Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/90300
標題: | Application of soybean hulls fermented by Aureobasidium pullulans SH-218 in broiler diet 以Aureobasidium pullulans SH-218發酵大豆殼作為肉雞飼料添加物之探討 |
作者: | Li-Ping Lai 賴莉萍 |
關鍵字: | 大豆殼;半纖維素酶;寡醣;Soybean hulls;Hemicellulase;Oligosaccharides | 引用: | 王志軒。2013。益生菌及其代謝產物對白肉雞生長性狀及免疫功能之影響。碩士論文。國立中興大學。 王彥智。2012。複合益生菌株對肉雞與離乳仔豬之生長性狀、腸道性狀及免疫功能之影響。碩士論文。國立中興大學。 石凱元。2011。發酵大豆粕在肉雞飼糧最適使用量之探討。碩士論文。國立中興大學。 行政院衛生署食品衛生處。2003。健康食品安全及功效評估方法。調節血脂功能評估方法。 吳亭瑤。2005。新糖主義。棋碁文化出版。 吳億貞。2012。探討以Bacillus sp. R3 發酵麩皮於肉雞飼糧之應用。碩士論文。國立中興大學。 孫德發。2014。棕梠粕型日糧添加甘露聚醣酵素對本地肉鴨生產性能與造肉成本的影響研究。中國畜牧雜誌。 游女儀。2012。利用Aureobasidium pullulans NCH-218固態發酵農產加工副產物之條件及發酵產物之益生效果。碩士論文。國立中興大學。 雲菁敏。2010。肉雞飼糧中添加發酵綠豆殼對白肉雞生長、腸道組織學及免疫性狀之影響。碩士論文。國立中興大學。 黃詩淳。2012。半纖維素酶生產菌株之篩選、培養條件與Aureobasidium pullulans NCH-218聚木醣酶酵素特性探討。碩士論文。國立中興大學。 Ademark, P., A. Varga, J. Medve, V. Harjunpaa, T. Drakenberg, F. Tjerneld, and H. Stalbrand. 1998. Softwood hemicellulose-degrading enzymes from Aspergillus Niger: Purification and properties of a β-mannanase. J. Biotechnol. 63: 199-210. Akino, T., N. Nakamura, and K. Horikoshi. 1987. Production of β-mannosidase andβ-mannanase by a Alklophilc bacillus sp. J. Appl. Microbio. Biotechnol. 26: 323-327. Allison, C., and G. T. MacFarlane. 1989. Influence of pH, nutrient availability and growth rate of amino production by Bcteroides fragilis and Clostridium perfringens. Appl. Environ. Microbiol. 55: 2894-2898. Babu, K. R., and T. Satyanarayana. 1995. α-amylase production by thermophilic Bacillus coagulans in solid state fermentation. Process Biochem. 30: 305-309. Baurhoo, B., P. R. Ferket, and X. Zhao. 2009. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broiler. Poult. Sci. 88:2262–2272. Baysal, Z., F. Uyar, and C. Aytekin. 2003. Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochem. 38: 1665-1668. Birkett, A., J. Muir, J. Phillips, G. Jones, and K. O'Dea. 1996. Resistant starch lowers fecal concentrations of ammonia and phenols in humans. Am. J. Clin. Nutr. 63: 766-772. Bouhnik, Y., B. Flourie, L. D'Agay-Abensour, P. Pochart, G. Gramet, M. Durand, and J. C. Rambaud. 1997. Administration of transgalacto-oligosaccharides increases faecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans. J. Nutr. 127: 444-448. Choct, M., Y. Dersjant-Li, J. McLeish, and M. Peisker. 2010. Soy oligosaccharides and soluble non-starch polysaccharides: a review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian-Aust. J. Anim. Sci. 23: 1386-1398. Dekker, R. F. H., and G. N. Richards. 1976. Hemicellulase: their occurrence, purification, properties and mode of action. Adv. Carbohydr. Chem. Biochem. 32: 277-352. Delzenne, N. M., J. Aertssens, H. Verplaetse, M. Roccaro, and M. Roberfroid. 1995. Effect of fermentable fructooligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sci. 57: 1579-1587. Demigne, C., C. Morand, A. M. Levrat, C. Besson, C. Moundras, and C. Remesy. 1995. Effects of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Br. J. Nutr. 74: 209-219. Denli, M., F. Oken, and K. Celik. 2003. Effect of dietary probiotic, organic acid and antibiotic supplementation to diets on broiler performance and carcass yield. Pak. J. Nutr. 2: 89-91. Dunsford, B. R., D. A. Knabe, and W. E. Hacnsly. 1989. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pig. J. Anim. Sci. 67:1855–1864. Feng, J., X. Liu, Z. R. Xu, Y. P. Lu, and Y. Y. Liu. 2007. Effect of fermented soybean meal on intestinal morphology and digestive enzyme activities in weaned piglets. Dig. Dis. Sci. 52: 1845-1850. Feng, P., C. W. Hunt, W. E. Julien, K. Dickinson, and T. Moen. 1992. Effect of enzyme additives on in situ and in vitro degradation of mature cool-season grass forage. J. Anim. Sci. 70(Suppl. 1):309 (Abstr.). Fooks, L. J., R. Fuller, and G. R. Gibson. 1999. Prebiotics, probiotics and human gut microbiology. International Dairy J. 9: 53-61. Gadd, G.M. 1980. Melanin production and differentiation in batch cultures of the polymorphic fungus Aureobasidium pullulans. FEMS Microbiol. Lett. 9: 237-240. Gibson, G. R., and M. B. Roberfroid. 1995. Dietary modulation of the human clonic microbiota: introducing the concept of prebiotics. J. Nutr. 125: 1401-1412. Gill, H. S., D. L. Waston, and M. R. Brandon. 1992. In vivo inhibition by a monoclonal antibody to CD4+ T cell of humoral and cellular immunity in sheep. Immunol. 77: 38-42. Gonzalez-alvarado, J. M., E. Jimenez-Moreno, R. Lazaro, and G. G. Mateos. 2007. Effects of cereal, heat processing, and fiber on productive performance and digestive traits of broilers. Poult. Sci. 86:1705–1715. Green, L. C., D. A. Wanger, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannenbaum. 1982. Analysis of nitrate and [15N] nitrate in biological fluids. Anal. Biochem. 126:131-138. Grootaert, C., J. A. Delcour, C. M. Courtin, W. F. Broekaert, W. Verstraete, and T. V. Wiele. 2007. Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends Food Sci. Tech. 18: 64–71. Han, Y. W., and A. W. Anderson. 1975. Semisolid fermentation of ryegrass straw. Appl. Microbiol. 30: 930-934. Hara, Y., K. Nakajima, Y. Hosono, and M. Yamamoto. 1989. Effects of soybean oligosaccharides in human organ. J. Japan Soc. Clin. Nutr. 11: 42-46. Hayakawa, K., J. Mizutani, K. Wada, T. Masai, I. Yoshihara, and T. Mitsuoka. 1990. Effects of soybean oligosaccharides on human faecal flora. Microb. Ecol. Health Dis. 3: 293-303. Hsu, C. K., J. W. Liao, Y. C. Chung, C. P. Hsieh, and Y. C. Chan. 2004. Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. J. Nutr. 134: 1523-1528. Hu, C. C., L. Y. Lin and S. S. Yang. 2012. Protein enrichment, cellulase production and in vitro digestion improvement of pangolagrass with solid state fermentation. J. Microb. Immunol. Infect. 45(1):7-14. Huang, X. W., X. S. Liu, and F. Q. Xu. 2003. The effect of β-mannanase on growth performance of growing pigs. Feed Res. 2003:29–31. Iluyemi, F. B., M. M. Hanafi, O. Radziah, and M. S. Kamarudin. 2006. Fungal solid-state culture of plam kernel cake. Bioresour. Technol. 97:477-482. Jackson, M. E., D. W. Fodge, and H. Y. Hsiao. 1999. Effects of β-mannanase in corn-soybean meal diets on laying hen performance. Poult. Sci. 78: 1737-1741. Johnson, I. T., and J. M. Gee. 1986. Gastrointestinal adaption in response to soluble non-available polysaccharide in the rat. Br. J. Nutr. 55: 497-505. Kabel, M. A., L. Kortenoeven, H. A. Schols, and A. G. J. Voragen. 2002. In vitro fermentability of differently substituted xylo-oligosaccharides. J. Agric. Food. Chem. 50: 6205–6210. Karni, M., R. L. Deopurkar, and V. B. Rale. 1993. β-Xylanase production by Aureobasidium pullulans grown on sugars and agricultural residues. World J. Microb. Biot. 9:476-478. Kleesen, B., B. Sykura, H. J. Zunft, and M. Blaut. 1997. Effects of inulin and lactose on faecal microflora, microbial activity and bowel habit in elderly constipated persons. Am. J. Clin. Nutr. 65: 1397-1402. Kohmoto, T., F. Fukui, H. Takaku, and T. Mitsuoka. 1991. Dose-response test of isomalto-oligosaccharide for increasing faecal bifidobaceria. Agric. Biol. Chem. 55: 2157-2159. Kremnicky, L., and P. Biely. 1997. β-Mannanolytic system of Aureobasidium pullulans. Arch Microbiol. 167: 350-355. Krishna, C., M. Chandrasekaran. 1996. Banana waste as substrate forα-amylase production by Bacillus subtilis (CBTK 106) under solid-state fermentation. Appl. Microbiol. Biotechnol. 46: 106-111. Kumemura, M., F. Hashimoto, C. Fujii, K. Matsuo, H. Kimura, R. Miyazoe, H. Okamatsu, T. Inokuchi, H. Ito, K. Oizumi, and T. Oku. 1992. Effects of administration of 4G-β-D-Galactosylsucrose on fecal microflora, putrefactive products, short-chain fatty acids, weight, moisture and pH, and subjective sensation of defecation in the elderly with constipation. J. Clin. Biochem. Nutr. 13: 199-210. Levrat, M. A., C. Remesy, and C. Demigne. 1993. Influence of inulin on urea and ammonia nitrogen fluxes in the rat cecum: consequences on nitrogen excretion. J. Nutr. Biochem. 4: 351-356. Li, D. F., J. L. Nelssen, P. G. Reddy, F. Blecha, D. W. Hancock, J. D. Hancock, G. L. Allee, R. D. Goodband, and R. D. Klemm. 1991. Measuring suitability of soybean products for earlyweaned pigs with immunological criteria. J. Anim. Sci. 69:3299–3307. Mandels, M., and E. T. Reese. 1957. Induction of cellulase in Trichoderma virids as influenced by carbon sources and metals. J. Bacteriol. 73: 269-278. Marounek, M., O. Suchorska, and O. Savka. 1999. Effect of substrate and feed antibiotics on in vitro production of volatile fatty acids and methane in caecal contents of chickens. Anim. Feed Sci. Technol. 80: 223-230. Mead, G. C. 2000. Prospects for 'competitive exclusion' treatment to control salmonellas and other foodborne pathogens in poultry. Vet. J. 159: 111-123. Mielenz, J. R., J. S. Bardsley, and C. E. Wyman. 2009. Fermentation of soybean hulls to ethanol while preserving protein value. Bioresour. Technol. 100:3532–3539. Miles, R. D., G. D. Butcher, P. R. Herny, and R. C. Littell. 2006. Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters and qualitative morphology. Poult. Sci. 85: 476-485. Modler, H. W., R. C. Mckellar, and M. Yanguchi. 1990. Bifidobacteria and bifidogenic factors-review. Can. Inst. Food Sci. 23: 29-41. Mroz, Z., S. J. Koopmans, A. Bannink, K. Partanen, W. Krasucki, Overland, S. Radcliffe. 2006. Biology of nutrition in growing animals, Vol. 4. Pages 81-134 in Carboxylic acids as bioregulators and gut growth promoters in nonruminants. R. Mosenthin, J. Zentek, T. Zebrowska, ed. Elsevier, London. Namroud, N. F., M. Shivazad, and M. Zaghari. 2008. Effects of fortifying low crude protein diet with crystalline amino acids on performance, blood ammonia level, and excreta characteristics of broiler chicks. Poult. Sci. 87: 2250-2258. Newman, K. E., and M. C. Newman. 2001. Evaluation of mannan oligosaccharide on the microflora and immunoglobulin status of sows and piglet performance. J. Anim. Sci. 79(Suppl. 1):189. Nishina, P., and R. Freeland. 1990. Effects of propionate on lipid biosynthesis in isolated rat hepatocytes. J Nutr. 120: 668-673. NRC. 1994. Nutrient Requirements of Poultry. 9th rev. ed. National Academy Press, Washington, D. C. O'Quinn, P. R., D. W. Funderburke, and G. W. Tibbits. 2001. Effects of dietary supplementation with mannan oligosaccharides on sow and litter performance in a commercial production system. J. Anim. Sci. 79(Suppl. 1): 212. Okazaki, M., S. Fujikawa, and N. Matsumoto. 1990. Effect of xylooligosaccharide on the growth of bifidobacteria. Bifidobacteria Microflora. 9:77-86. Onderci, M., N. Sahin. G. Cikim, A. Aydin, I. Ozercan, E. Ozkose, S. Ekinci, A. Hayirli, and K. Sahin. 2008. β-glucanase-producing bacterial cultural culture improves performance and nutrient utilization and alters gut morphology of broilers fed a barley-based diet. Anim. Feed Sci. Technol. 146: 87-97. Pollock, T. J., L. Thorne, and R. W. Armentrout. 1992. Isolation of new Aureobasidium strains that produce high-molecular-weight pullulan with reduced pigmentation. Appl. Environ. Microbiol. 58: 877-883. Puchart, V., M. Vršanska, P. Svoboda, J. Pohl, and P. Biely. 2004. Purification and characterization of two forms of endo-β-1,4-mannanase from a thermotolerant fungus, Aspergillus fumigatus IMI 385708 (formerly Thermomyces lanuginosus IMI 158749). Biochimica et Biophysica Acta. 1674: 239–250. Ramesh, M. V., B. K. Lonsane. 1990. Critical importance of moisture content of the medium in alpha-amylase production by Bacillus licheniformis M27 in a solid-state fermentation system. Appl. Microbiol. Biotechnol. 33: 501-505. Ravindran V., S. Cabahug, G. Ravindran, and W. L. Bryden. 1999 Influence of microbial phytase on apparent ileal amino acid digestibility of feedstuffs for broilers. Poult. Sci. 78: 699–706. Reece, F. N., B. D. Lott, and J. W. Deaton. 1980. Ammonia in the atmosphere during brooding affects performance of broiler chicken. Poult. Sci. 57: 1070-1074. Reilly, P. J. 1981. Xylanase: structure and function, in 'Trends in the Biology of Fermentation for Fuels and Chemicals'. Plenum publishing Crop., New York. p.111-129. Roberts, S. A., H. Xin, B. J. Kerr, J. R. Russell, and K. Bregendahl. 2007. Effects of dietary fiber and reduced crude protein on ammonia emission from laying-hen manure. Poult. Sci. 86: 1625-1632. Rycroft, C. E., M. R. Jones, G. R. Gibson, and R. A. Rastall. 2001. A comparative in vitro evaluation of the fermentation properties of probiotic oligosaccharides. J. Appl. Microbiol. 91: 878–87. Saha, B. C., S. N. Freer, and R. J. Bothast. 1994. Production, purification, and properties of a thermostable β-glucosidase from a color variant strain of Aureobasidium pullulans. Appl. Environ. Microbiol. 60: 3774-3780. Shashidhara, R. G., and G. Devegowda. 2003. Effect of dietary mannan oligosaccharide on broiler breeder production traits and immunity. Poult. Sci. 82:1319–1323. Shrivastava, B., S. Thakur, Y. P. Khasa, A. Gupte, A. K. Puniya, R. C. Kuhad. 2011. White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation. 22:823-831. Sieo, C. C., N. Abdullah, W. S. Tan, and Y. W. Ho. 2005. Influence ofβ-glucanase-producing Lactobacillus strain on intestinal characteristics and feed passage rate of broiler chickens. Poult. Sci. 84: 734-741. Smits, J. P.,A. Rinzema, J. Tramper, H. M. Van Sonsbeek, and W. Knol. 1996. Solid-state fermentation of wheat bran by Trichoderma reesei QM9414: substrate composition changes, C balance, enzyme production, growth and kinetics. Appl Microbiol Biotechnol. 46: 489-496. Spring, P., C. Wenk, K. A. Dawson, and K. E. Newman. 2000. The effects of dietary mannanoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult. Sci. 79: 205–211. Sundu, B., A. Kumar and J. Dingle. 2006. Response of broiler chicks fed increasing levels of copra meal and enzymes. Int. J. Poult. Sci. 5: 13-18. Talbot, G., and J. Sygusch. 1990. Purification and characterization of thermostableβ-mannanase and α-galactosidase from Bacillus stearothermophilus. Appl. Environ. Microbiol. 56: 3505-3510. Tetens, I., G. Livesey, and B. O. Eggum. 1996. Effects of the type and level of dietary fiber supplements on nitrogen retention and excretion patterns. Br. J. Nutr. 75:461-469. Teves, F. G., A. F. Zamora, M. R. Calapardo and E. S. Luis. 1988. Nutritional value of copra meal treated with bacterial mannanase in broiler diets. The Philippine Agriculturist.72: 7-14. Thanh, N. T., T. C. Loh, H. L. Foo, M. Hair-Bejo, and B. K. Azhar. 2009. Effects of feeding metabolite combinations produced by Lactobacillus plantarum on growth performance, faecal microbial population, small intestine villus height and faecal volatile fatty acids in broilers. Br. Poult. Sci. 50: 298-306. Vazquez, M. J., G. Garrote, J. L. Alonso, H. Dominguez, and J. C. Parajo. 2005. Refining of autohydrolysis liquors for manufacturing xylooligosaccharides: evaluation of operational strategies. Bioresour. Technol. 96: 889-896. Wang, Z. R., S. Y. Qiao, W. Q. Lu, and D. F. Li. 2005. Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acids profiles in the hindgut of broilers fed wheat-based diets. Poult. Sci. 84: 875-881. Wright, R. S., J. W. Anderson, and S. R. Bridges. 1990. Propionate inhibits hepatocyte lipid synthesis. Proc. Soc. Exp. Biol. Med. 195: 26-29. Wrong, O. M. 1981. Nitrogen compounds. Pages 133-211 in The Large Intestine: Its Role in Mammalian Nutrition and Homeostasis. O. M. Wrong, C. J. Edmonds, and V. S. Chadwick, ed. John Wiley and Sons, New York, NY. Younes, H., K. Garleb, S. Behr, C. ReMesy and C. Demigne. 1995. Fermentable fibers or oligosaccharides reduce urinary nitrogen excretion by increasing urea disposal in the rat cecum. J. Nutr. 125: 1010-1016. Zarghi, H., A. Golian, H. Kermanshahi, A. R. Raji, and A. R. Heravi. 2010. The effect of triticale and enzyme in finisher diet on performance, gut morphology and blood chemistry of broiler chickens. J. Anim. Vet. 9: 2305-2314. Zhang, J., and B. Hu. 2012. Effects of external enzymes on the fermentation of soybean hulls to generate lipids by Mortierella isabellina. Appl. Biochem. Biotechnol. 168: 1896-1906. Zheng, W., B. S. Campbell, B. M. McDougall, and R. J. Seviour. Effects of melanin on the accumulation of exopolysaccharides by Aureobasidium pullulans grown on nitrate. Bioresour. Technol. 2008. 99: 7480–7486. Zou, X. T., X. J. Qiao, and Z. R. Xu. 2006. Effect of β-mannanase (Hemicell) on growth performance and immunity of broiler. Poult. Sci. 85: 2176-2179. Zyla K., J. Korelski, S. Swiatkiewicz, A. Wikiera, M. Kujawski, J. Piironen, and D. R. Ledoux. 2000. Effect of phosphorylitic and cell wall-degrading enzymes on the performance of growing broilers fed wheat-based diets containing different calcium levels. Poult. Sci., 79: 66–76. Zyla, K., D. Gogol, J. Koreleski, S. Swiatkiewicz and D. R. Ledoux. 1999. Simultaneous application of phytase and xylanase to broiler feeds based on wheat: feeding experiments with growing broilers. J. Sci. Food Agric. 79: 1841-1848. | 摘要: | 大豆殼為生產大豆油之加工副產物,普遍應用於反芻動物飼糧中,因其半纖維素含量達15 %,於家禽飼糧中鮮少使用,因此做為飼料原料之營養價值不高。A. pullulans為具有生產半纖維素酶之類酵母真菌,能降解植物細胞壁之半纖維素成分。因此本試驗之目的為探討以A. pullulans SH-218發酵大豆殼作為肉雞飼料添加物之效果。體外試驗結果顯示以A. pullulans SH-218接種大豆殼於30℃、pH 6.0、水分40 %,培養12天後可得最佳半纖維素酶生產條件 (甘露聚醣酶:110 Unit/g DM;木聚醣酶:39 Unit/g DM)。同時,發酵產物之寡醣含量提升且其水解液具有降低pH值及大腸桿菌數之效果。動物試驗以400隻白肉雞隨機分成四個處理組,分別為空白組、添加商業化甘露聚醣酶之正對照組、與添加0.5及1.0 %發酵大豆殼之處理組。結果顯示,添加1.0 %發酵大豆殼處理組肉雞體增重與正對照組相似 (2008及1991 g) 且高於空白組 (1861 g) (P<0.1)。添加0.5 %發酵大豆殼處理組之盲腸相對重量較其空白組為輕 (P<0.05),又添加1.0 %發酵大豆殼免疫器官脾臟之相對重量較空白組為重 (P<0.05)。添加發酵大豆殼處理組雞隻盲腸內容物乳酸菌菌數(11.2 及12.0 Log CFU/g) 顯著高於空白組 (9.7 Log CFU/g) (P<0.05),並以添加1.0 %之處理組之迴腸大腸桿菌群數顯著低於空白組 (P<0.05),而梭狀芽孢桿菌則顯著低於正對照組 (P<0.05),且可顯著增加迴腸絨毛高度 (P<0.05) 及提升半纖維素利用率 (P<0.05),而添加1.0 %發酵大豆殼相較於空白組亦可降低排泄物及盲腸中氨態氮含量 (減少12 及15 %) (P<0.05)。此外,添加1 %發酵大豆殼具有降低血液中三酸甘油酯含量與刺激雞隻血液PBMC合成NO之效果 (P<0.05)。最後,由經濟效益評估結果顯示,添加1.0 %發酵大豆殼可降低整體飼養成本且對於雞隻生長並無影響。綜上所述,大豆殼以A. pullulans SH-218發酵可產生甘露聚醣酶與益生物質而降低腸道之有害菌數,進而改善生長,並降低氨態氮之排出、改善血液性狀及調節免疫能力。 Soybean hulls are by-product during the soybean oil production. Since the high hemicellulose content in soybean hulls, they are thought of as a roughage feed in ruminant, instead of in poultry diets. A. pullulans, a yeast-like fungus, has the potential to degrade the plant cell wall, since it is proficient in hemicellulase production, such as xylanase and mannanase. Therefore, the aim of this study is to explore the effects of soybean hulls fermented by A. pullulans in broiler diet. In the in vitro experiment, the optimum condition of soybean hulls fermentation, and the prebiotic effect of fermentation product was evaluated. The results showed the optimal condition for soybean hulls fermentation was at 30℃, pH 6.0, and with the moisture content of soybean hulls was at 40 % for 12 days. The amount of oligosaccharides in fermented soybean hulls was increased by the fermentation, and it had the ability to reduce the pH value and coliform count. In the in vivo trial, four hundred 1-day-old broilers were allocated randomly into 4 dietary treatments including the basal diet, and basal diet containing commercial enzyme, 0.5 % or 1.0 % fermented soybean hulls (FSBH) with 4 replicates per treatment for 5 weeks. Feed and water were supplied ad libitum with floor feeding. The results showed that the birds fed with 1.0 % FSBH were significantly better than the control group in weight gain, whereas there was no significant difference existed in the feed consumption and feed conversion rate among the treatments. 0.5 % treatment had lower relative weight but higher content of total volatile fatty in cecum, comparing with the other treatments. Fermented soybean hulls treatments had significantly higher lactic acid bacteria count in cecum (0.5 %: 12.0 Log CFU/g; 1.0 %: 11.2 Log CFU/g), comparing with control (9.7 Log CFU/g). Moreover, 1.0 % treatment had significantly lower coliform and Clostridium perfringens count than control and commercial enzyme treatment in ileum. 1.0 % FBSH also could incease villus height and promote the nutrient apparent ability of hemicellulose. Meanwhile, feed containing fermented soybean hulls could reduce the content of ammonia nitrogen in cecum and feces and reduce the content of triglyceride in serum. Moreover, it was cost-effective for 1.0 % FSBH supplementation in broiler diets. In conclusion, this study cleared that fermented soybean hulls could produce mannanase and prebiotic which was contributed to reducing pathogen. Hence, feed adding fermented soybean hulls could improve growth performance, reduce excreta ammonia nitrogen, improve serum parameters and immunomodulatory. |
URI: | http://hdl.handle.net/11455/90300 | Rights: | 不同意授權瀏覽/列印電子全文服務 |
Appears in Collections: | 動物科學系 |
Files in This Item:
File | Size | Format | Existing users please Login |
---|---|---|---|
nchu-104-7101037011-1.pdf | 3.99 MB | Adobe PDF | This file is only available in the university internal network |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.