Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90306
標題: Effect of hydroxyapatite contents and the concentration of EDC on the microstructural and biocompatibility of porous collagen/hydroxyapatite composite scaffold
氫氧基磷灰石含量及EDC濃度對於多孔性膠原蛋白/氫氧基磷灰石複合支架其微細結構及生物相容性之影響
作者: I-Ching Chen
陳怡菁
關鍵字: 氫氧基磷灰石;膠原蛋白;複合支架;硬骨;hydroxyapatite;collagen;composite scaffold;bone
引用: 王盈錦。2002。生物醫學材料。合記出版社,台北,台灣。 李建雄、端木梁、翁郁嘉與黃淑姿。1998。生物化學。藝軒圖書出版社,台北, 台灣。 林詠凱。2001。雞腳膠原蛋白與明膠之萃取及特性之研究。國立中興大學動物科 學系碩士論文。 林璟暉。2011。天然來源氫氧基磷灰石之萃取及膠原蛋白/氫氧基磷灰石複合支架 之製備及支架特性與生物相容性之研究。國立中興大學動物科學系碩士論文。 周繼發與林慶文。1985。膠原蛋白分子結構之解析。科學農業,33,347-350。 洪敏雄、林峰輝與王盈錦。1994。生醫陶瓷之陶瓷技術手冊(上)(下),中華民國產 業科技發展協會。 俞耀庭、張興棟、林峰輝與白育綸。2004。生物醫用材料,新文京開發出版社股 份有限公司,台北,台灣。 施威任。2007。奈米級氫氧基磷灰石之合成及燒結。國立成功大學材料科學及工 程學系博士論文。 馬純媛。2000。以Genipin或Carbodiimide交聯生物組織材料的交聯結構與交聯性 質探討。國立中央大學化學工程學系碩士論文。 陳于正。2004。膠原蛋白/玻尿酸多孔隙支架之試作及其對成骨細胞生物相容性之 評估。國立中興大學動物科學系碩士論文。 許富銀、鄭明鎮與王盈錦。1988。膠原蛋白在醫學上之應用。生物產業,9,21-26。 張至宏與林峰輝。2002。源源不絕的骨骼銀行---談硬骨組織工程。科學發展,356, 18-21。 麥麗敏。1993。簡明解剖生理學。匯華出版社,台北,台灣。 賴祐平。1994。基礎骨科學。藝軒圖書出版社,台北,台灣。 賴永沛。1997。吃的化妝品原料 Collagen peptide。食品資訊,143,40-44。 藍正文。2009。膠原蛋白做為骨母細胞分離與生長基材之研究。國立陽明大學碩 士論文。 Aarden, E. M., P. J. Nijweide and E. H. Burger. 1994. Function of osteocytes in bone. J Cell Biochem 55: 287-299. Angele, P., J. Abke, R. Kujat, H. Faltermeier, D. Schumann, M. Nerlich, B. Kinner, C. Englert, Z. Ruszczak, R. Mehrl and R. Mueller. 2004. Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials 25: 2831-2841. Auger, F. A., M. Rouabhia, F. Goulet, F. Berthod, V. Moulin and L. Germain. 1998. Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels: clinical and fundamental applications. Med Biol Eng Comput 36: 801-812. Bagambisa, F. B. and U. Joos. 1990. Preliminary studies on the phenomenological behaviour of osteoblasts cultured on hydroxyapatite ceramics. Biomaterials 11: 50-56. Bailey, A. J. 2000. The fate of collagen implants in tissue defects. Wound Rep Reg 8: 5-12. Barakat, N. A. M., M. S. Khil, A. M. Omran, F. A. Sheikh, and H. Y. Kim. 2009. Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J Mater Process Tech 209: 3408-3415. Barltrop, J. A., T. C. Owen, A. H. Cory and J. G. Cory. 1991. 5-(3-carboxymethoxyphenyl)-2-(4,5-dimethylthiazolyl)-3-(4-sulfophenyl)tetrazolium, inner salt (MTS) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) reducing to purple water-soluble formazans As cell-viability indicators. Bioorg Med Chem Lett 1: 611-614. Bastiaansen-Jenniskens, Y. M., W. Koevoet, A. C. W. de Bart, J. C. van der Linden, A. M. Zuurmond, H. Weinans, J. A. N. Verhaar, G. J. V. M. van Osch and J. DeGroot. 2008. Contribution of collagen network features to functional properties of engineered cartilage. Osteoarthr Cartilage 16: 359-366. Belmonte, M. M., A. De Benedittis, R. A. Muzzarelli, P. Mengucci, G. Biagini, M. G. Gandolfi, C. Zucchini, A. Krajewski, A. Ravaglioli, E. Roncari, M. Fini and R. Giardino. 1998. Bioactivity modulation of bioactive materials in view of their application in osteoporotic patients. J Mater Sci Mater Med 9: 485-492. Boretos, J. W. and M. Eden. 1984. Contemporary Biomaterials, Material and Host Response, Clinical Applications, New Technology and Legal Aspects. Noyes Publications, Park Ridge, NJ, pp. 232-233. Bostman, O. M. 1991. Absorbable implants for the fixation of fractures. J Bone Joint Surg 73: 148-153. Boyce, S. T., D. J. Christianson and J. F. Hansbrough. 1988. Structure of a collagen-GAG dermal skin substitute optimized for cultured human epidermal keratinocytes. J Biomed Mater Res 22: 939-57. Brekke, J. H. and J. M. Toth. 1998. Principles of tissue engineering applied to programmable osteogenesis. J Biomed Mater Res 43: 380-398. Burg, K. J. L., S. Porter and J. F. Kellam. 2000. Biomaterial developments for bone tissue engineering. Biomaterials 21: 2347-2359. Chang, M. C., T. Ikoma, M. Kikuchi and J. Tanaka. 2002. The cross-linkage effect of hydroxyapatite/collagen nanocomposites on a self-organization phenomenon. J Mater Sci Mater Med 13: 993-997. Cima, L. G., J. P. Vacanti, C. Vacanti, D. Ingber, D. Mooney and R. Langer. 1991. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomechanical Eng 113:143-151. Cooper, D. R. and R. J. Davidson. 1965. The effect of ultraviolet irradiation on soluble collagen. Biochem J 97: 139-47. Cooper, D. R. and R. J. Davidson. 1966. The effect of ultraviolet irradiation on collagen-fold formation. Biochem J 98: 655-61. Costantino, P. D. and C. D. Friedman. 1994. Synthetic bone graft substitutes. Otolaryng Clin N Am 27:1037-1074. Cui, F. Z., Y. Li and J. Ge. 2007. Self-assembly of mineralized collagen composites. Mat Sci Eng R 57: 1-27. De Groot, K. 1983. Bioceramics of calcium phosphate. CRC Press. Inc., Boca Raton, Florida, pp.1-32, 79-97. Deatherage, J. R. and E. J. Miller. 1987. Packaging and delivery of bone induction factors in a collagenous implant. Collagen Rel Res 7: 225-31. Deijkers, R. L. M., R. M. Bloem, P. L. C. Petit, R. Brand, S. B. W. Vehmeyer and M. R. Veen. 1997. Contamination of bone allografts. J Bone Joint Surg 79: 161-166. DeLustro, F., J. Dasch, J. Keefe and L. Ellingsworth. 1990. Immune responses to allogeneic and xenogeneic implants of collagen and collagen derivatives. Clin Orthop Relat Res: 263-279. Doblare, M., J. M. Garcia and M. J. Gomez. 2004. Modelling bone tissue fracture and healing: a review. Eng Fract Mech 71: 1809-1840. Ducheyne, P., L. L. Hench, A. Kagan, M. Martens, A. Bursens and J. C. Mulier. 1980. Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants. J Biomed Mater Res 14: 225-237. Edward, C. A. and W. D. O' Brien. 1980. Modified assay for determiniation of hydroxyproline in a tissue hydrolyzate. Clin Chim Acta 104: 161-167. Elliott, J. C. 1994. Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier Science & Technology, London, pp.111-186. Englert C., T. Blunk, R. Muller, S. S. Glasser, J. Baumer, J. Fierlbeck, I. M Heid, M. Nerlich and J. Hammer. 2007. Bonding of articular cartilage using a combination of biochemical degradation and surface cross-linking. Arthritis Res Ther 9: R47. Fraser, R. D. B., T. P. MacRae and E. Suzuki. 1979. Chain conformation in the collagen molecule. J Mol Biol 129: 463-481. Friedenberg, Z. B. and W. H. Simon. 1963. Bone growth in teflon sponge. Surg Gynecol Obstet 116: 588-592. Friess, W. 1998. Collagen-biomaterial for drug delivery. Eur J Pharm Biopharm 45: 113-136. Fujimori, E. 1965. Ultraviolet light-induced change in collagen macromolecules. Biopolymers 3: 115-119. Fujisawa, R., Y. Nodasaka and Y. Kuboki. 1995. Further characterization of interaction between bone sialoprotein (BSP) and collagen. Calcified Tissue Int 56: 140-144. Gelse, K., E. Poschl and T. Aigner. 2003. Collagens-structure, function, and biosynthesis. Adv Drug Delivery Rev 55: 1531-1546. Gleeson, J. P., N. A. Plunkett and F. J. O'Brien. 2010. Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. Eur Cells Mater 20: 218-230. Glowacki, J., L. B. Kaban, J. E. Murray, J. Folkman and J. B. Mulliken. 1981. Application of the biological principle of induced osteogenesis for craniofacial defects. The Lancet 317: 959-962. Gorham, S. D., N. D. Light, A. M. Diamond, M. J. Willins, A. J. Bailey, T. J. Wess and N. J. Leslie. 1992. Effect of chemical modifications on the susceptibility of collagen to proteolysis. II. Dehydrothermal crosslinking. Int J Biol Macromol 14: 129-138. Goshima, J., V. M. Goldberg and A. I. Caplan. 1991. The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin Orthop Relat Res: 298-311. Guo, G., Y. Sun, Z. Wang and H. Guo. 2005. Preparation of hydroxyapatite nanoparticles by reverse microemulsion. Ceram Int 31: 869-872. Harkness, R. D. 1961. Biological functions of collagen. Biol Rev 36: 399-455. Hilton-Simpson, M. W. 1922. Arab medicine and surgery: a study of the healing art in algeria. Oxford University Press, London, pp. 28-67. Ho, S. T. and D. W. Hutmacher. 2006. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27: 1362-1376. Hou, Q., D. W. Grijpma and J. Feijen. 2003. Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process. J Biomed Mater Res B Appl Biomater 67: 732-740. Hsieh, W. C., C. P. Chang and S. M. Lin. 2007. Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering. Colloid Surface B 57: 250-255. Hsu, F. Y., S. C. Chueh and Y. J. Wang. 1999. Microspheres of hydroxyapatite/reconstituted collagen as supports for osteoblast cell growth. Biomaterials 20: 1931-1936. Hulbert, S. 1971. Investigation of the potential of ceramics foe surgical applications. In: Bement Jr AL, editors. Biomaterials. Seattle: University of Washington Press pp.3-77. Hutmacher, D. W. 2000. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21: 2529-2543. Ishizawz, H. and M. Ogino.1995a. Formation and characterization of anodic titanium oxide films containing Ca and P. J Biomed Mater Res 29: 65-72. Ishizawz, H. and M. Ogino.1995b. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res 29: 1071-1079. Isobe, T., S. Nakamura, R. Nemoto, M. Senna and H. Sfihi. 2002. Solid-state double nuclear magnetic resonance study of the local structure of calcium phosphate nanoparticles synthesized by a wet-mechanochemical reaction. J Phys Chem B 106: 5169-5176. Itoh, M., A. Shimazu, I. Hirata, Y. Yoshida, H. Shintani and M. Okazaki. 2004. Characterization of CO3Ap-collagen sponges using X-ray high-resolution microtomography. Biomaterials 25: 2577-83. Itoh, S., M. Kikuchi, K. Takakuda, Y. Koyama, H. N. Matsumoto, S. Ichinose, J. Tanaka, T. Kawauchi and K. Shinomiya. 2001. The biocompatibility and osteoconductive activity of a novel hydroxyapatite/collagen composite biomaterial, and its function as a carrier of rhBMP-2. J Biomed Mater Res 54: 445-453. Itoh, S., M. Kikuchi, K. Takakuda, K. Nagaoka, Y. Koyama, J. Tanaka and K. Shinomiya. 2002. Implantation study of a novel hydroxyapatite/collagen (HAp/col) composite into weight-bearing sites of dogs. J Biomed Mater Res 63: 507-15. Jarudilokkul, S., W. Tanthapanichakoon and V. Boonamnuayvittaya. 2007. Synthesis of hydroxyapatite nanoparticles using an emulsion liquid membrane system. Colloid Surface A 296: 149-153. Jensen, S. S., M. Aaboe, E. M. Pinholt, E. Hjorting-Hansen, F. Melsen and I. E. Ruyter. 1996. Tissue reaction and material characteristics of four bone substitutes. Int J Oral Max Impl 11: 55-66. Joschek, S., B. Nies, R. Krotz and A. Gopferich. 2000. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials 21: 1645-1658. Jotereau, F. V. and N. M. Ledouarin. 1978. The developmental relationship between osteocytes and osteoclasts: A study using the quail-chick nuclear marker in endochondral ossification. Dev Biol 63: 253-265. Kadler, K. 1995. Extracellular matrix 1: Fibril-forming collagens. Protein Profile 2: 491-619. Kalfas, I. H. 2001. Principles of Bone Healing. Neurosurg Focus 10: 1-4. Karageorgiou, V. and D. Kaplan. 2005. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26: 5474-5491. Kenley, R. A., K. Yim, J. Abrams, E. Ron, T. Turek, L. J. Marden and J. O. Hollinger. 1993. Biotechnology and Bone Graft Substitutes. Pharm Res 10: 1393-1401. Kikuchi, M., S. Itoh, S. Ichinose, K. Shinomiya and J. Tanaka. 2001. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22: 1705-1711. Kim, B. S. and D. J. Mooney. 1998. Development of biocompatible synthetic extracellular matrices for tissue emgineering. Tibtech 16: 224-230. Kuboki, Y., T. Saito, M. Murata, H. Takita, M. Mizuno, M. Inoue, N. Nagai and A. R. Poole. 1995. Two distinctive BMP-carriers induce zonal chondrogenesis and membranous ossification, respectively; geometrical factors of matrices for cell-differentiation. Connect Tissue Res 32: 219-226. Labella, R., M. Braden and S. Deb. 1994. Novel hydroxyapatite-based dental composites. Biomaterials 15: 1197-1200. Lawson, A. C., J. T. Czernuszka. 1998. Collagen-calcium phosphate composites. P I Mech Eng H 212: 413-425. Lee, C. H., A. Singla and Y. Lee. 2001. Biomedical applications of collagen. Int J Pharmaceut 221: 1-22. Lee, J. E., J. C. Park, Y. S. Hwang, J. K. Kim, J. G. Kim and H. Suh. 2001. Characterization of UV-irradiated dense/porous collagen membranes: morphology, enzymatic degradation, and mechanical properties. Yonsei Med J 42: 172-179. Leipziger, L. S., V. Glushko, B. DiBernardo, F. Shafaie, J. Noble, J. Nichols and O. M. Alvarez. 1985. Dermal wound repair: role of collagen matrix implants and synthetic polymer dressings. J Am Acad Dermatol 12: 409-419. Lennon, D. P., J. M. Edmison and A. I. Caplan. 2001. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: Effects on in vitro and in vivo osteochondrogenesis. J cell Physiol 187: 345-355. Li, J., Y. Chen, A. F. Mak, R. S. Tuan, L. Li and Y. Li. 2010. A one-step method to fabricate PLLA scaffolds with deposition of bioactive hydroxyapatite and collagen using ice-based microporogens. Acta Biomater 6: 2013-2019. Li, S. T. 1993. Collagen biotechnology and its medical applications. Biomed Eng-App, Bas C 5: 646-657. Lin, Y. C., F. J. Tan, K. G. Marra, S. S. Jan and D. C. Liu. 2009. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications. Acta Biomater 5: 2591-2600. Liu, L. S., A. Y. Thompson, M. A. Heidaran, J. W. Poser and R. C. Spiro. 1999. An osteoconductive collagen/hyaluronate matrix for bone regeneration. Biomaterials 20: 1097-1108. Liu, J., K. Li, H. Wang, M. Zhu and H. Yan. 2004. Rapid formation of hydroxyapatite nanostructures by microwave irradiation. Chem Phys Lett 396: 429-432. Lopez-Macipe, A., J. Gomez-Morales and R. Rodriguez-Clemente. 1998. Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating. Adv Mater 10: 49-53. Lu Xiaoying, F. Y., Gu Dachun and Cui Wei. 2007. Preparation and characterization of natural hydroxyapatite from animal hard tissues. Key Eng Mater 342-343: 213-216. Lubert, S. 1988. Biochemistry. Lynn, A. K., I. V. Yannas and W. Bonfield. 2004. Antigenicity and immunogenicity of collagen. J Biomed Mater Res B 71B: 343-354. Lyons, F. G., A. A. Al-Munajjed, S. M. Kieran, M. E. Toner, C. M. Murphy, G. P. Duffy and F. J. O'Brien. 2010. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs. Biomaterials 31: 9232-9243. Ma, L., C. Gao, Z. Mao, J. Zhou, J. Shen, X. Hu and C. Han. 2003. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24: 4833-4841. Mackie, E. J. 2003. Osteoblast: novel roles in orchestration of skeletal architecture. Int J Biochem Cell B 35: 1301-1305. Magnusson, S. P., M. Hansen, H. Langberg, B. Miller, B. Haraldsson, E. Kjoeller Westh, S. Koskinen, P. Aagaard and M. Kjar. 2007. The adaptability of tendon to loading differs in men and women. Int J Exp Pathol 88: 237-240. Maor, G., K. von der Mark, H. Reddi, D. Heinegard, A. Franzen and M. Silbermann. 1987. Acceleration of cartilage and bone differentiation on collagenous substrata. Coll Relat Res 7: 351-70. Mark, K. V. D. 1999. Structure, biosynthesis and gene regulation of collagens in cartilage and bone. In: Dynamics of bone and cartilage metabolism, M. J. Seibel, S. P. Robins and J. P. bilezikian (Eds) , pp 3-29. Markiewicz, M., Y. Asano, S. Znoyko, Y. Gong, D. K. Watson and M. Trojanowska. 2007. Distinct effects of gonadectomy in male and female mice on collagen fibrillogenesis in the skin. J Dermatol Sci 47: 217-226. Mckegney, M., I. Taggart and M. H. Grant. 2001. The infuence of crosslinking agents and diamines on the pore size, morphology and the biological stability of collagen sponges and their effect on cell penetration through the sponge matrix. J Mater Sci-Mater M 12: 833-844. Mehlisch, D. R., A. S. Leider and W. E. Roberts. 1990. Histologic evaluation of the bone/graft interface after mandibular augmentation with hydroxylapatite/purified fibrillar collagen composite implants. Oral Surg Oral Med Oral Pathol 70: 685-92. Meredith, S. C. and F. J. Kezdy. 1981. The chromatographic purification of native type i, ii, and iii collagens. Biochim Biophys Acta 668: 357-369. Minabe, M., A. Sugaya, H. Satou, T. Tamura, Y. Ogawa, T. Hori and Y. Watanabe. 1988. Histological study of the hydroxyapatite-collagen complex implants in periodontal osseous defects in dogs. J Periodontol 59: 671-678. Mittelmeier, H. and B. D. Katthagen. 1983. Clinical experience with the implantation of collagen-apatite for local bone regeneration. Z Orthop Grenzgeb. 121: 115-123. Mizuno, M. and Y. Kuboki. 1995. TGF-β accelerated the osteogenic differentiation of bone marrow cells induced by collagen matrix. Biochem Bioph Res Co 211: 1091-1098. Nakamura, K., T. Koshino and T. Saito. 1998. Osteogenic response of the rabbits femur to a hydroxyapatite thermal decomposition product-fibrin glue mixture. Biomaterials 19: 1901-1907. Natarajan, S., D. Williamson, A. Stiltz and K. Harding. 2000. Advances in wound care and healing technology. Am J Clin Dermatol 1: 269-275. Nimni, M. E. 1993. Fibrillar Collagen: Their Biosynthesis, Molecular Structure, and Mode of Assembly. In Mark A. Zern and Lola M. Reid (Eds.), Extracellular Matrix: Chemistry, Biology, and Pathobiology with Emphasis on the Liver. New York: Marcel Dekker, Inc., pp. 121-148. Nimni, M. E., D. Cheung, B. Strates, M. Kodama and K. Sheikh. 1987. Chemically modified collagen: a natural biomaterial for tissue replacement. J Biomed Mater Res 21: 741-771. Nimni, M. E. and R. D. Harkness. 1988. Molecular structures and functions of collagen. Collagen Bioch 1: 1-78. Nimni, M. E., D. Cheung, B. Strates, M. K. Odama, and K. Sheikh. 1988a. Bioprosthesis derived from cross-linked and chemically modified collagenous tissues, Nimni, M.E.ed. Collagen, Biotechnology. Florida, CRC Press, Inc., 3, pp. 1-37. Nomi, M., A. Atala, P. D. Coppi and S. Soker. 2002. Principals of neovascularization for tissue engineering. Mol Aspects Med 23: 463-483. Nishi, C., N. Nakajima and Y. Ikada. 1995. In vitro evaluation of cytotoxicity of diepoxy compounds used for biomaterial modification. J Biomed Mater Res 29: 829-834. O'Brien, F. J., B. A. Harley, I. V. Yannas and L. Gibson. 2004. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25: 1077-1086. Ogiso, M. 1998. Reassessment of long-trem use of dense HA as dental implant : Case report. J Biomed Mater Res 43: 318-320. Olde Damink, L. H. H., P. J. Dijkstra, M. J. A. van Luyn, P. B. van Wachem, P. Nieuwenhuis and J. Feijen. 1996. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials 17: 765-773. Orcel, P., J. Bielakoff, M. Feuga and M. C. de Vernejoul. 1993. Local bone injections of LPS and M-CSF increase bone resorption by different pathways in vivo in rats. Am J Physiol-Endoc M 264: 391-397. Ozawa, M. and S. Suzuki. 2002. Microstructural development of natural hydroxyapatite originated from fish-bone waste through heat treatment. J Am Ceram Soc 85: 1315-1317. Pachence, J. M. 1996. Collagen-based devices for soft tissue repair. J Biomed Biomater Res 33: 35-40. Pang, Y. X. and X. Bao. 2003. Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J Eur Ceram Soc 23: 1697-1704. Parhi, P., A. Ramanan and A. R. Ray. 2004. A convenient route for the synthesis of hydroxyapatite through a novel microwave-mediated metathesis reaction. Mater Lett 58: 3610-3612. Park, S. N., J. C. Park, H. O. Kim, M. J. Song and H. Suh. 2002. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials 23: 1205-1212 . Park, S. N., H. J. Lee, K. H. Lee and H. Suh. 2003. Biological characterization of EDC-crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration. Biomaterials 24: 1631-1641. Powell, H. M. and S. T. Boyce. 2006. EDC cross-linking improves skin substitute strength and stability. Biomaterials 27 : 5821-5827. Predecki, P., J. E. Stephan, B. A. Auslaender, V. L. Mooney and K. Kirkland. 1972. Kinetics of bone growth into cylindrical channels in aluminum oxide and titanium. J Biomed Mater Res 6: 375-400. Prockop, D. J. 1997. Marrow stromal cells as stem cells for non-hematopoietic tissue. Science 276: 71-74. Rahn, B. A., J. Neff, A. Leutenegger, R. Mathys and S. M. Perren. 1986. Integration of synthetic apatite of various pore size and density in bone. In: Christel P, Meunier A, Lee AJC, editors. Biological and biomedical performance biomaterials. Amsterdam: Elsevier Science Publ., pp. 21-26. Ratner., B. D., A. S. Hoffman and F. J. Schoen. 1996. Biomaterial Science- An introduction to material in medicine. San Diego: academic press, pp. 64-72. Rault, I., V. Frei, D. Herbage, N. Abdul-Malak and A. Huc. 1996. Evaluation of different chemical methods for cros-linking collagen gel, films and sponges. J Mater Sci-Mater M 7: 215-221. Reddy, G. K. and C. S. Enwemeka. 1996. A simplified method for the analysis of hydroxyproline in biological tissue. Clin Biochem 29: 225-229. Rehakova, M., D. Bakoš, K. Vizarova, M. Soldan and M. Jurickova. 1996. Properties of collagen and hyaluronic acid composite materials and their modification by chemical crosslinking. J Biomed Mater Res 30: 369-72. Robert, L. and P.V. Joseph. 1993. Tissue engineering. Science 260: 920-926. Rose, F. R. A. J. and R. O. C. Oreffo. 2002. Bone Tissue Engineering: Hope vs Hype. Biochem Bioph Res Co 292: 1-7. Rosen, H. M. and M. M. McFarland. 1990. The biologic behavior of hydroxyapatite implanted into the maxillofacial skeleton. Plast Reconstr Surg 85: 718-723. Samuel, L., M. D. Turek and J. B. Lippincott. 1985. Orthopaedics: Principles and Application, 2nd ed, pp. 113-136. Sarig, S. and F. Kahana. 2002. Rapid formation of nanocrystalline apatite. J Cryst Growth 237-239, Part 1: 55-59. Schlotmann, K., M. Kaeten, A. F. Black, O. Damour, M. Waldmann-Laue and T. Forster. 2001. Cosmetic efficacy claims in vitro using a three-dimensional human skin model. Int J Cosmetic Sci 23: 309-318. Serre, C. M., M. Papillard, P. Chavassieux and G. Boivin. 1993. In vitro induction of a calcifying matrix by biomaterials constituted of collagen and/or hydroxyapatite: an ultrastructural comparison of three types of biomaterials. Biomaterials 14: 97-106. Shanmugasundaram, N., P. Ravichandran, P. Neelakanta Reddy, N. Ramamurty, S. Pal and K. Panduranga Rao. 2001. Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials 22: 1943-1951. She, Z., B. Zhang, C. Jin, Q. Feng and Y. Xu. 2008. Preparation and in vitro degradation of porous three-dimensional silk fibroin/chitosan scaffold. Polym Degrad Stabil 93: 1316-1322. Sionkowska, A. and J. Kozłowska. 2013. Properties and modification of porous 3-D collagen/hydroxyapatite composites. Int J Biol Macromol 52: 250-259. Sopyan, I., M. Mel, S. Ramesh and K. A. Khalid. 2007. Porous hydroxyapatite for artificial bone applications. Sci Technol Adv Mat 8: 116-123. Sotome, S., T. Uemura, M. Kikuchi, J. Chen, S. Itoh, J. Tanaka, T. Tateishi and K. Shinomiya. 2004. Synthesis and in vivo evaluation of a novel hydroxyapatite/collagen-alginate as a bone filler and a drug delivery carrier of bone morphogenetic protein. Mater Sci Eng: C 24: 341-347. Speer, D. P., M. Chvapil, C. D. Eskelson and J. Ulreich. 1980. Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res 14: 753-64. Sripriya, R., M. S. Kumar and P. K. Sehgal. 2004. Improved collagen bilayer dressing for the controlled release of drugs. J Biomed Mater Res B Appl Biomater 70: 389-396. Staigera, M. P., A. M. Pietaka, J. Huadmaia and G. Dias. 2006. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27: 1728-1734. Staiger, M. P., A. M. Pietak, J. Huadmai and G. Dias. 2006. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27: 1728-1734. Sumner, D. R., T. M. Turner, R. Igloria, R. M. Urban and J. O. Galante. 1998. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. J Biomech 31: 909-917. Sun, J. S., H. C. Liu, W. H. Chang, J. Li, F. H. Lin and H. C. Tai. 1998. Influence of hydroxyapatite particle size on bone cell activities: an in vitro study. J Biomed Mater Res 39: 390-397. Sung, H. W., D. M. Huang, W. H. Chang, R. N. Huang and J. C. Hsu. 1999. Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: in vitro study. J Biomed Mater Res 46: 520-530. Sung, H. W., S. H. Shen, R. Tu, D. Lin, C. Hata, Y. Noishiki, Y. Tomizawa and R. C. Quijano. 1993. Comparison of the cross-linking characteristics of porcine heart valves fixed with glutaraldehyde or epoxy compounds. ASAIO J 39: 532-536. Tabata, Y. 2000. The importance of drug delivery systems in tissue engineering. Pharm. Sci. Technol. Today 3: 80-89. Takita, H. and Y. Kuboki. 1995. Conformational changes of bovine bone osteonectin induced by interaction with calcium. Calcified Tissue Int 56: 559-565. ter Brugge, P. J., J. G. Wolke and J. A. Jansen. 2002. Effect of calcium phosphate coating crystallinity and implant surface roughness on differentiation of rat bone marrow cells. J Biomed Mater Res 60: 70-78. Tsuruga, E., H. Takita, H. Itoh, Y. Wakisaka and Y. Kuboki. 1997. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem 121: 317-324. Tu, R., C. L. Lu, K. Thyagarajan, E. Wang, H. Nguyen, S. Shen, C. Hata and R. C. Quijano. 1993. Kinetic study of collagen with polyepoxy fixatives. J Biomed Mater Res 27: 3-9. Uddin, M. H., T. Matsumoto, M. Okazaki, A. Nakahira and T. Sohmura. 2010. Biomimetic fabrication of apatite related biomaterials. Biomimetics Learning 14: 289-303. Van der Rest, M. and R. Garrone. 1991. Collagen family of protein. FASEB J. 5: 2814-2823. Vizarova, K., D. Bakos, M. Rehakova, M. Petrikova, E. Panakova and J. Koller. 1995. Modification of layered atelocollagen: enzymatic degradation and cytotoxicity evaluation. Biomaterials 16: 1217-1221. Wahl, D. A. and J. T. Czernuszka. 2006. Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 11: 43-56. Wahl, D. A., E. Sachlos, C. Z. Liu and J. T. Czernuszka. 2007. Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci- Mater M 18: 201-209. Wan, Z., L. D. Dorr, T. Woodsome, A. Ranawat and M. Song. 1999. Effect of stem stiffness and bone stiffness on bone remodeling in cemented total hip replacement. J Arthroplasty 14: 149-158. Wang, M. C., G. D. Pins and F. H. Silver. 1994. Collagen fibres with improved strength for the repair of soft tissue injuries. Biomaterials 15: 507-12. Weadock, K. S., E. J. Miller, L. D. Bellincampi, J. P. Zawadsky, and M. G. Dunn. 1995. Physical crosslinking of collagen fibers: Comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res 29: 1373-1379 . Weadock, K. S., E. J. Miller, E. L. Keuffel, and M. G. Dunn. 1996. Effect of physical crosslinking methods on collagen-fiber durability in proteolytic solutions. Journal of Biomedical Materials Research 32: 221-226. Wu, T. J., H. H. Huang, C. W. Lan, C. H. Lin, F. Y. Hsu and Y. J. Wang. 2004. Studies on the microspheres comprised of reconstituted collagen and hydroxyapatite. Biomaterials 25: 651-658. Xu, J. L., K. A. Khor, Z. L. Dong, Y. W. Gu, R. Kumar and P. Cheang. 2004. Preparation and characterization of nano-sized hydroxyapatite powders produced in a radio frequency (rf) thermal plasma. Mat Sci Eng A-Struct 374: 101-108. Xu, J., L. Zhu and H. Wang. 2008. Study on nano-hydroxyapatite/type I collagen artificial bone scaffold structure and osteogenic ability in vivo. J Biomed Eng 25: 567-570. Yoshimura, M., P. Sujaridworakun, F. Koh, T. Fujiwara, D. Pongkao and A. Ahniyaz. 2004. Hydrothermal conversion of calcite crystals to hydroxyapatite. Mater Sci Eng: C 24: 521-525. Zeeman, R., P. J. Dijkstra, P. B. van Wachem, M. J. van Luyn, M. Hendriks, P. T. Cahalan and J. Feijen. 1999. Successive epoxy and carbodiimide cross-linking of dermal sheep collagen. Biomaterials 20: 921-31. Zhang, L., P. Tang, M. Xu, W. Zhang, W. Chai and Y. Wang. 2010. Effects of crystalline phase on the biological properties of collagen-hydroxyapatite composites. Acta Biomater 6: 2189-2199. Zhou, J., C. Xu, G. Wu, X. Cao, L. Zhang, Z. Zhai, Z. Zheng, X. Chen and Y. Wang. 2011. In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Acta Biomater 7: 3999-4006. Zigang, G., S. Baguenardb, L. Y. Lima, A. Weec and E. Khor. 2004. Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials 25: 1049-1058.
摘要: 
膠原蛋白 (Collagen, Col) 與氫氧基磷灰石 (Hydroxyapatite, HAp) 由於兩者皆具有良好的生物相容性,並具有無毒、無發炎反應及低免疫反應之特性,故可廣泛的應用於硬骨醫療材料中。然而Col須透過交聯法以改善因快速酵素降解率所導致使用上之限制。臨床上最常使用的交聯劑為戊二醛,其可有效改進多孔性膠原蛋白支架之機械特性及降低生物降解率,但有文獻指出,戊二醛具明顯之細胞毒性並會引起組織硬化及纖維化等問題。1-乙基-3-(3-二甲基胺丙基)-碳化二亞胺(1-ethyl-3-(3-dimethyl aminopropyl)- carbodiimide hydrochloride, EDC) 由於在交聯過程中反應溫和,而被認為是較適合之交聯劑。故本研究以1.2 % Col混合不同重量比例之HAp [Col : HAp = 1 : 2.6 (HAp2.6)、1 : 3.0 (Hap3.0)、1 : 3.5 (Hap3.5) 及 1:4.0 (HAp4.0)],並搭配不同濃度之EDC (50、75及100 mM) 進行交聯處理,探討HAp含量及EDC濃度對於Col/HAp複合支架物化特性及生物相容性之影響,以尋求製作硬骨生醫材料之最佳條件。
結果顯示:本研究所製備之各組Col/HAp複合支架,皆呈現多孔性海綿狀結構,平均孔洞直徑大小介於45-91μm之間;HAp 2.6、3.0及3.5之Col/HAp 複合支架以75及100 mM高濃度的EDC交聯處理,平均孔洞直徑有較大之趨勢,但彼此之間無顯著差異。重量變化分析方面,以HAp 2.6、3.0及3.5所製成之Col/HAp 複合支架,於交聯處理後有較少之重量損失。瓦解度分析方面,各交聯處理組其質量保留率均顯著高於未交聯之對照組 (P<0.05),而在不同交聯劑濃度處理方面,各處理並無顯著差異。膨潤度分析方面,Col/HAp 複合支架各交聯處理組,均能快速吸收液體而膨潤,並能吸收支架本身重量15-25倍之磷酸鹽緩衝溶液;隨著HAp比例提高,膨潤度隨之降低,其中HAp 4.0顯著低於HAp 2.6;EDC 75交聯處理組其膨潤度有較高之趨勢,但與另兩種交聯劑濃度並無顯著差異。抗壓強度部分,隨著HAp比例及EDC濃度提升,抗壓強度隨之增加。酵素降解測定部分,各交聯處理組其酵素降解度均顯著低於未交聯之對照組,至反應168小時後,對照組皆已100 % 遭受降解,各交聯處理組之降解程度則較低,其中以EDC 75交聯處理組顯著低於其他各組 (P<0.05)。生物相容性分析部分,Col/HAp複合支架各交聯處理組,其細胞活性皆與對照組類似;與成骨細胞共培養後,細胞外觀能呈現正常之不規則多角型,且細胞能貼附並往支架內部遷移。HAp 2.6/75 之複合支架內之細胞數顯著高於其他兩組,且HAp比例3.0、3.5及4.0之支架,同樣以EDC 75處理組細胞數較高,但皆與其他兩濃度處理組無顯著差異。
綜觀上述,本研究所製備之各組Col/HAp複合支架於物化特性上均具有良好表現,其中又以1.2 % 膠原蛋白混合比例2.6之氫氧基磷灰石,並配合75 mM EDC濃度進行交聯所製備之複合支架,細胞深入數量顯著較多,顯示以此條件製作之Col/HAp複合支架可提供最有利於細胞生長的環境。

Hydroxyapatite (Ca10(PO4)6(OH)2) and collagen both have great potential choice as biomaterial for bone in orthopedic applications owing to their excellent biocompatibility, bioactivity, osteoconductive properties, and noninflammation and low immunization. The fast bio-degradative rate of collagen in vitro and in vivo test was defect and resulted in limiting the use as biomaterial in the future. Collagen porous scaffold can be treated by cross-linking treatment with glutaraldehyde (GA) and which was an effective way to improve mechanical property and slow down biodegradation rate. However, glutaraldehyde poses with marked cytotoxicity and also can induce mineralization or stiffness in animal tissue. 1-Ethyl-3-(3-dimethyl-aminopropyl-1-carbodiimide) (EDC) generally recognize as a suitable cross linking reagent for collagen based biomaterials because of its mild reaction in cross-linking processing. Therefore, in this study several Col/HAp composite scaffolds were prepared with 1.2 % collagen to different ratios of hydroxyapatite (collagen : hydroxyapatite, 1 : 2.6 (HAp2.6), 1 : 3.0 (Hap3.0), 1 : 3.5 (Hap3.5) and 1:4.0 (HAp4.0), W/W) and cross-linked by different concentrations of EDC (50, 75 and 100 mM). The physicochemical characteristics and biocompatibility of porous collagen/hydroxyapatite composite scaffolds were evaluated to seek an optimal condition for bone biomaterial.
The results showed that all Col/HAp composites scaffolds demonstrated spongy, porous structure and the average diameters of pores were ranged from 45~91 μm. The composite scaffolds of HAp 2.6, HAp 3.0 and HAp 3.5 were treated by 75 and 100 mM EDC showed larger average diameter, but there were no significantly differences among all treatments. In the weight loss of scaffolds, lighter weight loss were found in scaffolds of HAp 2.6, 3.0 and 3.5 after cross-linking treatment. In dissolution analysis, scaffolds with cross-linking exhibited a significantly higher retention of mass than that of control groups (P<0.05) but there were no significant differences in EDC treatment. In swelling tests, all Col/HAp scaffolds could absorb phosphate-buffered saline buffer and quickly reached 15~25 folds within 1 minute. Nevertheless, the swelling fold of scaffolds decreased as HAp ratio increased, HAp 4.0 had the significantly lowest swelling fold among all samples. The scaffolds treated by EDC 75 showed higher swelling fold, but no significant differences were found among treatments. In compressive stress, the compressive stress of Col/HAp composites scaffolds increased with increase of HAp contents and EDC concentration. In enzymatic degradation, scaffolds with cross-linking showed stronger resistance than the control groups. After 168 hours of enzymatic degradation, scaffolds with cross-linking hold lower degradation and the control were degraded completely. Meanwhile, all scaffolds treated by EDC 75 showed significantly lower degradation than the others (P<0.05). In the aspect of biocompatibility analysis, all Col/HAp scaffolds had similar result of cell viability to the control, in the meantime, the osteoblasts also showed irregular polygon-like to attach and migrate into Col/Hap scaffolds. In growing distribution of cell, significantly higher cell numbers and cell density was observed in scaffolds with HAp 2.6 and treated by EDC 75. However, no significant differences were found among HAp 3.0 , 3.5 and 4.0 treated by EDC 75.
In conclusion, an optimum porous Col/HAp composite scaffold could be produced by 1.2 % Col to HAp 2.6 and treated by EDC 75 due to its good physicochemical characteristics and a suitable environment for osteoblast growth and this model should be as a reference for bone biomedical scaffold in the future.
URI: http://hdl.handle.net/11455/90306
Rights: 同意授權瀏覽/列印電子全文服務,2017-12-16起公開。
Appears in Collections:動物科學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7100037030-1.pdf4.74 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.