Inhaled particles and lung cancer. Part A: Mechanisms. Int. J. Cancer 109:799-809. Komatsu, T., M. Tabata, M. Kubo-Irie, T. Shimizu, K. Suzuki, Y. Nihei, and K. Takeda. 2008. The effects of nanoparticles on mouse testis Leydig cells in vitro. Toxicol. In Vitro 22:1825-1831. Kyjovska, Z. O., A. M. Boisen, P. Jackson, H. Wallin, U. Vogel, and K. S. Hougaard. 2013. Daily sperm production: application in studies of prenatal exposure to nanoparticles in mice. Reprod. Toxicol. 36:88-97. Lake, P. E. 1968. Observations of freezing fowl spermatozoa in liquid nitrogen. 6th Congr. Int. Reprod. Anim. Insem. Artif. Paris 2:1633-1635. Lam, C. W., J. T. James, R. McCluskey, and R. L. Hunter. 2004. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77:126-134. Lee, W. C., K. Y. Lin, Y. T. Chiu, J. H. Lin, H. C. Cheng, H. C. Huang, P. C. Yang, S. Lu, and S. J. Mao. 1996. Substantial decrease of HSP90 in ventricular tissue of two-sudden death pigs with hypertrophic cardiomyopathy. FASEB J. 10:1198-1204. Li, Q. L., D. X. Yuan, and Q. M. Lin. 2004. Evaluation of muli-walled carbon nanotubes as an adsorbent for trapping volatile organic compounds from environmental samples. J. Chromatogr. A 1026:283-288. Li, Z., T. Hulderman, R. Salmen, R. Chapman, S. S. Leonard, S. H. Young, A. Shvedova, M. I. Luster, and P. P. Simeonova. 2007. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ. Health Perspect. 115:377-382. Li, C., S. Taneda, K. Taya, G. Watanabe, X. Li, Y. Fujitani, Y. Ito, T. Nakajima, and A. K. Suzuki. 2009. Effects of inhaled nanoparticle-rich diesel exhaust on regulation of testicular function in adult male rats. Inhal. Toxicol. 21:803-811. Li, H., H. Zhang, Y. Xie, Y. He, G. Miao, L. Yang, C. Di, and Y. He. 2013. Proteomic analysis for testis of mice exposed to carbon ion radiation. Mutat. Res. 755:148-55. Liang, G., L. Yin, J. Zhang, R. Liu, T. Zhang, B. Ye, and Y. Pu. 2010. Effects of subchronic exposure to multi-walled carbon nanotubes on mice. J. Toxicol. Environ. Health A 73:463-470. Lin, Z., L. Ma, Z. G. X, H. Zhang, and B. Lin. 2013. A comparative study of lung toxicity in rats induced by three types of nanomaterials. Nanoscale Res. Lett. 8:521. doi: 10.1186/1556-276X-8-521. Liu, X., X. Ren, X. Deng, Y. Huo, J. Xie, H. Huang, Z. Jiao, M. Wu, Y. Liu, and T. Wen. 2010. A protein interaction network for the analysis of the neuronal differentiation of neural stem cells in response to titanium dioxide nanoparticles. Biomaterials 31:3063-3070. Liu, D., L. Wang, Z. Wang, and A. Cuschieri. 2012. Different cellular response mechanisms contribute to the length-dependent cytotoxicity of multi-walled carbon nnotubes. Nanoscale Res. Lett. 7:361 doi: 10.1186/1556-276X-7-361. Manna, S. K., S. Sarkar, J. Barr, K. Wise, E. V. Barrera, O. Jejelowo, A. C. Rice-Ficht, and G. T. Ramesh. 2005. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett. 5:1676-84. Marone, R., D. Hess, D. Dankort, W. J. Muller, N. E. Hynes, and A. Badache. 2004. Memo mediates ErbB2-driven cell motility. Nat. Cell Biol. 6:515-522. McDevitt, M. R., D. Chattopadhyay, B. J. Kappel, J. S. Jaggi, S. R. Schiffman, C. Antczak, J. T. Njardarson, R. Brentjens, and D. A. Scheinberg. 2007. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J. Nucl. Med. 48:1180-1189. Mercer, R. R., A. F. Hubbs, J. F. Scabilloni, L. Wang, L. A. Battelli, S. Friend, V. Castranova, and D. W. Porter. 2011. Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part. Fibre Toxicol. 8:21. doi: 10.1186/1743-8977-8-21. Mirzajani, F, H. Askari, S. Hamzelou, Y. Schober, A. Rompp, A. Ghassempour, and B. Spengler. 2013. Proteomics study of silver nanoparticles toxicity on Bacillus thuringiensis. Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2013.10.009. Moretti, E., G. Terzuoli, T. Renieri, F. Iacoponi, C. Castellini, C. Giordano, and G. Collodel. 2012. In vitro effect of gold and silver nanoparticles on human spermatozoa. Andrologia doi: 10.1111/and.12028. Morgenstern, K. A., C. A. Sprecher, L. Holth, D. Foster, F. J. Grant, A. Ching, and W. Kisiel. 1994. Complementary DNA cloning and kinetic characterization of a novel intracellular serine proteinase inhibitor: mechanism of action with trypsin and factor Xa as model proteinases. Biochemistry 33:3432-3441. Muller, J., F. Huaux, N. Moreau, P. Misson, J. F. Heilier, M. Delos, M. Arras, A. Fonseca, J. B. Nagy, and D. Lison. 2005. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 207:221-231. Muller, J., F. Huaux, A. Fonseca, J. B. Nagy, N. Moreau, M. Delos, E. Raymundo-Pinero, F. Beguin, M. Kirsch-Volders, I. Fenoglio, B. Fubini, and D. Lison. 2008. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem. Res. Toxicol. 21:1698-1705. Neuhoff, V., N. Arold, D. Taube, and W. Ehrhardt. 1988. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255-262. Oberlin, A. M. Endo, and T. Koyama. 1976. Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32:335-349. Oberdorster, G., A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, B. Karn, W. Kreyling, D. Lai, S. Olin, N. Monteiro-Riviere, D. Warheit, and H. Yang. 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol. 6:2-8. O'Farrell, P. H. 1975. Hight resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007-4021. Ono, N., S. Oshio, Y. Niwata, S. Yoshida, N. Tsukue, I. Sugawara, H. Takano, and K. Takeda. 2007. Prenatal exposure to diesel exhaust impairs mouse spermatogenesis. Inhal. Toxicol. 19:275-281. Qu, Y., Y. Huang, and X. Lu. 2013. Proteomic analysis of molecular biocompatibility of gold nanoparticles to human dermal fibroblasts-fetal. J. Biomed. Nanotechnol. 9:40-52. Pan, C., S. Xu, H. Zou, Z. Guo, Y. Zhang, and B. Guo. 2005. Carbon nanotubes as adsorbent of solid-phase extraction and matrix for laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 16:263-270. Peterson, G. L. 1983. Determination of total protein. Methods Enzymol. 91:95-119. Perkins, D. N., D. J. Pappin, D. M. Creasy, and J. S. Cottrell. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551-3567. Philbrook, N. A., V. K. Walker, A. R. Afrooz, N. B. Saleh, and L. M. Winn. 2011. Investigating the effects of functionalized carbon nanotubes on reproduction and development in Drosophila melanogaster and CD-1 mice. Reprod. Toxicol. 32:442-448. Poland, C. A., R. Duffin, I. Kinloch, A. Maynard, W. A. Wallace, A. Seaton, V. Stone, S. Brown, W. Macnee, and K. Donaldson. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3:423-428. Porter, D. W., A. F. Hubbs, R. R. Mercer, N. Wu, M. G. Wolfarth, K. Sriram, S. Leonard, L. Battelli, D. Schwegler-Berry, S. Friend, M. Andrew, B. T. Chen, S. Tsuruoka, M. Endo, and V. Castranova. 2010. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269:136-147. Radushkevich, L. V., and V. M. Lukyanovich. 1952. O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte. Zurn. Fisic. Chim. 26:88-95. Roman, D., A. Yasmeen, M. Mireuta, I. Stiharu, and A. E. Al Moustafa. 2013. Significant toxic role for single-walled carbon nanotubes during normal embryogenesis. Nanomedicine 9:945-950. Sakamoto, Y., D. Nakae, N. Fukumori, K. Tayama, A. Maekawa, K. Imai, A. Hirose, T. Nishimura, N. Ohashi, and A. Ogata. 2009. Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J. Toxicol. Sci. 34:65-76. Schaffler, M, M. Semmler-Behnke, H. Sarioglu, S. Takenaka, A. Wenk, C. Schleh, S. M. Hauck, B. D. Johnston, and W. G. Kreyling. 2013. Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles. Nanotechnology 24:265103. Schrand, A. M., L. Dai, J. J. Schlager, S. M. Hussain, and E. Osawa. 2007. Differential bio compatibly of carbon nanotubes and nanodiamonds. Diamond Relat. Mater. 16:2118-2123. Schwarze, P. E., J. Ovrevik, R. B. Hetland, R. Becher, F. R. Cassee, M. Lag, M. Lovik, E. Dybing, and M. Refsenes. 2007. Importance of size and composition of particles for effect on cells in vitro. Inhal. Toxicol. 19:17-22. Seeley, T. W., L. Wang, and J.Y. Zhen. 1999. Phosphorylation of human MAD1 by the BUB1 kinase in vitro. Biochem. Biophys. Res. Commun. 257:589-595 Shanbhag, B. A., and P. J. Sharp. 1996. Immunocytochemical localization of androgen receptor in the comb, uropygial gland, testis, and epididymis in the domestic chicken. Gen. Comp. Endocrinol. 101:76-82. Sheehan, D. 2007. The potential of proteomics for providing new insights into environmental impacts on human health. Rev. Environ. Health 22:175-194. Shvedova, A. A., V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. Maynard, and P. Baron. 2003. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A 66:1909-1926. Sinha, R., G. J. Kim, S. Nie, and D. M. Shin. 2006. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther. 5:1909-1917. Stern, S. T., and S. E. McNeil. 2008. Nanotechnology safety concerns revisited. Toxicol. Sci. 101:4-21. Talebi, A. R., L. Khorsandi, and M. Moridian. 2013. The effect of zinc oxide nanoparticles on mouse spermatogenesis. J. Assist Reprod. Genet. 30:1203-1209. Tang, S., Y. Tang, L. Zhong, K. Murat, G. Asan, J. Yu, R. Jian, C. Wang, and P. Zhou. 2012. Short- and long-term toxicities of multi-walled carbon nanotubes in vivo and in vitro. J. Appl. Toxicol. 32:900-912. Taylor, U., A. Barchanski, S. Petersen, W. A. Kues, U. Baulain, L. Gamrad, L. Sajti, S. Barcikowski, and D. Rath. 2013. Gold nanoparticles interfere with sperm functionality by membrane adsorption without penetration. Nanotoxicology doi:10.3109/17435390.2013.859321 Taylor, U., S. Petersen, A. Barchanski, A. Mittag, S. Barcikowski, and D. Rath. 2010. Influence of gold nanoparticles on vitality parameters of bovine spermatozoa. Reprod. Domest. Anim. 45:60-60. Tkach, A. V., G. V. Shurin, M. R. Shurin, E. R. Kisin, A. R. Murray, S. H. Young, A. Star, B. Fadeel, V. E. Kagan, and A. A. Shvedova. 2011. Direct effects of carbon nanotubes on dendritic cells induce immune suppression upon pulmonary exposure. ACS Nano 5:5755-5762. Wang, X., G. Jia, H. Wang, H. Nie, L. Yan, X. Y. Deng, and S. Wang. 2009. Diameter effects on cytotoxicity of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 9:3025-3033. Wang, X., P. Katwa, R. Podila, P. Chen, P. C. Ke, A. M. Rao, D. M. Walters, C. J. Wingard, and J. M. Brown. 2011. Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part. Fibre Toxicol. 8:24-38. Warheit, D. B., B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds, and T. R. Webb. 2004. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77:126-134. Wilkins, M. R., J. C. Sanchez, A. A. Gooley, R. D. Appel, I. Humphery-Smith, D. F. Hochstrasser, and K. L. Williams. 1995. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 13:19-50. Wu, W., S. Wieckowski, G. Pastorin, M. Benincasa, C. Klumpp, J. P. Briand, R. Gennaro, M. Prato, and A. Bianco, 2005. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. Engl. 44:6358-6362. Yan, L. J., R. L. Levine, and R. S. Sohal. 1997. Oxidative damage during aging targets mitochondrial aconitase. Proc. Natl. Acad. Sci. U. S. A. 94:11168-11172. Yang, Y. H., and W. Z. Li. 2011. Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy. Appl. Phys. Lett. 98. Issue 4 1901. Yang, S. T., X. Wang, G Jia., Y. Gu, T. Wang, H. Nie, C. Ge, H. Wang, and Y. Liu. 2008. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol. Lett. 181:182-189. Yousef, M. I., G. A. Abdallah, and K. I. Kamel. 2003. Effect of ascorbic acid and Vitamin E supplementation on semen quality and biochemical parameters of male rabbits. Anim. Reprod. Sci. 76:99-111. Zaoui, K., K. Benseddik, P. Daou, D. Salaun, and A.Badache. 2010. ErbB2 receptor controls microtubule capture by recruiting ACF7 to the plasma membrane of migrating cells. Proc. Natl. Acad. Sci. U.S.A. 107:18517-18522. Zheng, L., P. Lan, R. F. Shen, and W. F. Li. 2013. Proteomics of aluminum tolerance in plants. Proteomics doi: 10.1002/pmic.201300252. Zhu, Y. F., Y. G. Cui, X. J. Guo, L. Wang, Y. Bi, Y. Q. Hu, X. Zhao, Q. Liu, R. Huo, M. Lin, Z. M. Zhou, and J. H. Sha. 2006. Proteomic analysis of effect of hyperthermia on spermatogenesis in adult male mice. J. Proteome Res. 5:2217-2225. Zhu, H., Y. Cui, J. Xie, L. Chen, X. Chen, X. Guo, Y. Zhu, X. Wang, J. Tong, Z. Zhou, Y. Jia, Y. H. Lue, A. S. Hikim, C. Wang, R. S. Swerdloff, and J. Sha. 2010. Proteomic analysis of testis biopsies in men treated with transient scrotal hyperthermia reveals the potential targets for contraceptive development. Proteomics 10:3480-3493.
奈米碳管(carbon nanotube)為常見之奈米材料,由碳原子以六角形排列而成中空管狀纖維結構,為典型之一維奈米材料,排列整齊的中空結構使奈米碳管具有機械強度高、耐腐蝕及具吸附能力等性質,已被應用在強化材料、顯示器、藥物載體及生物探針等領域;已有研究指出奈米碳管會隨血液循環散布至全身並累積在器官中,其對生物體的潛在健康危害漸受重視。本研究之目的為探討奈米碳管是否會對雄性台灣土雞之生殖系統造成毒害,進而影響繁殖力與睪丸蛋白質表現。試驗共使用30隻成熟L2品系台灣土雞公雞,利用皮下注射連續四週給予每公斤體重0、100及1000 μg之奈米碳管,處理結束時犧牲部分雞隻進行採樣,其餘雞隻給予為期四週的恢復期後犧牲採樣,採集睪丸樣品進行病理切片與蛋白質體分析;在奈米碳管處理四週及四週恢復期後分別採集精液進行精液性狀分析及人工授精,以評估其繁殖力,同時採血進行睪固酮分析。結果顯示奈米碳管處理會顯著降低公雞精子活力、精子存活率與增加精子濃度(P < 0.05)、顯著降低受精率與孵化率(P < 0.05)及使血清中睪固酮濃度先上升後下降(P < 0.01);此外,奈米碳管處理組之睪丸組織切片中可發現已成熟精子停留在生殖細胞上皮層與空泡化之異常現象,並發現疑似奈米碳管之黑褐色物質。睪丸蛋白質二維電泳分析結果顯示,在定量分析的479個蛋白質點中有44個蛋白質點具有顯著差異(P < 0.05),其中25個蛋白質點在奈米碳管處理組表現量上升,15個蛋白質點表現量下降,以蛋白質胜肽指紋分析可成功鑑定其中35個差異表現蛋白質點身分,生物資訊分析結果顯示此等差異表現蛋白質主要在細胞質表現(62%)、主要與蛋白質結合(25%)及催化活性(21%)分子功能相關,與分子代謝過程(38%)及運輸過程(21%)等生物過程有關。在恢復期後則有42個蛋白質點表現量與對照組有顯著差異(P < 0.05),其中有15個蛋白質點在奈米碳管處理組表現量上升,13個蛋白質點表現量下降,以蛋白質胜肽指紋分析成功鑑定其中35個蛋白質點身分,生物資訊分析結果顯示這些差異表現蛋白質主要在細胞質(41%)、粒線體(22%)及細胞外區域(9%)所表現,主要與催化活性(44%)、蛋白質結合(19%)及核苷酸結合(13%)等分子功能相關,且主要與分子代謝過程(56%)及細胞組成(13%)等生物過程有關。由以上結果可知奈米碳管處理會對公雞生殖系統造成毒害,進而影響繁殖力,並影響睪丸蛋白質表現,然其對繁殖力影響之機制仍須進一步的研究。

Carbon nanotube (CNT) is one of the major nanomaterials with hollow nano-scale tubular structures and composed of carbon rings. Previous studies showed that CNT could be transported to whole body by circulation and accumulate in organs. The potential health risk of CNT has drawn many concerns. The purpose of this study was to investigate whether CNT is toxic to the male reproductive system and affects the fertility and the protein expression in testes of roosters. Thirty mature roosters of L2 strain Taiwan country chickens were used in the study. The roosters were treated with 0, 100, and 1000 μg CNT per kg body weight by subcutaneous injection for 4 weeks. Roosters were sacrificed at the end of treatment and after 4 weeks of recovery to collect testis samples for histological and proteomic analysis. The semen was collected after CNT treatment and recovery for semen quality evaluation and artificial insemination. Blood samples were also collected for testosterone analysis. The results showed that CNT treatment diminished the sperm motility and viability, and increased sperm concentrations (P < 0.05). Fertilization rate and hatchability were decreased in CNT-treated groups (P < 0.05). CNT treatment increased the level of serum testosterone at the end of CNT treatment and decreased after recovery (P < 0.01). The histological analysis showed that mature sperms residing in germinal epithelium and vacuolation were observed in the testes of CNT-treated roosters, with some CNT-susceptible black deposits. Proteomic analysis revealed that there were 44 out of 479 quantified protein spots differed significantly in the testis of roosters with CNT treatment. Among the differentially expressed spots, 25 and 15 spots were upregulated and downregulated in the CNT-treated group, respectively. There were 35 protein spots were successfully identified by peptide mass fingerprinting. The identified proteins were categorized by gene ontology and revealed that most of the proteins located in cytoplasm (62%), with molecular function of protein binding (25%) and catalytic activity (21%), and participation in cellular metabolic process (38%) and transport process (21%). After recovery, there were 42 protein spots differed significantly among treatments, 15 spots upregulated and 13 spots downregulated in the CNT-treated groups. Gene ontology analysis showed that most of the proteins located in cytoplasm (41%), mitochondrion (22%), and extracellular space (9%), wiith molecular function of catalytic activity (44%), protein binding (19%), and nucleoside binding (13%), and involoed in cellular metabolic process (56%) and cellular component organization (13%). Results of this study showed that CNT is toxic to the reproductive system and can impact the fertility and the protein expression in the testes of roosters. However, the exact mechanism requires further investigation.
Rights: 同意授權瀏覽/列印電子全文服務,2015-01-29起公開。
Appears in Collections:動物科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7100037011-1.pdf5.35 MBAdobe PDFThis file is only available in the university internal network   
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.