Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90318
標題: Hypothalamic circadian related gene expression pulsatility of meat- and egg- type hens in response to insulin and glucose infusion
肉用與蛋用母雞下視丘節律相關基因表現脈動對胰島素與葡萄糖之反應
作者: Yi- Ju Ko
柯薏茹
關鍵字: 晝夜節律基因;肉用與蛋用母雞;下視丘;葡萄糖;胰島素;circadian genes;meat- and egg-type hens;hypothalamus;glucose;insulin
引用: 李淵百、黃暉煌。1989。台灣土雞育種。第一屆優質雞研討會刊。 林文蓉。2002。民間土雞繁質性能檢定與飼養管理改良。行政院農委會畜產試驗所年報第10頁。 范揚廣、李淵百。1984。飼料營養濃度與蛋白質熱能比對台灣三種肉用雞生長成雞隻影響。中畜會誌13(3-4): 1-12。 陸登輝。1989。台灣有色雞的發展經過。第六屆優質雞研討會刊。 謝宜倫。2011。任食影響白肉種雞生殖功能─免疫細胞角色與卵巢顆粒性細胞凋亡之探討。碩士論文。中興大學。台中。 黃郁芬。2011。 Adelman, J. P., A. J. Mason, J. S. Hayflick, and P. H. Seeburg. 1986. Isolation of the gene and hypothalamic cDNA for the common precursor of gonadotropin-releasing hormone and prolactin release-inhibiting factor in human and rat. Proc. Natl. Acad. Sci. U S A. 83:179-183. Anand, B. K., and J. R. Brobeck. 1951. Hypothalamic control of food intake in rats and cats. Yale. J. Biol. Med. 24:123-140. Aprison, M. H., and R. Werman. 1965. The distribution of glycine in cat spinal cord and roots. Life Sci. 4:2075-2083. Asher, G. and U. Schibler. 2011. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metabolism. 13:125-137. Asher, G., D. Gatfield, M. Stratmann, H. Reinke, C. Dibner, and F. Kreppel. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 134:317-328. Bailey, M. J., P. D. Beremand, R. Hammer, D. Bell-Pedersen, T. L. Thomas, and V. M. Cassone. 2003. Transcriptional profiling of the chick pineal gland, a photoreceptive circadian oscillator and pacemaker. Mol. Endocrinol. 10:2084-2095. Barbato, G. F. 1994. Genetic control of food intake in chickens. J. Nutr. 124:1341S-1348S. Barnea, M., Z. Madar, and O. Froy. 2009. High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver. Endocrinology. 150:161-168. Belden, W. J., and J. C. Dunlap. 2008. SIRT1 is a circadian deacetylase for core clock components. Cell. 134:212-214. Bergeron, R., R. R. Russell, L. H. Young, J. M. Ren, M. Marcucci, A. Lee, and G. I. Shulman. 1999. Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am. J. Physiol. 276:E938-E944. Bernardis, L. L., and L. L. Bellinger. 1987. The dorsomedial hypothalamic nucleus revisited: 1986 update. Brain Res. 434:321-381. Bordone, L., M. C. Motta, F. Picard, A. Robinson, U. S. Jhala, and J. Apfeld. 2006. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 4:210-220. Bouret, S. G., S. J. Draper, and R. B. Simerly. 2004. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J. Neurosci. 24:2797-2805. Bray, G. A. and D. A. Yolk. 1979. Hypothalamic and gene obesity in experimental animals : an autonomic and endocrine hypothesis. Physiol. Rev. 59:719-809. Broberger, C. 2005. Brain regulation of food intake and appetite: molecules and networks. J. Intern. Med. 258:301-327. Brown, M. S., and J. L. Goldstein. 1997. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membranebound transcription factor. Cell. 89:331-340. Brunet, A., L. B. Sweeney, J. F. Sturgill, K. F. Chua, P. L. Greer, and Y. Lin. 2004. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 303:2011-2015. Buijs, R. M., and F. Kreier. 2006. The metabolic syndrome: a brain disease? J. Neuroendocrinol. 18:715-716. Canaple, L., J. Rambaud, O. Dkhissi-Benyahya, B. Rayet, N. S. Tan, and L. Michalik. 2006. Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol. Endocrinol. 20:1715-1727. Canto´, C., Z. Gerhart-Hines, J. N. Feige, M. Lagouge, L. Noriega, J. C. Milne, P. J. Elliott, P. Puigserver, and J. Auwerx. 2009. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 458:1056-1060. Chen, S. E., J. P. McMurtry, and R. L. Walzem. 2006. Overfeeding-induced ovarian dysfunction in broiler breeder hens is associated with lipotoxicity. Poult. Sci. 85:70-81. Crute, B. E., K. Seefeld, J. Gamble, B. E. Kemp, and L. A. Witters. 1998. Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase. J. Biol. Chem. 273:35347-35354. Curtis, A. M., S. B. Seo, E. J. Westgate, R. D. Rudic, E. M. Smyth, and D. Chakravarti. 2004. Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J. Biol. Chem. 279:7091-7097. Dali-Youcef, N., M. Lagouge, S. Froelich, C. Koehl, K. Schoonjans, and J. Auwerx. 2007. Sirtuins: the 'magnificent seven', function, metabolism and longevity. Ann. Med. 39:335-345. Doi, M., J. Hirayama, and P. Sassone-Corsi. 2006. Circadian regulator CLOCK is a histone acetyltransferase. Cell. 125:497-508. Dunlap, J. C. 1999. Molecular bases for circadian clocks. Cell. 96:271-290. Etchegaray, J. P., C. Lee, P. A. Wade, and S. M. Reppert. 2003. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature. 421:177-182. Froy, O., D. C. Chang, and S. M. Reppert. 2002. Redox potential: differential roles in dCRY and mCRY1 functions. Curr. Biol. 12:147-152. Gao, G., C. S. Fernandez, D. Stapleton, A. S. Auster, J. Widmer, J. R. B. Dyck, B. E. Kemp, and L. A. Witters. 1996. Non-catalytic β- and γ-subunit isoforms of the 5′-AMP-activated protein kinase. J. Biol. Chem. 271:8675-8681. Gao, S., and M. D. Lane. 2003. Effect of the anorectic fatty acid synthase inhibitor C75 on neuronal activity in the hypothalamus and brainstem. Proc. Natl. Acad. Sci. USA. 100:5628-5633. Griffin, H. D., and C. Goddard. 1994. Rapidly growing broiler (meat-type) chickens: Their origin and use for comparative studies of the regulation of growth. Int. J. Biochem. 26:19-28. Hardie, D. G. 2004. AMP-activated protein kinase: a master switch in glucose and lipid metabolism. Rev. Endocr. Metab. Disord. 5:119-125. Hardie, D. G., J. W. Scott, D. S. Pan, and E. R. Hudson. 2003. Mansgement of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 546:113-120. Havenstein, G. B., P. R. Ferket, and M. A. Qureshi. 2003. Growth, livability, and feed conversion of 1957 vs 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 82:1500-1508. Hawley, S. A., J. Boudeau, J. L. Reid, K. J. Mustard, L. Udd, T. P. Makela, D. R. Alessi, and D. G. Hardie. 2003. Complexes between the LKB1 tumor suppressor, STRADalpha/beta and MO25alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2:1-16. Hawley, S. A., M. A. Selbert, E. G. Goldstein, A. M. Edelman, D. Carling, and G. D. Hardie. 1995. 5′-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J. Biol. Chem. 270:27186-27191. He, W., Y. Barak, A. Hevener, P. Olson, D. Liao, J. Le, M. Nelson, E. Ong, J. M. Olefsky, and R. M. Evans. 2003. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc. Natl. Acad. Sci. U.S.A. 100:15712-15717. Hirayama, J., S. Sahar, B. Grimaldi, T. Tamaru, K. Takamatsu, Y. Nakahata, and P. Sassone-Corsi. 2007. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature. 450:1086-1090. Hirota, T., and Y. Fukada. 2004. Resetting mechanism of central and peripheral circadian clocks in mammals. Zoolog. Sci. 21:359-368. Hudson, E. R., D. A. Pan, J. James, J. M. Lucocq, S. A. Hawley, K. A. Green, O. Baba, T. Terashima, and D. G. Hardie. 2003. A novel domain in AMP activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr. Biol. 13:861-866. Inoue, I., Y. Shinoda, M. Ikeda, K. Hayashi, K. Kanazawa, and M. Nomura. 2005. CLOCK/BMAL1 is involved in lipid metabolism via transactivation of the peroxisome proliferator-activated receptor (PPAR) response element. J. Atheroscler. Thromb. 12:169-174. Kaneko, K., T. Yamada, S. Tsukita, K. Takahashi, Y. Ishigaki, Y. Oka, and H. Katagiri. 2009. Obesity alters circadian expressions of molecular clock genes in the brainstem. Brain Res. 1263:58-68. Karaganis, S. P., P. A. Bartell, V. R. Shende, A. F. Moore, and V. M. Cassone. 2009. Modulation of metabolic and clock gene mRNA rhythms by pineal and retinal circadian oscillators. Gen. Comp. Endocrinol. 161:179-192. Kemp, B. E., D. Stapleton, D. J. Campbell, Z. P. Chen, S. Murthy, M. Walter, A. Gupta, J. J. Adams, F. Katsis, B. van Denderen, I. G. Jennings, T. Iseli, B. J. Michell, and L. A. Witters. 2003. AMP-activated protein kinase, super metabolic regulator. Biochem. Soc. Trans. 31:162-168. Kersten, S., J. Seydoux, J. M. Peters, F. J. Gonzalez, B. Desvergne, and W. Wahli. 1999. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J. Clin. Invest. 103:1489-1498. Kohsaka, A., A. D. Laposky, K. M. Ramsey, C. Estrada, C. Joshu, Y. Kobayashi, F. W. Turek, and J. Bass. 2007. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6:414-421. Konishi, H., K. Iida, M. Ohta, and M. Akahashi. 1988. A possible role for the eyes in the photoperiodic response of quail. Gen. Comp. Endocrinol. 72:461-466. Kuenzel, W. J. 1994. Central neuroanatomical systems involved in the regulation of food intake in birds and mammals. J. Nutr. 124:1355S-1370S. Lacy, M. P., H. P. Van Krey, P. A. Skewes, and D. M. Denbow. 1985. Effect of intrahepatic glucose infusions on feeding in heavy and light breed chicks. Poult. Sci. 64:751-756. Lacy, M. P., H. P. Van Krey, P. A. Skewes, and D. M. Denbow. 1986. Food intake in the domestic fowl: effect of intrahepatic lipid and amino acid infusions. Physiol. Behav. 36:533-538. Lacy, M. P., K. H. P. Van, P. A. Skewes, D. M. Denbow, and P. B. Siegel. 1987. Food intake response of genetically selected high and low-weight line cockerels to plasma infusions from fasted fowl. Poult. Sci. 66:1224-1228. Lacy, M. P., K. H. Van, P. A. Skewes, D. M. Denbow, and P. B. Siegel. 1987. Food intake response of genetically selected high and low-weight line cockerels to plasma infusions from fasted fowl. Poult. Sci. 66:1224-1228. Lamia, K. A., K. F. Storch, and C. J. Weitz. 2008. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. USA. 105:15172-15177. Leone, T. C., J. J. Lehman, B. N. Finck, P. J. Schaeffer, A. R. Wende, and S. Boudina. 2005. PGC-1alpha deficiency causes multisystem energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS. Biol. 3:672-687. Li, X., S. Zhang, G. Blander, J. G. Tse, M. Krieger, and L. Guarente. 2007. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell 28:91-106. Liang, H., and W. F. Ward. 2006. PGC-1alpha: a key regulator of energy metabolism. Adv. Physiol. Educ. 30:145-151. Lin, J., C. Handschin, and B. M. Spiegelman. 2005a. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1:361-370. Liu, C., S. Li, T. Liu, J. Borjigin, and J. D. Lin. 2007. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature. 447:477-481. Lochhead, P. A., I. P. Salt, K. S. Walker, D. G. Hardie, and C. Sutherland. 2000. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6- phosphatase. Diabetes. 49:896-903. Martin, T. L., T. Alquier, K. Asakura, N. Furukawa, F. Preitner, and B. B. Kahn. 2006. Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle. J. Biol. Chem. 281:18933-18941. Matagne, V., J. G. Kim, B. J. Ryu, M. K. Hur, M. S. Kim, K. Kim, B. S. Park, G. Damante, G. Smiley, B. J. Lee, and S. R. Ojeda. 2012. Thyroid transcription factor 1, a homeodomain containing transcription factor, contributes to regulating periodic oscillations in gnrh gene expression. J. Neuroendocrinol. 24:916-929. McCarthy, J., and P. B. Siegel. 1983. A review of genetical and physiological effects of selection in meat-type poultry. Anim. Breed. 51:87-94. McNamara, P., S. P. Seo, R. D. Rudic, A. Sehgal, D. Chakravarti, and G. A. FitzGerald. 2001. Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell. 105:877-889. Mercer, J. G., and J. R. Speakman. 2001. Hypothalamic neuropeptide mechanisms for regulating energy balance: from rodent models to human obesity. Neurosci. Biobehav. Rev. 25:101-116. Merrill, G. F., E. J. Kurth, D. G. Hardie, and W. W. Winder. 1997. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol. 273:E1107-E1112. Michan, S., and D. Sinclair. 2007. Sirtuins in mammals: insights into their biological function. Biochem. J. 404:1-13. Minokoshi, Y., T. Alquier, N. Furukawa, Y. B. Kim, A. Lee, and B. Xue. 2004. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 428:569-574. Mitchelhill, K. I., D. Stapleton, G. Gao, C. House, B. Michell, F. Katsis, L. A. Witters, and B. E. Kemp. 1994. Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J. Biol. Chem. 269:2361-2364. Miyamoto, K., Y. Hasegawa, M. Nomura, M. Igarashi, K. Kangawat, and H. Matsuot. 1984. Identification of the second gonadotropin-releasing hormone in chicken hypothalamus: Evidence that gonadotropin secretion is probably controlled by two distinct gonadotropin-releasing hormones in avian species. Proc. Natl. Acad. Sci. USA. 81:3874-3878. Mollison, B., W. Guenter, and B. R. Boycott. 1984. Abdominal fat deposition and sudden death syndrome in broilers : the effects of restricted intake, early life caloric (fat) restriction, and calorie : protein ratio. Poult. Sci. 63:1190-1200. Motta, M. C., N. Divecha, M. Lemieux, C. Kamel, D. Chen, and W. Gu. 2004. Mammalian SIRT1 represses forkhead transcription factors. Cell. 116:551-563. Nakahata, Y., B. Grimaldi, S. Sahar, J. Hirayama, and P. Sassone-Corsi. 2007. Signaling to the circadian clock: plasticity by chromatin remodeling. Curr. Opin. Cell Biol. 19:230-237. Nakahata, Y., M. Kaluzova, B. Grimaldi, S. Sahar, J. Hirayama, and D. Chen. 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 134:329-340. Naruse, Y., K. Oh-hashi, N. Iijima, M. Naruse, H. Yoshioka, and M. Tanaka. 2004. Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol. Cell Biol. 24:6278-6287. Oishi, K., H. Shirai, and N. Ishida. 2005. CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. Biochem. J. 386:575-581. Oishi, K., M. Kasamatsu, and N. Ishida. 2004. Gene- and tissue specific alterations of circadian clock gene expression in streptozotocin-induced diabetic mice under restricted feeding. Biochem. Biophys. Res. Commun. 317:330-334. Olney, J. W. 1969. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science. 164:719-721. Panda, S., J. B. Hogenesch, and S. A. Kay. 2002. Circadian rhythms from flies to human. Nature. 417:329-335. Preitner, N., F. Damiola, L. Lopez-Molina, J. Zakany, D. Duboule, U. Albrecht, and U. Schibler. 2002. The orphan nuclear receptor REV-ERB controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 110:251-260. Proszkowiec-Weglarz, M., P. W., P. R. Mark, R. Ramesh, and P. M. John. 2006. Characterization of the AMP-activated protein kinase pathway in chickens. Comp. Biochem. Physiol. Part B 143:92-106. Rafaeloff-Phail, R., L. Ding, L. Corner, W. K. Yeh, D. McClure, H. Guo, K. Emerson, and H. Brooks. 2004. Biochemical regulation of mammalian AMP-activated protein kinase activity by NAD and NADH. J. Biol. Chem. 279:52934-52939. Reppert, S. M., and D. R. Weaver. 2001. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63:647-676. Reppert, S. M., and D. R. Weaver. 2002. Coordination of circadian timing in mammals. Nature. 418:935-941. Richter, E. A., W. Derave, and J. F. Wojtaszewski. 2001. Glucose, exercise and insulin: emerging concepts. J. Physiol. 535:313-322. Ripperger, J. A., and U. Schibler. 2006. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38:369-374. Ripperger, J. A., and U. Schibler. 2006. RhythmicCLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38:369-374. Robinson, F. E., J. L. Wilson, M. W. Yu, G. M. Fasenko, and R. T. Hardin. 1993. The relationship between body weight and reproductive efficiency in meat-type chickens. Poult. Sci. 72:912-922. Rodgers, J. T., C. Lerin, W. Haas, S. P. Gygi, B. M. Spiegelman, and P. Puigserver. 2005. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 434:113-118. Rubin, C. J., M. C. Zody, J. Eriksson, J. R. Meadows, E. Sherwood, M. T. Webster, L. Jiang, M. Ingman, T. Sharpe, S. Ka, F. Hallböök, F. Besnier, O. Carlborg, B. Bed'hom, M. Tixier-Boichard, P. Jensen, P. Siegel, K. Lindblad-Toh, and L. Andersson. 2010. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 464: 587-591. Rutter, J., M. Reick, and S. L. McKnight. 2002. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 71:307-331. Rutter, J., M. Reick, L. C. Wu, and S. L. McKnight. 2001. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science. 293:510-514. Saldanha, C. J., R. K. Leak, and R. Silver. 1994. Detection and transduction of daylength in birds. Psychoneuroendocrinology. 19:641-656. Satoh, N., Y. Ogawa, G. Katsuura, M. Hayase, T. Tsuji, K. Imagawa, Y. Yoshimasa, S. Nishi, K. Hosoda, and K. Nakao. 1997. The arcuate nucleus as a primary site of satiety effect of leptin in rats. Neurosci. Lett. 224:149-152. Schoonjans, K., B. Staels, and J. Auwerx. 1996. Role of the peroxisome proliferatoractivated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J. Lipid Res. 37:907-925. Schwartz, M. W., S. C. Woods, D. Porte, R. J. Seeley, and D. G. Baskin. 2000. Central nervous system control and food intake. Nature. 404:661-671. Shimokawa, T., M. V. Kumar, and M. D. Lane. 2002. Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides. Proc. Natl. Acad. Sci. USA. 99:66-71. Shimomura, I., R. E. Hammer, J. A. Richardson, S. Ikemoto, Y. Bashmakov, J. L. Goldstein, and M. S. Brown. 1998. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 12:3182-3194. Siegel, P., and E. Wisman. 1966. Selection for body weight at eight weeks of age. 6. Changes in appetite and feed utilization. Poult. Sci. 45: Simpson, K. A., N. M. Martin, and S. R. Bloom1. 2009. Hypothalamic regulation of food intake and clinical therapeutic applications. Arq. Bras. Endocrinol. Metab. 53:120-128. Sirgrl, P. and E. Wisman. 1966. Selection for body weight at eight weeks of age. 6. Changes in appetite and feed utilization. Poult. Sci. 45:1391-1397. Skewes, P. A., D. M. Denbow, M. P. Lacy, and H. P. Van Krey. 1986a. Alteration of food intake following intracerebroventricular administration of plasma from free-feeding domestic fowl. Physiol. Behav. 36:295-299. Skewes, P. A., D. M. Denbow, M. P. Lacy, and H. P. Van Krey. 1986b. Reduced food intake following intracerebroventricular administration of a low molecular weight fraction of plasma from free-feeding fowl. Poult. Sci. 65:172-176. Sonoda, T. 1983. Hyperinsulinemia and its role in maintaining the hypo thalamic hyperphagia in chickens. Physiol. Behav. 30:325-329. Stanley, B. G., A. S. Chin, and S. F. Leibowitz. 1985. Feeding and drinking elicited by central injection of neuropeptide Y: evidence for a hypothalamic site(s) of action. Brain Res. Bull. 14:521-524. Stanley, B. G., and S. F. Leibowitz. 1985. Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior. Proc. Natl. Acad. Sci. U S A. 82:3940-3943. Stapleton, D., E. Woollatt, K. I. Mitchelhill, J. K. Nicholl, C. S. Fernandez, B. J. Michell, L. A. Witters, D. A. Power, G. R. Sutherland, and B. E. Kemp. 1997. AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location. FEBS Lett. 409:452-456. Stapleton, D., K. I. Mitchelhill, G. Gao, J. Widmer, B. J. Michell, T. The, C. M. House, C. S. Fernandez, T. Cox, L. A. Witters, and B. E. Kemp. 1996 Mammalian AMP-activated protein kinase subfamily. J. Biol. Chem. 271:611-614. Steinberg, G. R., B. J. Michell, B. J. Van Denderen, M. J. Watt, A. L. Carey, B. C. Fam, S. Andrikopoulos, J. Proietto, C. Z. Gorgun, D. Carling, G. S. Hotamisligil, M. A. Febbraio, T. W. Kay, and B. E. Kemp. 2006. Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metab. 4:465-474. Turek, F. W., C. Joshu, A. Kohsaka, E. Lin, G. Ivanova, E. McDearmon, A. Laposky, S. Losee-Olson, A. Easton, D. R. Jensen, R. H. Eckel, J. S. Takahashi, and J. Bass. 2005. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 308:1043-1045. Ueda, H. R., S. Hayashi, W. Chen, M. Sano, M. Machida, Y. Shigeyoshi, M. Iino, and S. Hashimoto. 2005. System-levelidentification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 37:187-192. Vettor, R., R. Fabris, C. Pagano, and G. Federspil. 2002. Neuroendocrine regulation of eating behaviour. J. Endocrinol. Invest. 25:836-854. Vitaterna, M. H., D. P. King, A. M. Chang, J. M. Kornhauser, P. L. Lowrey, J. D. McDonald, W. F. Dove, L. H. Pinto, F. W. Turek, and J. S. Takahashi. 1994. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science. 264:719-725. Williams, G., C. Bing, X. J. Cai, J. A. Harrold, P. J. King, and X. H. Liu. 2001. The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol. Behav. 74:683-701. Xue, B., and B. B. Kahn. 2006. AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J. Physiol. 574:73- 83. Yanagihara, H., H. Ando, Y. Hayashi, Y. Obi, and A. Fujimura. 2006. High-fat feeding exerts minimal effects on rhythmic mRNA expression of clock genes in mouse peripheral tissues. Chronobiol. Int. 23:905-914. Yasuo, S., M. Watanabe, N. Okabayashi, S. Ebihara, and T. Yoshimura. 2003. Circadian clock genes and photoperiodism: Comprehensive analysis of clock genes expression in the mediobasal hypothalamus, the suprachiasmatic nucleus and the pineal gland of Japanese quail under various light schedules. Endocrinology. 144:3742-3748. Yin, L., and M. A. Lazar. 2005. The orphan nuclear receptor Rev-erbα recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol. Endocrinol. 19:1452-1459. Yoon, J. C., P. Puigserver, G. Chen, J. Donovan, Z. Wu, and J. Rhee. 2001. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 413:131-138. Yoshimura, T., S. Yasuo, Y. Suzuki, E. Makino, Y. Yokota, and S. Ebihara. 2001. Identification of the suprachiasmatic nucleus in birds. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280: R1185-R1189. Zaid, H., C. N. Antonescu, V. K. Randhawa, and A. Klip. 2008. Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem. J. 413:201-215. Zylka, M. J., L. P. Shearman, D. R. Weaver, and S. M. Reppert. 1998. Three Period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron. 20:1103-1110.
摘要: 
生物體內有一套機制用以接受與適應環境、並調整自身生理狀態,以利個體之存活甚至族群之繁衍,而此機制稱之為「節律( circadian) 」。影響最鉅之環境因素便是日夜光照週期( Light-dark cycle) 變化,其次則為營養因子( Nutritional factors)。生物體各式各樣之代謝過程及行為皆須能量,因此,攝食後會由於能量衡定狀態 (energy homeostasis) 改變,使得節律再次調整,使生物體再次回歸平衡。家畜化與人為選拔育種下歧化出現今生長性強的肉用雞種與繁殖性強的蛋用雞種,其生理、行為與生產性能迥然不同。本試驗嘗試探討育種選拔趨動下如何達成現今肉用與蛋用雞種其生理與行為上的差異。利用於產蛋期30週齡紅羽仿土雞及海藍蛋雞,於採樣前禁食24小時,並於16:00、21:00、隔日04:00、09:00及16:00進行採樣,其中,於18:00及隔日06:00分別施打生理食鹽水(0.9%;1mL/kg body weight)、葡萄糖(1g/kg body weight)或胰島素(2 IU/kg body weight),以模擬生物進食後之生理狀態。下視丘以即時定量PCR (qRT-PCR)分析,結果顯示,肉用雞種對於施打葡萄糖之處理其正向調控節律基因Bmal1,以及負向調控基因Cry1、Cry2、Cry4、Per2,另外RORα之表現脈動皆較蛋雞有明顯劇烈波動;而施打胰島素後雖可改變某些基因之表現,但不似葡萄糖反應顯著,其中Bmal1與RORα表現脈動肉雞較蛋雞明顯。此外,葡萄糖處理誘發PGC-1α表現脈動肉雞較蛋雞劇烈,但在胰島素處理則是蛋雞較肉雞顯著。葡萄糖或胰島素處理持續性地壓抑蛋雞SIRT1表現,但誘發肉雞SIRT1表現波動顯著上昇。肉雞之血中胰島素濃度對外源性葡萄糖刺激的反應,以及血中游離脂肪酸濃度對外源性葡萄糖或胰島素刺激的反應,皆較蛋雞顯著。以上結果顯示,肉用雞種於攝食後對節律基因之影響主要是由於葡萄糖作用,而胰島素之作用較弱。蛋雞施打葡萄糖後其節律基因表現的脈動與波動幅度不似肉用雞種明顯。肉用雞種節律基因表現的脈動有較明顯之波動可能係長期經過人為選拔後,對於營養物質變動之敏感性較高,故營養物質的刺激或缺乏比較能趨動其生理與行為上的反應,如脂肪分解與合成、葡萄糖的配送(glucose disposal)、胰島素分泌、覓食行為等。而蛋雞可能透過自我調控機制影響節律基因表現以抵禦營養物質的刺激或缺乏,此說明了家畜化與人為育種選拔導致不同品系間生理、行為與生產性能上的迥異,部份係透過調控晝夜節律基因表現節奏。
URI: http://hdl.handle.net/11455/90318
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:動物科學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7100037001-1.pdf1.49 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.