Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90317
標題: Hypothalamic circadian related gene expression pulsatility of meat- and egg-type hens in response to thyroid hormone and diurnal/nocturnal change
肉用與蛋用母雞下視丘節律相關基因表現脈動對晝夜改變與甲狀腺素之反應
作者: Yi-Chun Liu
劉怡君
關鍵字: 甲狀腺素;晝夜節律基因;肉用與蛋用母雞;下視丘;促性腺激素釋放激素;thyroid hormone;circadian genes;meat- and egg-type hens;gonadotropin- releasing hormone
引用: 林嘉雋。2012。肉用與蛋用母雞於不同能量狀態下其下視丘基因之表現及飼糧中甘胺酸添加對白羅曼鵝生長與相關生理之影響。碩士論文。中興大學。台中。 Ainsworth, E. A., and D. R. Ort. 2010. How do we improve crop production in a warming world? Plant Physiol. 154:526-530. Alenghat, T., K. Meyers, S. E. Mullican, K. Leitner, A. Adeniji-Adele, J. Avila, M. Bucan, R. S. Ahima, K. H. Kaestner, and M. A. Lazar. 2008. Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 456:997-1000. Amin, A., W. S. Dhillo, and K. G. Murphy. 2011. The central effects of thyroid hormones on appetite. J. Thyroid Res. 2011:306510. Anderson, G. M., J. M. Connors, S. L. Hardy, M. Valent, and R. L. Goodman. 2002. Thyroid hormones mediate steroid-independent seasonal changes in luteinizing hormone pulsatility in the ewe. Biol. Reprod. 66:701-706. Anderson, L. 1996. Intracellular mechanisms triggering gonadotrophin secretion. Rev. Reprod. 1:193-202. Asher, G., D. Gatfield, M. Stratmann, H. Reinke, C. Dibner, F. Kreppel, R. Mostoslavsky, F. W. Alt, and U. Schibler. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317-328. Bailey, M. J., P. D. Beremand, R. Hammer, D. Bell-Pedersen, T. L. Thomas, and V. M. Cassone. 2003. Transcriptional profiling of the chick pineal gland, a photoreceptive circadian oscillator and pacemaker. Mol. Endocrinol. 17:2084-2095. Barbato, G. F. 1994. Genetic control of food intake in chickens. J. Nutr. 124:1341s-1348s. Barrett, P., F. J. Ebling, S. Schuhler, D. Wilson, A. W. Ross, A. Warner, P. Jethwa, A. Boelen, T. J. Visser, D. M. Ozanne, Z. A. Archer, J. G. Mercer, and P. J. Morgan. 2007. Hypothalamic thyroid hormone catabolism acts as a gatekeeper for the seasonal control of body weight and reproduction. Endocrinology 148:3608-3617. Bass, J., and J. S. Takahashi. 2010. Circadian integration of metabolism and energetics. Science 330:1349-1354. Bassett, J. H., and G. R. Williams. 2008. Critical role of the hypothalamic-pituitary-thyroid axis in bone. Bone 43:418-426. Bentley, G. E. 2008. Biological timing: sheep, Dr. Seuss, and mechanistic ancestry. Curr Biol. 18:R736-r738. Bittman, E. L., and F. J. Karsch. 1984. Nightly duration of pineal melatonin secretion determines the reproductive response to inhibitory day length in the ewe. Biol. Reprod. 30:585-593. Bugge, A., D. Feng, L. J. Everett, E. R. Briggs, S. E. Mullican, F. Wang, J. Jager, and M. A. Lazar. 2012. Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26:657-667. Burger, L. L., D. J. Haisenleder, K. W. Aylor, and J. C. Marshall. 2008. Regulation of intracellular signaling cascades by GNRH pulse frequency in the rat pituitary: roles for CaMK II, ERK, and JNK activation. Biol. Reprod. 79:947-953. Burgus, R., M. Butcher, M. Amoss, N. Ling, M. Monahan, J. Rivier, R. Fellows, R. Blackwell, W. Vale, and R. Guillemin. 1972. Primary structure of the ovine hypothalamic luteinizing hormone-releasing factor (LRF) (LH-hypothalamus-LRF-gas chromatography-mass spectrometry-decapeptide- Edman degradation). Proc. Natl.Acad. Sci. U. S. A. 69:278-282. Buyse, J., E. Decuypere, P. J. Sharp, L. M. Huybrechts, E. R. Kühn, and C. Whitehead. 1987. Effect of corticosterone on circulating concentrations of corticosterone, prolactin, thyroid hormones and somatomedin C and on fattening in broilers selected for high or low fat content. Journal of Endocrinology 112:229-237. Byerly, M. S., J. Simon, E. Lebihan-Duval, M. J. Duclos, L. A. Cogburn, and T. E. Porter. 2009. Effects of BDNF, T3, and corticosterone on expression of the hypothalamic obesity gene network in vivo and in vitro. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296:R1180-1189. Cassone, V. M., J. K. Paulose, M. G. Whitfield-Rucker, and J. L. Peters. 2009. Time's arrow flies like a bird: two paradoxes for avian circadian biology. Gen. Comp. Endocrinol. 163:109-116. Castanet, M., S. M. Park, A. Smith, M. Bost, J. Leger, S. Lyonnet, A. Pelet, P. Czernichow, K. Chatterjee, and M. Polak. 2002. A novel loss-of-function mutation in TTF-2 is associated with congenital hypothyroidism, thyroid agenesis and cleft palate. Hum. Mol. Genet. 11:2051-2059. Chan, V., A. Jones, P. Liendo-Ch, A. McNeilly, J. Landon, and G. M. Besser. 1978. The relationship between circadian variations in circulating thyrotrophin, thyroid hormones and prolactin. Clin Endocrinol (Oxf) 9:337-349. Cheema, M. A., M. A. Qureshi, and G. B. Havenstein. 2003. A comparison of the immune response of a 2001 commercial broiler with a 1957 randombred broiler strain when fed representative 1957 and 2001 broiler diets. Poult. Sci. 82:1519-1529. Clark, M. E., and P. L. Mellon. 1995. The POU homeodomain transcription factor Oct-1 is essential for activity of the gonadotropin-releasing hormone neuron-specific enhancer. Mol. Cell. Biol. 15:6169-6177. Clarke, I. J., and J. T. Cummins. 1982. The temporal relationship between gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes. Endocrinology 111:1737-1739. Ghamari-Langroudi, M., K. R. Vella, D. Srisai, M. L. Sugrue, A. N. Hollenberg, and R. D. Cone. 2010. Regulation of thyrotropin-releasing hormone-expressing neurons in paraventricular nucleus of the hypothalamus by signals of adiposity. Mol. Endocrinol. 24:2366-2381. Goldman, B. D. 2001. Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J. Biol. Rhythms. 16:283-301. Graham, G., P. J. Sharp, Q. Li, P. W. Wilson, R. T. Talbot, A. Downing, and T. Boswell. 2009. HSP90B1, a thyroid hormone-responsive heat shock protein gene involved in photoperiodic signaling. Brain. Res. Bull. 79:201-207. Hattori, A., S. Ishii, and M. Wada. 1986. Effects of two kinds of chicken luteinizing hormone-releasing hormone (LH-RH), mammalian LH-RH and its analogs on the release of LH and FSH in Japanese quail and chicken. Gen. Comp. Endocrinol. 64:446-455. Havenstein, G. B., P. R. Ferket, and M. A. Qureshi. 2003. Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 82:1500-1508. Hazlerigg, D., and A. Loudon. 2008. New insights into ancient seasonal life timers. Curr Biol 18:R795-r804. Ikegami, K., Y. Katou, K. Higashi, and T. Yoshimura. 2009. Localization of circadian clock protein BMAL1 in the photoperiodic signal transduction machinery in Japanese quail. J. Comp. Neurol. 517:397-404. Ikegami, K., and T. Yoshimura. 2012. Circadian clocks and the measurement of daylength in seasonal reproduction. Mol Cell Endocrinol 349 (1):76-81. Irrcher, I., D. R. Walkinshaw, T. E. Sheehan, and D. A. Hood. 2008. Thyroid hormone (T3) rapidly activates p38 and AMPK in skeletal muscle in vivo. J .Appl. Physiol. 104:178-185. Ishii, S., J. Kamegai, H. Tamura, T. Shimizu, H. Sugihara, and S. Oikawa. 2008. Triiodothyronine (T3) stimulates food intake via enhanced hypothalamic AMP-activated kinase activity. Regul. Pept. 151:164-169. Kim, J. S., M. J. Bailey, J. L. Weller, D. Sugden, M. F. Rath, M. Moller, and D. C. Klein. 2010. Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4). Mol. Cell. Endocrinol. 314:128-135. King, J. A., and R. P. Millar. 1982. Structure of chicken hypothalamic luteinizing hormone-releasing hormone. II. Isolation and characterization. J. Biol. Chem. 257:10729-10732. Kohsaka, A., A. D. Laposky, K. M. Ramsey, C. Estrada, C. Joshu, Y. Kobayashi, F. W. Turek, and J. Bass. 2007. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell. Metab. 6:414-421. Krsmanovic, L. Z., N. Mores, C. E. Navarro, M. Tomic, and K. J. Catt. 2001. Regulation of Ca2+-sensitive adenylyl cyclase in gonadotropin-releasing hormone neurons. Mol. Endocrinol. 15:429-440. Leska, A., and L. Dusza. 2007. Seasonal changes in the hypothalamo-pituitary-gonadal axis in birds. Reprod. Biol. 7:99-126. Lin, J. D., C. Liu, and S. Li. 2008. Integration of energy metabolism and the mammalian clock. Cell Cycle 7:453-457. Lincoln, G. A., and K. Maeda. 1992a. Effects of placing micro-implants of melatonin in the mediobasal hypothalamus and preoptic area on the secretion of prolactin and beta-endorphin in rams. J. Endocrinol. 134:437-448. Lincoln, G. A., and K. I. Maeda. 1992b. Reproductive effects of placing micro-implants of melatonin in the mediobasal hypothalamus and preoptic area in rams. J. Endocrinol. 132:201-215. Lincoln, S. E., and E. S. Lander. 1992. Systematic detection of errors in genetic linkage data. Genomics 14:604-610. Liu, F., D. A. Austin, P. L. Mellon, J. M. Olefsky, and N. J. Webster. 2002. GnRH activates ERK1/2 leading to the induction of c-fos and LHbeta protein expression in LbetaT2 cells. Mol. Endocrinol. 16:419-434. Lopez, M., L. Varela, M. J. Vazquez, S. Rodriguez-Cuenca, C. R. Gonzalez, V. R. Velagapudi, D. A. Morgan, E. Schoenmakers, K. Agassandian, R. Lage, P. B. Martinez de Morentin, S. Tovar, R. Nogueiras, D. Carling, C. Lelliott, R. Gallego, M. Oresic, K. Chatterjee, A. K. Saha, K. Rahmouni, C. Dieguez, and A. Vidal-Puig. 2010. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat. Med. 16:1001-1008. Malpaux, B., A. Daveau, F. Maurice, V. Gayrard, and J. C. Thiery. 1993. Short-day effects of melatonin on luteinizing hormone secretion in the ewe: evidence for central sites of action in the mediobasal hypothalamus. Biol. Reprod. 48:752-760. Marcheva, B., K. M. Ramsey, E. D. Buhr, Y. Kobayashi, H. Su, C. H. Ko, G. Ivanova, C. Omura, S. Mo, M. H. Vitaterna, J. P. Lopez, L. H. Philipson, C. A. Bradfield, S. D. Crosby, L. JeBailey, X. Wang, J. S. Takahashi, and J. Bass. 2010. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627-631. Mason, A. J., J. S. Hayflick, R. T. Zoeller, W. S. Young, 3rd, H. S. Phillips, K. Nikolics, and P. H. Seeburg. 1986. A deletion truncating the gonadotropin-releasing hormone gene is responsible for hypogonadism in the hpg mouse. Science 234:1366-1371. Matagne, V., J. G. Kim, B. J. Ryu, M. K. Hur, M. S. Kim, K. Kim, B. S. Park, G. Damante, G. Smiley, B. J. Lee, and S. R. Ojeda. 2012. Thyroid transcription factor 1, a homeodomain containing transcription factor, contributes to regulating periodic oscillations in GnRH gene expression. J. Neuroendocrinol. 24:916-929. Matsuo, H., Y. Baba, R. M. Nair, A. Arimura, and A. V. Schally. 2002. Structure of the porcine LH- and FSH-releasing hormone. I. The proposed amino acid sequence. 1991. J. Urol. 167:1011-1014 Meddle, S. L., and B. K. Follett. 1997. Photoperiodically driven changes in Fos expression within the basal tuberal hypothalamus and median eminence of Japanese quail. J. Neurosci. 17:8909-8918. Mikami, S., S. Yamada, Y. Hasegawa, and K. Miyamoto. 1988. Localization of avian LHRH-immunoreactive neurons in the hypothalamus of the domestic fowl, Gallus domesticus, and the Japanese quail, Coturnix coturnix. Cell. Tissue. Res. 251:51-58. Miyamoto, K., Y. Hasegawa, T. Minegishi, M. Nomura, Y. Takahashi, M. Igarashi, K. Kangawa, and H. Matsuo. 1982. Isolation and characterization of chicken hypothalamic luteinizing hormone-releasing hormone. Biochem. Biophys. Res. Commun. 107:820-827. Mori, H., K. Inoki, H. Munzberg, D. Opland, M. Faouzi, E. C. Villanueva, T. Ikenoue, D. Kwiatkowski, O. A. MacDougald, M. G. Myers, Jr., and K. L. Guan. 2009. Critical role for hypothalamic mTOR activity in energy balance. Cell. Metab. 9:362-374. Nakahata, Y., M. Kaluzova, B. Grimaldi, S. Sahar, J. Hirayama, D. Chen, L. P. Guarente, and P. Sassone-Corsi. 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329-340. Nakao, N., H. Ono, T. Yamamura, T. Anraku, T. Takagi, K. Higashi, S. Yasuo, Y. Katou, S. Kageyama, Y. Uno, T. Kasukawa, M. Iigo, P. J. Sharp, A. Iwasawa, Y. Suzuki, S. Sugano, T. Niimi, M. Mizutani, T. Namikawa, S. Ebihara, H. R. Ueda, and T. Yoshimura. 2008a. Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 452:317-322. Nakao, N., H. Ono, and T. Yoshimura. 2008b. Thyroid hormones and seasonal reproductive neuroendocrine interactions. Reproduction 136:1-8. Naor, Z., S. Shacham, D. Harris, R. Seger, and N. Reiss. 1995. Signal transduction of the gonadotropin releasing hormone (GnRH) receptor: cross-talk of calcium, protein kinase C (PKC), and arachidonic acid. Cell. Mol. Neurobiol. 15:527-544. Okano, T., and Y. Fukada. 2001. Photoreception and circadian clock system of the chicken pineal gland. Microsc. Res. Tech. 53:72-80. Ono, H., N. Nakao, and T. Yoshimura. 2009. Identification of the photoperiodic signaling pathway regulating seasonal reproduction using the functional genomics approach. Gen. Comp. Endocrinol. 163:2-6. Preitner, N., F. Damiola, L. Lopez-Molina, J. Zakany, D. Duboule, U. Albrecht, and U. Schibler. 2002. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251-260. Price, N. L., A. P. Gomes, A. J. Ling, F. V. Duarte, A. Martin-Montalvo, B. J. North, B. Agarwal, L. Ye, G. Ramadori, J. S. Teodoro, B. P. Hubbard, A. T. Varela, J. G. Davis, B. Varamini, A. Hafner, R. Moaddel, A. P. Rolo, R. Coppari, C. M. Palmeira, R. de Cabo, J. A. Baur, and D. A. Sinclair. 2012. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell. Metab. 15:675-690. Reiter, R. J. 1993. The melatonin rhythm: both a clock and a calendar. Experientia 49:654-664. Rubin, C. J., M. C. Zody, J. Eriksson, J. R. Meadows, E. Sherwood, M. T. Webster, L. Jiang, M. Ingman, T. Sharpe, S. Ka, F. Hallbook, F. Besnier, O. Carlborg, B. Bed'hom, M. Tixier-Boichard, P. Jensen, P. Siegel, K. Lindblad-Toh, and L. Andersson. 2010. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464:587-591. Rubinstein, J., and T. Lightfoot. 2014. Feather loss and feather destructive behavior in pet birds. Vet. Clin. North. Am. Exot. Anim. Pract. 17:77-101. Russell, W., R. F. Harrison, N. Smith, K. Darzy, S. Shalet, A. P. Weetman, and R. J. Ross. 2008. Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. J. Clin. Endocrinol. Metab. 93:2300-2306. Sato, T. K., S. Panda, L. J. Miraglia, T. M. Reyes, R. D. Rudic, P. McNamara, K. A. Naik, G. A. FitzGerald, S. A. Kay, and J. B. Hogenesch. 2004. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527-537. Schally, A. V., A. Arimura, A. J. Kastin, H. Matsuo, Y. Baba, T. W. Redding, R. M. Nair, L. Debeljuk, and W. F. White. 1971. Gonadotropin-releasing hormone: one polypeptide regulates secretion of luteinizing and follicle-stimulating hormones. Science 173:1036-1038. Seeburg, P. H., and J. P. Adelman. 1984. Characterization of cDNA for precursor of human luteinizing hormone releasing hormone. Nature 311:666-668. Sharp, P. J., R. T. Talbot, G. M. Main, I. C. Dunn, H. M. Fraser, and N. S. Huskisson. 1990. Physiological roles of chicken LHRH-I and -II in the control of gonadotrophin release in the domestic chicken. J. Endocrinol. 124:291-299. Stojilkovic, S. S., and K. J. Catt. 1995. Novel aspects of GnRH-induced intracellular signaling and secretion in pituitary gonadotrophs. J. Neuroendocrinol. 7:739-757. Tessonneaud, A., A. Locatelli, M. Caldani, and M. C. Viguier-Martinez. 1995. Bilateral lesions of the suprachiasmatic nuclei alter the nocturnal melatonin secretion in sheep. J. Neuroendocrinol. 7:145-152. Tonsfeldt, K. J., and P. E. Chappell. 2012. Clocks on top: the role of the circadian clock in the hypothalamic and pituitary regulation of endocrine physiology. Mol. Cell. Endocrinol. 349:3-12. Tsutsumi, R., and N. J. Webster. 2009. GnRH pulsatility, the pituitary response and reproductive dysfunction. Endocr. J. 56:729-737. Ueda, H. R., S. Hayashi, W. Chen, M. Sano, M. Machida, Y. Shigeyoshi, M. Iino, and S. Hashimoto. 2005. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 37:187-192. Valdez, D. J., P. S. Nieto, N. M. Diaz, E. Garbarino-Pico, and M. E. Guido. 2013. Differential regulation of feeding rhythms through a multiple-photoreceptor system in an avian model of blindness. FASEB J. 27:2702-2712. Varela, L., N. Martinez-Sanchez, R. Gallego, M. J. Vazquez, J. Roa, M. Gandara, E. Schoenmakers, R. Nogueiras, K. Chatterjee, M. Tena-Sempere, C. Dieguez, and M. Lopez. 2012. Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism. J. Pathol. 227:209-222. Wang, M. Y., P. Grayburn, S. Chen, M. Ravazzola, L. Orci, and R. H. Unger. 2008. Adipogenic capacity and the susceptibility to type 2 diabetes and metabolic syndrome. Proc. Natl. Acad. Sci. U. S. A. 105:6139-6144. Xu, J., J. Ji, and X. H. Yan. 2012. Cross-talk between AMPK and mTOR in regulating energy balance. Crit. Rev. Food. Sci. Nutr. 52:373-381. Xue, B., and B. B. Kahn. 2006. AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J. Physiol. 574:73-83. Yamamoto, K., T. Okano, and Y. Fukada. 2001. Chicken pineal Cry genes: light-dependent up-regulation of cCry1 and cCry2 transcripts. Neurosci. Lett. 313:13-16. Yang, C. S., C. K. Lam, M. Chari, G. W. Cheung, A. Kokorovic, S. Gao, I. Leclerc, G. A. Rutter, and T. K. Lam. 2010. Hypothalamic AMP-activated protein kinase regulates glucose production. Diabetes 59:2435-2443. Yasuo, S., and H. W. Korf. 2011. The hypophysial pars tuberalis transduces photoperiodic signals via multiple pathways and messenger molecules. Gen. Comp. Endocrinol. 172:15-22. Yasuo, S., M. Watanabe, N. Nakao, T. Takagi, B. K. Follett, S. Ebihara, and T. Yoshimura. 2005. The reciprocal switching of two thyroid hormone-activating and -inactivating enzyme genes is involved in the photoperiodic gonadal response of Japanese quail. Endocrinology 146:2551-2554. Yasuo, S., M. Watanabe, N. Okabayashi, S. Ebihara, and T. Yoshimura. 2003. Circadian clock genes and photoperiodism: Comprehensive analysis of clock gene expression in the mediobasal hypothalamus, the suprachiasmatic nucleus, and the pineal gland of Japanese Quail under various light schedules. Endocrinology 144:3742-3748. Yin, L., and M. A. Lazar. 2005. The orphan nuclear receptor Rev-erbalpha recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol. Endocrinol. 19:1452-1459. Yoshimura, T. 2006. Molecular mechanism of the photoperiodic response of gonads in birds and mammals. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 144:345-350. Yoshimura, T. 2010. Neuroendocrine mechanism of seasonal reproduction in birds and mammals. Anim. Sci. J. 81:403-410. Yoshimura, T., S. Yasuo, M. Watanabe, M. Iigo, T. Yamamura, K. Hirunagi, and S. Ebihara. 2003. Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 426:178-181.
摘要: 
現代雞隻演化可以追朔到8000年前,家雞起源於東南亞的紅色叢林雞,而在100多年前經由人為環境飼養與選拔育種下歧化出生長性強的肉雞(Broilers)與繁殖性強的蛋雞(Layers)。在20世紀初,為避免產肉及產蛋性狀間的內在衝突,藉由基因選拔方式分成商用肉雞與蛋雞。利用基因序列偵測出肉雞與蛋雞的差異點,包含生長、飲食、代謝等基因的調控,而促甲狀腺激素受體(thyroid stimulating hormone receptor, TSHR)影響途徑被認為是主要的關鍵之一。甲狀腺素除了主要調控能量代謝外,還能經由光照反應來調控換羽、鳥鳴、交配情形。本試驗主要目的在探討肉用與蛋用母雞其下視丘節律相關基因表現脈動對外源性甲狀腺素與晝夜改變之反應。試驗使用32週齡的紅羽土雞與海藍蛋雞,分成兩種處理,一開始在15:00給予任飼30分鐘,之後在17:00分別進行翼下靜脈注射生理食鹽水(1mL/kg)或三碘甲狀腺酪胺酸(3,5,3'-triiodothyronine, T3)(5μg/kg)做為控制組與處理組,犧牲採樣時間點為16:00、22:00、04:00、10:00、16:00。結果顯示,不論是蛋雞還是肉雞處理組血中TSH在早上5點時達到最高濃度,且其晝夜濃度波動均較控制組來的大(P < 0.05)。蛋雞與肉雞能量相關基因 (LKB1、UCP、PGC-1α) 表達與脈動模式直接受到甲狀腺處理影響,在22:00的表現量有顯著性提高。推測由白天進入晚上時施打甲狀腺素後,蛋雞與肉雞下視丘對體內能量變化的感測和調節上受到刺激,促使原本應在早上才表現的能量相關基因提早表現,以產生能量應付白天活躍狀態。處理組之肉雞下視丘GnRH與Dio2表現在22:00有顯著提升(P < 0.05),但是控制組GnRH表現在隔天16:00才有顯著增加(P < 0.05)。蛋雞處理組之GnRH與Dio2表現及波動則與控制組相似。蛋雞處理組晝夜節律基因Clock、Bmal1在白天時表現量有較顯著的脈動,但肉雞處理組則較平穩。肉雞處理組RORα基因在22:00達到波峰,但在蛋雞處理組RORα基因表現卻受到持續抑制。肉雞處理組Cry1及Cry2基因表現在4:00顯著提升,在16:00達到高峰(P < 0.05),但是蛋雞處理組Cry1及Cry2基因表現脈動則較平穩。蛋雞處理組TTF1基因表現在22:00達到波峰,而肉雞處理組TTF1基因表現在10:00受到抑制,但在隔天16:00顯著提升(P < 0.05)。歸納以上結果顯示: 造成肉雞處理組GnRH基因脈動較明顯是因為Cry1及TTF1晝夜脈動較大。甲狀腺素處理使得蛋雞血中TSH大量分泌,但對GnRH脈動則影響較小,因此推論蛋雞可以透過及時早期晝夜節律基因的表現,包括Clock及Bmal1來緩和甲狀腺素造成GnRH波動,而肉雞因甲狀腺素誘發晚期晝夜節律基因CRY1和TTF1表達延遲至白天,顯示容易受外源性因子影響而改變GnRH基因脈動。綜合以上; 肉雞的節律基因會因外在因子使得脈動更加明顯,且需一段時間回復,而蛋雞可以通過自我調控機制影響晝夜節律抵禦外部因子的刺激,說明了肉雞在維持晝夜節律基因表現較蛋雞不敏感。

Evolution of modern chickens can be dated back to 8,000 years ago. House chicken was thought to be originated from Red Jungle fowls in Southeast Asia. The divergence of chicken breeds for egg laying and meat production was dated to about 100 years ago. During the 20th century, selection through population genetics produced the modern commercial strains of meat- and egg-type chickens. One of the most striking differences found between meat- and egg-type chickens was thyroid stimulating hormone receptor (TSHR) signaling, which has a pivotal role in metabolic regulation and photoperiod control of reproduction in birds. Thyroid hormone is the main hormone to regulate energy metabolism, molting, and mating in response to light cue. The aim of this study was to investigate the expression of circadian genes in the hypothalamus of meat- and egg-type hens in response to exogenous thyroid hormone. Hens at 32 weeks of age were injected with saline (1 mL/kg) or 3,5,3 '-triiodothyronine (T3, 5 μg/kg) through wing vein at 17:00 and sacrificed at 16:00, 22:00, 04:00, 10:00, and 16:00. Results showed that plasma TSH levels were higher in meat-type hens than that of egg-type hens before T3 treatment (P < 0.05). In contrast to meat-type hens, T3 treatment in egg layers resulted in a more dramatic increase of plasma TSH level peaked at 05:00. Expression of energy-related genes, liver kinase B1 (LKB1), uncoupling protein (UCP), and peroxisome proliferator-activated receptor-γ coactivator (PGC-1α) in T3-treated hens exhibited a rhythmic pattern in both types of hens and reached the peak at 22:00 (P < 0.05), suggesting that T3 stimulation mimics the light cue, which in turn drives the hypothalamus to reply an early ignition of gene expressions. Expression of GnRH and Dio2 (deiodinase 2) in T3-treated meat-type hens exhibited an early peak at 22:00, but the control hens showed a dramatic increase of GnRH transcription at 16:00 in the next day (P < 0.05). In egg-type hens, GnRH and Dio2 (deiodinase 2) expression oscillated at a relatively stable pattern in response to T3 treatment. T3 treatment induced a more fluctuating pattern of CLOCK and Baml1 expression during the day in egg-type hens, whereas meat-type hens showed a relative stable pulsatility in response to T3 induction. In meat-type hens, T3 treatment induced a more rhythmic RORα expression to reach the peak at 22:00 (P < 0.05), whereas layers exhibited persistently suppressed RORα expression. Cry1 and Cry2 expression climbed up at 04:00 and peaked at 16:00 in T3-treated meat-type hens, but egg-type hens showed a stable pattern. Per2 pulsatility remained stable by T3 injection in both types of hens. T3 treatment induced a more rhythmic TTF1 (thyroid transcription factor 1) expression to the peak at 22:00 (P < 0.05) in the layers, whereas meat type hens displayed suppressed TTF1 expression down to the wave trough at 10:00 and up to the plateau at 16:00 (P < 0.05). In contrast to layers, therefore, a more dramatic oscillation of GnRH expression in response to T3 treatment in meat-type hens is attributed to the late diurnal fluctuation of Cry1 and TTF1. Based on the results, thyroid hormone regulation on TSH secretion was more dramatic in egg-type hens, but the following effect of GnRH oscillation was not observed, suggesting that egg-type hens may operate through early circadian gene rhythmicity including CLOCK and Baml1 at night to withstand the effect of variable factors on the oscillation of GnRH expression, while meat-type hens exhibited a late diurnal fluctuation of circadian Cry1 and TTF1 expression in response to T3 induction, and thereby indicating an more oscillating GnRH secretion in response to external cues. In conclusion, the circadian gene expression patterns of meat-type hens apparently are more fluctuating in response to stimuli, and resume to the basal pattern in a sluggish way. Thus, the egg-type hens can manage a homeostatic circadian rhythmicity through compensatory mechanisms to withstand the variable cues, while the meat-type hens are less sensitive in maintaining circadian rhythmicity.
URI: http://hdl.handle.net/11455/90317
Rights: 同意授權瀏覽/列印電子全文服務,2015-01-28起公開。
Appears in Collections:動物科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7100037004-1.pdf12.55 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.