Please use this identifier to cite or link to this item:
標題: Functional annotation of proteomic analysis from the hypothalamus of Leghorn layers by thyroxine induction
作者: Yu-Ting Hsiung
關鍵字: 來航蛋雞;下視丘;甲狀腺素(T3);促性腺激素釋放激素(GnRH);功能性意涵;Leghorn layers;Hypothalamus;3,5,3'–triiodothyronine (T3);GnRH;Functional annotation
引用: Decuypere, E., E. Kuhn, E. R. and A. Chadwick. Rhythms in circulating prolactin and thyroid hormone in the early postnatal life of the domestic fowl: Influence of fasting and feeding on thyroid rhythmicity. Page 189-200 in The Endocrine System and the Environment. Japan Scientific Societies Press, Tokyo. Sharp, P. J., and H. Klandorf. 1985. Environmental and physiological factors controlling thyroid function in Galliformes. Page 175-188 in The Endocrine System and the Environment. Japan Scientific Societies Press, Tokyo. Urry, L. A. 2008a. A tour of the cell. Page 112-118 in Campbell, Reece, Biology, 8th addition, Pearson international edition. Pearson, California. Urry, L. A. 2008b. Cellular respiration: harvesting chemical energy. Page 162-181 in Campbell, Reece, Biology, 8th addition, Pearson international edition. Pearson, California. Wentworth, B. C., and R. K. Ringer. 1986. Thyroids Page 452-465 in Avian Physiology. Sturkie, ed. Spring-Verlag, New York. Anderson, S., N. H. Bruun, K. M. Pedersen, and P. Laurberg. 2003. Biologic variation is important for interpretation of thyroid function tests. Thyroid 13:1069-1078. Anne McNabb, F. M. 2000. Thyroids Page 462-464 in Sturkie's Avian Physiology 5th edition Elsevier USA Barbato, G. F. 1994. Genetic control of food intake in chickens. J. Nutr. 124:1341s-1348s. Bargi-Souza, P., R. M. Romano, M. Salgado Rde, F. Goulart-Silva, E. L. Brunetto, T. M. Zorn, and M. T. Nunes. 2013. Triiodothyronine rapidly alters the TSH content and the secretory granules distribution in male rat thyrotrophs by a cytoskeleton rearrangement-independent mechanism. Endocrinology 154:4908-4918. Bechtold, D. A., and A. S. I. Loudon. 2007 Hypothalamic thyroid hormones: Mediators of seasonal physiology. Endocrinology 148:2605-2607. Bell-Pedersen, D., V. M. Cassone, D. J. Earnest, S. S. Golden, P. E. Hardin, T. L. Thomas, and M. J. Zoran. 2005. Circadian rhythms from multiple oscillators: Lessons from diverse organisms. Nature 6:544-566. Benoit, J. 1935. Le role des yeux dans ľaction stimulante de la lumiere sure le developpement testiulaire chez le canard. CR Soc. Biol. 118:669-671. Bentley, G. E. 2008. Biological timing: sheep, Dr. Seuss, and mechanistic ancestry. Curr. Biol. 18:R736-R738. Bingle, C. D. 1997. Thyroid transcription factor-1. Int. J. Biochem. Cell Biol. 29:1471-1473. Bittman, E. L., F. J. Karsch, and J. W. Hopkins. 1983. Role of the pineal gland in ovine photoperiodism: Regulation of seasonal breeding and negative feedback effects of estradiol upon luteinzing hormone secretion. Endocrinology 113:329-336. Blackmon, B. J., T. A. Dailey, X. Lianchun, H. A. Dailey. 2002. Characterization of a human and mouse tetrapyrrole-binding protein. Arch. Biochem. Biophys. 407:196-201. Blivaliss, B. B. 1947. Development of secondary sexual characteristics in thyroidectomized Brown Leghorn hens. J. Exp. Zool. 104:267-310. Boden, M. J., T. J. Varcoe, A. Voultsio, and D. I. Kenaway. 2010. Reproductive biology of female Bmal1 null mice. Reproduction 139:1077-1090. Boswell, T. 2005. Regulation of energy balance in birds by the neuroendocrine hypothalamus. J. Poult. Sci. 42:161-181. Bullitt, E. 1990. Expression of C-fos- like protein as a marker for neuronal activity following noxious stimulation in the rat. J. Comp. Neurol. 296:517-530. Bunger, M. K., L. D. Wilsbacher, S. M. Moran, C. Clendenin, L. A. Radcliffe, J. B.Hogenesch, M. C. Simon, J. S. Takahashi, and C. A. Bradfield. 2000. Mop3 is anessential component of the master circadian pacemaker in mammals. Cell 103:1009-1017. Cassone, V. M., and D. F. Westneat. 2012. The bird of time: Cognition and the avian biological clock. Front Mol Neurosci. 22; doi: 10.3389. Chen, C. F., Y. L. Shiue, C. J. Yen, P. C. Tang, H. C. Chang, and Y. P. Lee. 2007. Laying traits and underlying transcripts, expressed in the hypothalamus and pituitary gland that were associated with egg production variability in chickens. Theriogenology 68:1305-1315. Chuang, Y. C., W. H. Su, H. Y. Lei, Y. S. Lin, H. S. Liu, C. P. Chang, and T. M. Yeh. 2012. Macrophage migration inhibitory factory induces autophagy via reactive oxygen species generation. PLoS One 7:e37613. Crane, B. R. 2012. Nature's intricate clockwork. Science 337:165-166. Dardente, H., C. A. Wyse, M. J. Birnie, S. M. Dupre, A. S. I. Loudon, G. A. Lincoln, amd D. G. Hazlerigg. 2010. A molecular switch for photoperiod responsiveness in mammals. Curr. Biol. 20:2193-2198. Davies, D. T., and B. K. Follett. 1975. The neuroendocrine control of gonadotrophin release in the Japanese quail. I. The role of the tuberal hypothalamus. Proc. R. Soc. Lond. B. 191:285-301. Davies, W. I. L., M. Turton, S. N. Peirson, B. K. Follett, S. Halford, J. Garcia-Fernandez, P. J. Sharp, M. W. Hankins, and R. G. Foster. 2011. Vertebrate ancient opsin photopigment spectra and the avian photoperiodic response. Biol. Lett. 23:291-294. Dawson, A., A. R. Goldsmith, T. J. Nicholls, and B. K. Follett. 1986. Endocrine changes associated with the termination of photorefractoriness by short daylengths and thyroidectomy in starlings (Sturnus vulgaris). J. Endocrinol. 110:73-79. Dawson, A., V. M. King, G. E. Bentley, and G. F. Ball. 2001. Photoperiodic control of seasonality in birds. J. Biol. Rhythms 16:265-280. Dawson, A., and P. J. Sharp. 2007. Photofractoriness in bird- photoperiodic and non-photoperiodic control. Gen. Comp. Endocrinol 153:278-284. Dokladny, K., M. N. Zuhl, M. Mandell, D. Bhattacharya, S. Schneider, V. Deretic, and P. L. Moseley. 2013. Regulatory coordination between two major intracellular homeostatic system: heat shock response and autophagy. J. Biol. Chem. 24:14959-14972. Fingerle-Rowson, G., and R. Bucala. 2001. Neuroendocrine properties of macrophage migration inhibitory factor (MIF). Immunol. Cell Biol. 79:368-375. Fitzgerald, K. T. 1979. The structure and function of the pars tuberalis of the vertebrate adenohypophysis. Gen. Comp. Endocrinol. 37:383-339. Follett, B. K., and P. J. Sharp. 1969. Circadian rhythmicity in photoperiodically induced gonadotrophin release and gonadal growth in the quail. Nature 223:968-971. Freeman, D. A., B. J. W. Teubner, C. D. Smith, and B. J. Prendergast. 2007. Exogenous T3 mimics long day lengths in Siberian hamster. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292:2368-2372. Gekakis, N., D. Staknis, H. B. Nguyen, F. C. Davis, L. D. Wilsbacher, D. P. King, J. S. Takashi, and C. J. Weitz. 1998. Role of the CLOCK protein in the mammalian circadian mechanism. Nature 280:1564-1569. Gilad, Y. R. Shiloh, Y. Ber, S. Bialik, and A. Kimchi. 2014. Discovering protein-protein interactions within the programmed cell death network using a protein-fragment complementation screen. Cell Rep. 8:909-921. Goldsmith, A. R., and T. J. Nicholls. 1984. Thyroidectomy prevents the development of photorefractoriness and the associated rise in plasma prolactin in starlings. Gen. Comp. Endocrinol. 54:256-263. Gueera, M., J. L. Blazquez, B. Perruzzo, B. Pelaez, S. Rodriguez, D. Toranzo, F. Pastor, and E. M. Rodriguez. 2010. Cell organization of the rat pars tuberalis. Evidence for open communication between pars tuberalis cell, cerebrospinal fluid and tanycytes. Cell Tissue Res. 339:359-381. Halford, S., S. S. Pires, M. Turton, L. Zheng, I. Gonzalez-Menendez, W. L. Davies, S. N. Peirson, J. M. Gracia-Fernandez, M. W. Hankins, and R. G. Foster. 2009. VA opsin-based photoreceptors in the hypothalamus of birds. Curr. Biol. 19:1396-1402. Hanon, E. A., G. A. Lincoln, J. M. Fustin, H. Dardente, M. M. Pevet, P. J. Morgan, and D. G. Hazlerigg. 2008. Ancestral TSH mechanism signals summer in a photoperiodic mammal. Curr. Biol. 18:1147-1152. Hanon, E. A., K. Routledge, H. Dardente, M. Masson-Pevet, P. J. Morgan, and D. G. Hazlerigg. 2009. Effect of photoperiod on the thyroid-stimulating hormone neuroendocrine system in the European hamster (Cricetus cricetus). J. Neuroendocrinol. 22:51-55. Havenstein, G. B., P. R. Ferket, and M. A. Qureshi. 2003. Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 82:1500-1508. Havlis, J., H. Thomas, M. Sebela, and A. Shevchenko. 2003. Fast-response proteomics by accelerated in-gel digestion of proteins. Anal. Chem. 75:1300-1306. Herdegen, T., and J. D. Leah. 1998. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res. Brain Res. Rev. 28:370-490. Hermenegildo, C., P. Medina, M. Peiro, G. Segarra, J. M. Vila, J. Ortega, and S. Lluch. 2002. Plasma concentration of asymmetric dimethlarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in hyperthyroid patients. J. Clim. Endocrinol. Metab. 87:5636-5640. Hirayama, J., S. Sahar, B. Grimaldi, T. Tamaru, K. Takamatsu, Y. Nakahata, and P. Sassone-Corsi. 2007. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450:1086-1090. Hoffman, R. A., and R. J. Reiter. 1965. Pineal gland: Influence on gonads of male hamsters. Science 148:1609-1610. Huang, S. Y., J. H. Lin, Y. H. Chen, C. K. Chuang, E. C. Lin, M. C. Huang, H. F. Sunny Sun, and W. C. Lee. 2005. A reference map and identification of porcine testis proteins using 2-DE and MS. Proteomics 5:4205-4212. Huang, S. Y., C. Pribenszky, Y. H. Kuo, S. H. Teng, Y. H. Chen, M. T. Chung, and Y. F. Chiu. 2009. Hydrostatic pressure pre-treatment affects the protein profile of boar sperm before and after freezing-thawing. Anim. Reprod. Sci. 112:136-149. Ikegami, K., and T. Yoshimura. 2012. Circadian clocks and the measurement of daylength in seasonal reproduction. Mol. Cell. Endocrinol. 249:76-81. Ilegami, K., Y. Katou, K. Higashi, and T. Yoshimura. 2009. Localization of circadian clock protein BMAL1 in the photoperiodic signal transduction machinery in Japanese quail. J. Comp. Neurol. 517:397-404. Kang, S. W., A. Thayananuphat, T. Bakken, and M. E. El Halawani. 2007. Dopamine-melatonin neuron in the avian hypothalamus controlling seasonal reproduction. Neuroscience 150:223-233. Kang, S. W., B. Leclerc, S. Kosonsiriluk, L. J. Mauro, A. Iwasawa, and M. E. El Halawani. 2010. Melanopsin expression in dopamine-melatonin neuron of the premammillary nucleus of the hypothalamus and seasonal reproduction in birds. Neuroscience 170:200-213. King, J. A., and R. P. Millar. 1982a. Structure of chicken hypothalamic luteinizing hormone-releasing hormone. I. Structural determination on partially purified material. J. Biol. Chem. 257:10722-10728. King, J. A., and R. P. Millar. 1982b. Structure of chicken hypothalamic luteinzing hormone-releasing hormone. II. Isolation and characterization. J. Biol. Chem. 257:10729-10732. King, D. P., Y. L. Zhao, A. M. Sangoran, L. D. Wilsbacher, M. Tanaka, M. P. Antoch, T. D. L. Steeves, M. H. Vitaterna, J. M. Kornhauser, P. L. Lowrey, F. W. Turek, and J. S. Takahashi. 1997. Positional cloning of the mouse circadian clock gene. Cell 89:641-653. Ko, Y. J. 2014 Hypothalamic circadian related gene expression pulsatility of meat- and egg-type hens in response to insulin and glucose infusion. Master thesis National Chung Hsing University, Taichung, Taiwan Kostourou, V., S. P. Robinson, J. E. Cartwright, and G. St. J. Whitley. 2002. Dimethylarginine dimethylaminohydrolase I enhances tumor growth and angiogenesis. Br. J. Cancer 87:673-680. Kuenzel, W. J. 1982. Central neural structures affecting food intake in birds: the lateral and ventral hypothalamic areas. In: Aspects of avian endocrinology. Kuenzel, W. J. 1993. The search for deep encephalic photoreceptors within the avian brain, using gonadal development as a primary indicator. Poult. Sci. 72:959-967. Kuenzel, W. J. 2000. Central nervous system regulation of gonadal development in the avian male. Poult. Sci. 79:1679-1688. Kuo, Y. M., Y. L. Shiue, C. F. Chen, P. C. Tang, and Y. P. Lee. 2005. Proteomic analysis of hypothalamic proteins of high and low egg production strain of chickens. Theriogenology 64:1490-1502. Larsson, M., T. Pettersson, and Carlstrom. 1985. Thyroid hormone binding in serum of 15 vertebrate species: Isolation of thyroxine-binding globulin and prealbumin analogs. Gen. Comp. Endocrinol. 58:360-375. Leclerc, B., S. W. Kang, L. J. Mauro, S. Kosonsiriluk, Y. Chaiseha, and M. E. EI Halawani. 2010. Photoperiodic modulation of clock gene expression in the avian premammillary nucleus. J. Neuroendocrinol. 22:119-128. Leonard, J. L., and T. J. Visser. 1986. Biochemistry of deiodination. In Thyroid Hormone Metabolism Ed. G. Hannemann. New York: Marcel Dekker 189-229. Lin, C. C. 2012. Hypothalamic gene expressions of meat- and egg-type hens under different energy statuses and effects of dietary glycine supplementation on growth performance and related physiology of Roman geese. Master thesis National Chung Hsing University, Taichung, Taiwan Lincoln, G. A. 1992. Administration of melatonin into the mediobasal hypothalamus as a continuous or intermittent signal affects the secretion of follicle stimulating hormone and prolactin in the ram. J. Pineal Res. 12:135-144. Lincoln, G. A., and K. Maeda. 1992. Effect of placing micro-implants of melatonin in the mediobasal hypothalamus and preoptic area on the secretion of prolactin and β-endorphin in rams. J. Endocrinol. 134:437-448. Liu, Y. C. 2014. Hypothalamic circadian related gene expression pulsatility of meat- and egg-type hens in response to thyroid hormone and diurnal/nocturnal change. Master thesis National Chung Hsing University, Taichung, Taiwan Lopez, M., C. V. Alvarez, R. Nogueiras, and C. Dieguez. 2013. Energy balance regulation by thyroid hormones at central level. Trends Mol. Med. 19:418-427. Lopez, M., L. Varela, M. J. Vazquez, S. Rodriguez-Cuenca, C. R. Gonzalez, V. R. Velagapudi, D. A. Morgan, E. Schienmakers, K. Agassandian, R. Lage, P. B. M. de Morentin, S. Tovar, R. Nogueiras, D. Carling, C. Lelliott, R. Gallego, M. Orešic, K. Chatterjee, A. K. Saha, K. Rahmouni, C. Dieguez, and A. Vidal-Puig. 2010. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat. Med. 16:1001-1008. Lorenzo, P. I., C. Menard, F. D. Miller, and J. Bernal. 2002. Thyroid hormone-dependent regulation of tα1 α-tubulin during brain development. Mol. Cell. Neurosci. 19:333-343. Malpaux, B., A. Daveau, F. Maurice, V. Gayrard, and J. C. Thiery. 1993. Short-day effect of melatonin on luteinizing hormone secretion in the ewe: Evidence for central sites of action in the mediobasal hypothalamus. Biol. Reprod. 48:752-760. Marcheva, B., K. M. Ramsey, E. D. Buhr, Y. Kobayashi, H. Su, C. H. Ko, G. Ivanova, C. Omura, S. Mo, M. H. Vitaterna, J. P. Lopez, L. H. Philipson, C. A. Bradfield, S. D. Crosby, L. JeBailey, X. Z. Wang, J. S. Takahashi, and J. Bass. 2010. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627-631. Matagne, V., J. G. Kim, B. J. Ryu, M. K. Hur, M. S. Kim, K. Kim, B. S. Park, G. Damante, G. Smiley, B. J. Lee, and S. R. Ojeda. 2012. Thyroid transcription factor 1, a homeodomain containing transcription factor, contributes to regulating periodic oscillations in GnRH gene expression. J. Neuroendocrinol. 24:916-929. Maywood, E. S., E. L. Bittman, and F. J. Hastings. 1996. Lesions of the melatonin- and androgen-responsive tissue of the dorsomedial nucleus of the hypothalamus block the gonadal responses of male Syrian hamsters to programmed infusions of melatonin. Biol. Reprod. 54:470-477. McAninch, E. A., and A. C. Bianco. 2014. Thyroid hormone signaling in energy homeostasis and energy metabolism. Ann. N. Y. Acad. Sci. 1311:77-87. Meddle, S. L., and B. K. Follett. 1995a. Photoperiodic activation of fos-like immunoreactive in neurons within the tuberal hypothalamus of Japanese quail. J. Comp. Physiol. 176:79-89. Meddle, S. L., and B. K. Follett. 1995b. Activation of the basal tuberal hypothalamus of castrated Japanese quail preceding photoperiodically driven luteinsing hormone (LH) release. J. Physiol. 489:172-173. Meddle, S. L., and B. K. Follett. 1997. Photoperiodically driven changes in Fos expression within the basal tuberal hypothalamus and median eminence of Japanese quail. J. Neurosci. 17:8909-8918. Meijer, J. H., and W. Schwartz. 2003. In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J. Bio. Rhyt. 18: 235-249. Mieda, M., and T. Sakurai. 2011. Bmal1 in the nervous system is essential for normal adaptation of circadian locomotor activity and food intake to periodic feeding. J. Neurosci. 31:15391-15396. Mikami, S., S. Yamada, Y. Hasegawa, and K. Miyamoto. 1998. Localization of avian LHRH-immunoreactive neurons in the hypothalamus of the domestic fowl, Gallus domesticus, and the Japanese quail, Coturnix coturnix. Cell Tissue Res. 251:51-58. Miyamoto, K., Y. Hasegawa, M. Nomura, M. Igarashi, K. Kangawa, and H. Matsuo. 1984. Identification of the second gonadotropin-releasing hormone in chicken hypothalamus: evidence that gonadotropin secretion is probably controlled by two distinct gonadotropin-releasing hormones in avian species. Proc. Nat. Acad. Sci. 81:3874-3878. Moore, H. A., and D. Whitmore. 2014. Circadian rhythmicity and light sensitivity of the zebrafish brain. PLoS ONE 9:e86176. Moore, R. Y. 1997. Circadian rhythms: basic neurobiology and clinical application. Annu. Rev. Med. 48:253-266. Nakane, Y., K. Ikegami, H. Ono, N. Yamamoto, S. Yoshida, K. Hirunagi, S. Ebihara, Y. Kubo, and T. Yoshimura. 2010. A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds. Proc. Natl. Acad. Sci. U S A 107:15264-15268. Nakane, Y., and T. Yoshimura. 2014. Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrate. Front. Neurosci. 8:1-7. Nakao, N., H. Ono, and T. Yoshimura. 2008. Thyroid hormones and seasonal reproductive neuroendocrine interactions. Reproduction 136:1-8. Nakao, N., H. Ono, T. Yamamura, T. Anraku, T. Takagi, K. Higashi, S. Yasuo, Y. Katou, S. Kageyama, Y. Uno, T. Kasukawa, M. Iigo, P. J. Sharp, A. Iwasawa, Y. Suzuki, S. Sugano, T. Miimi, M. .Izutani, T. Namikawa, S. Ebihara, H. R. Ueda, and T. Yoshimura. 2008. Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 452:317-323. Neuhhoff, V., N. Arold, D. Taube, and W. Ehrhardt. 1998. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear Background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255-262. Oliver, J., and J. D. Baylet. 1982. Brain photoreceptors for the photo-induced testicular response in birds. Experientia 38:1021-1029. Ono, H., Y. Hoshino, S. Yasuo, M. Watanabe, Y. Nakane, A. Murai, S. Ebihara, H. W. Korf, and T. Yoshimura. 2008. Involvement of thyrotropin in photoperiodic signal transduction in mice. Proc. Natl. Acad. Sci. U S A. 105:18238-18242. Ono, H., N. Nakao, T. Yamamura, K. Kinoshita, M. Mizutani, T. Namikawa, M. Iigo, S. Ebihara, and T. Yoshimura. 2009. Red jungle fowl (Gallus gallus) as a model for studying the molecular mechanism of seasonal reproduction. Anim. Sci. J. 80:328-332. Pedroso, A. P. R. L. Watanabe, K. T. Albuquerque, M. M. Telles, M. C. Andrade, J. D. Perez, M. M. Sakata, M. L. Lima, D. Estadella, C. M. Nascimento, L. M. Oyama, J. C. Rosa, D. E. Casarini, and E. B. Ribeiro. 2012. Proteomic profilimg of the rat hypothalamus. 10:26. Doi1186/1477-5956-10-26. Perkin, D. N., D. J. C. Pappin, D. M. Creas, and J. S. Cottrell. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:2551-2567. Peterson, G. L. 1993. Determination of total protein. Methods Enzymol. 91:95-119. Pomonis, J. D. A. S. Levine, and C. J. 1997. Billington. Interaction of the hypothalamus paraventricular nucleus and central nucleus of the amygfala in naloxone blockage of neuropeptide Y-induced feeding revealed by c-fos expression. J. Neurosci. 17:5175-5182. Rani, S., and V. Kumar. 2013. Avian circannual systems: Persistence and sex differences. Gen. Comp. Endocrinol. 190:61-67. Reinacher, M., E. Eigenbrodt, B. Schering, and W. Schoner. 1979. Immunohistochemical localization of pyruvate kinase isoenzymes in chicken tissues. Histochemistry 64:145-161. Revel, F. G., M. Saboureau, P. Pevet, J. D. Mikkelsen, and V. Simonneaux. 2006. Melatonin regulates type 2 deiodinase gene expression in the Syrian hamster. Endocrinology 147:4680-4687. Rispoli, L. A., and T. M. Nett. 2005. Pituitary gonadotropin-releasing hormone (GnRH) receptor: Structure, distribution and regulation of expression. Anim. Reprod. Sci. 88:57-74. Rubin, C. J., M. C. Zody, J. Eriksson, J. R. Meadows, E. Sherwood, M. T. Webster, L. Jiang, M. Ingman, T. Sharp, S. Ka, F. Hallbőők, F. Besnier, O. Carlborg, B. Beďhom, M. Tixier-Boichard, P. Jensen, P. Siegel, K. Lindblad-Toh, and L. Andersson. 2010. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464:587-591. Rudic, R. D., P. McNamara, A. M. Curtis, R. C. Boston, S. Panda, J. B. Hogenesch, and G. A. FitzGerald. 2004. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2:1893-1899. Saenz de Miera, C., E. A. Hanon, H. Dardente, M. Birnie, V. Simonneaux, G. A. Lincoln, and D. G. Hazlerigg. 2013. Circannual variation in thyroid hormone deiodinases in a short-day breeder. J. Neuroendocrinol. 25:412-421. Sarkar, P., S. Sarkar, V. Ramesh, H. Kim, S. Barnes, A. Kulkarni, J. C. Hall, B. L. Wilson, R. L. Thomas, N. R. Pellis, and G. T. Ramesh. 2008. Proteomic analysis of mouse hypothalamus under stimulated microgravity. SAS Institute. 2010. SAS/STAT User's Guide: Version 9.2 edition. SAS Institute Inc. Cary, NC, USA. Sawchenko, P. E. 1998. Toward a new neurobiology of energy balance, appetite, and obesity: the anatomists weigh in. J. Comp. Neurol. 402:435-441. Scott, C. J., H. T. Jansen, C. C. Kao, D. E. Kuehl, and G. L. Jackson. 1995. Disruption of reproductive rhythms and patterns of melatonin and prolactin secretion following bilateral lesions of the suprachiasmatic nuclei in the ewe. J. Neuroendocrinol. 7:429-443. Sechman, A. 2013. The role of thyroid hormones in regulation of chicken ovarian steroidogenesis. Gen. Comp. Endocrinol. 1:68-75. Sechman, A., K. Pawlowska, and J. Rzasa. 2009. Influence of triiodothyronine (T3) on secretion of steroids and thyroid hormone receptor expression in chicken ovarian follicle. Domes. Anim. Endocrinol. 37:61-73. Sharp, P. J. 2005. Photoperiodic regulation of seasonal breeding in birds. Ann. N. Y. Acad. Sci. 1040:189-199. Sharp, P. J., and B. K. Follett. 1969. The effect of hypothalamic lesions on gomadotrophin release in Japanese quail (Coturnix coturnix japonica). Neuroendocrinology 5:205-218. Shinomiya, A., T. Shimmura, T. Niahiwaki-Ohkawa, and T. Yoshimura. 2014. Regulation of seasonal reproduction by hypothalamic activation of thyroid hormone. Front. Endocrinol. 5:1-7. Shiota, M. H. Kusakabe, Y. Izumi, Y. Hikita, T. Nakao, Y. Funae, K. Miura, H. Iwao. 2010. Heat shock cognate protein 70 is essential for Akt signaling in endothelial function. Arterioscler. Tromb. Vasc. Biol. 30'491-497. Shiue, Y. L., L. R. Chen, C. F. Chen, Y. L. Chen, J. P. Ju, C. H. Chao, Y. P. Lin, Y. M. Kuo, P. C. Tang, and Y. P. Lee. 2006. Identification of transcripts related to high egg production in the chicken hypothalamus and pituitary. Theriogenology 66:1274-1283. Steinman, M. Q., S. C. Dinius, T. D. Siopes, and J. R. Millam. 2008. Photostimulated expression of type 2 iodothyronine deiodinase mRNA is greatly attenuated in the rostral tuberal hypothalamus of the photorefractory turkey hen. J. Neuroendocrinol. 20:1260-1269. Tessonneaud, A., A. Locatelli, M. Caldani, and M. C. Viguier-Martinez. 1995. Bilateral lesions of the suprachiasmatic nuclei alter the nocturnal melatonin secretion in sheep. J. Neuroendocrinol. 7:145-152. Thayananuphat, A., S. W. Kang, T. Bakken, J. R. Millam, and M. E. El Halawani. 2007. Rhythm-dependent light induction of the c-fos gene in the turkey hypothalamus. J Neuroendocrinol. 19:407-417. Thrun, L. A., G. E. Dahl, N. P. Evans, and F. J. Karsch. 1996. Time-course of thyroid hormone involvement in the development of anestrus in the ewe. Biol. Reprod. 55:833-837. Tsai, C. L., C. N. Tsai, C. Y. Lin, H. W. Chen, Y. S. Lee, A. Chao, T. H. Wang, H. S. Wang, and C. H. Lai. 2012. Secreted stress-induced phosphoprotein 1 activates the ALK2-SMAD signaling pathways and promotes cell proliferation of ovarian cancer cells. Cell Rep. 30:282-293. Tsutsumi, R., and N. J. G. Webster. 2009. GnRH pulsatility, the pituitary response and reproductive dysfunction. Endocr. J. 56:729-737. Ubuka, T., G. E. Bentley, and K. Tsutsui. 2013. Neuroendocrine regulation of gonadotropin secretion in seasonally breeding birds. Front Neurosci.. eCollection 2013. van Gils, J., P. Absil, L. Grauwels, L. Moons, F. Vandesande, and J. Balthazart. 1993. Distribution of luteinizing hormone-releasing hormone I and II (LHRH-I and -II) in the quail and chicken brain as demonstrated with antibodies directed against synthetic peptides. J. Comp. Neurol. 334:204-323. Verma, M. K. Dahiya, V. S. Ghalaut, S. Seth, P. S. Roy, A. Basu, and A. Soni. 2015. Thyroid disorders and nitric oxide levels. J. Sci. 5:4-8. Villanueva, I. C. Alva-Sanchez, and J. Pacheco-Rosado. 2013. The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. Oxid. Med. Cell Longev. Doi:10.1155/2013/218145. Watanabe, M., S. Yasuo, T. Watanabe, T. Yamamura, N. Nakao, S. Ebihara, and T. Yoshimura. 2004. Photoperiodic regulation of type 2 deiodinase gene in djungarian hamster: Possible homologies between avian and mammalian photoperiodic regulation of reproduction. Endocrinology 145:1546-1549. Watanabe, T., T. Yamamura, M. Watanabe, S. Yasuo, N. Nakao, A. Dawson, S. Ebihara, and T. Yoshimura. 2007. Hypothalamic expression of thyroid hormone-activating and –inactivating enzyme genes in relation to photorefractoriness in birds and mammals. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292:R568-R572. Winchester, C. F. 1939. Influence of thyroid on egg production. Endocrinology 24:697-701. Wu, C. L., H. C. Chou, C. S. Cheng, J. M. Li, S. T. Lin, Y. W. Chen, and H. L. Chan. 2012. Proteomic analysis of UVB-induced protein expression- and redox- dependent changes in skin fibroblasts using lysine- and cysteine- labeling two dimensional difference gel electrophoresis. J. Proteomics 75:1991-2014. Yamamura, T., K. Hirunagi, S. Ebihara, and T. Yoshimura. 2004. Seasonal morphological changes in the neuro-glial interaction between gonadotropin-releasing hormone nerve terminals and glial endfeet in Japanese quail. Endocrinology 145:4264-4267. Yamamura, T., S. Yasuo, K. Hirunagi, S. Ebihara, and T. Yoshimura. 2006. T3 implantation mimics photoperiodically reduced encasement of nerve terminals by glial in the median eminence of Japanese quail. Cell Tissue Res. 324:175-179. Yasuo, S., and H. W. Korf. 2011. The hypophysial pars tuberalis transduces photoperiodic signals via multiple pathways and messenger molecules. Gen. Comp. Endocrinol. 172:15-22. Yasuo, S., and T. Yoshimura. 2009. Comparative analysis of the molecular basis of photoperiodic signal transduction in vertebrates. Integr. Comp. Biol. 49:507-518. Yasuo, S., M. Watanabe, N. Okabayashi, S. Ebihara, and T. Yoshimura. 2003. Circadian clock gene and photoperiodism: comprehensive analysis of clock gene expression in the mediobasal hypothalamus, the suprachiasmatic nucleus, and the pineal gland of Japanese quail under various light schedules. Endocrinology 144:3742-3748. Yang, C. S., C. K. L. Lam, M. Chari, G. W. C. Cheung, A. Kokorovic, S. Gao, I. Leclerc, G. A. Rutter, and T. K. T. Lam. 2010. Hypothalamic AMP-activated protein kinase regulates glucose production. Diabetes 59:2435-2443. Yang, J., K. D. Kim, A. Lucas, K. E. Drahos, C. S. Santos, S. P. Mury, D. G. S. Capelluto, and C. V. Finkielstein. 2008. A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2. Mol. Cel. Biol. 28:4697-4711. Yoshimura, T. 2006. Molecular mechanism of the photoperiodic response of gonads in birds and mammals. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 144:345-350. Yoshimura, T., S. Yasuo, M. Watanabe, M. Iigo, T. Yamamura, K. Hirunagi, and S. Ebihara. 2003. Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 426:178-179. Zhao, J. 2007. Interplay among nitric oxide and reactive oxygen species. Plant Signal Behav. 2:544-547.
動物藉由感受到日照長短來調整生殖、遷徙、冬眠和換羽等生理行為。此種隨季節不同而有行為改變的現象稱作光週期性(photoperiodism)。光接受器感受光刺激,此訊息會傳至中心樞生理時鐘,經綜合與轉譯這些訊號後,以神經內分泌反應輸出,以激活相關反應與功能諸如生殖生理與行為。甲狀腺素(thyroid hormone)除了主要調控能量代謝外,還能媒介光照反應來生殖生理行為。下視丘中基部(mediobasal hypothalamus, MBH)是調控鳥類日夜節律(circadian rhythm)的中心位置,其中type 2 iodothyronine deiodinase (Dio2)會將thyroxine (T4) 由prohormone狀態轉化成有生物活性的三碘甲狀腺酪胺酸(3, 5, 3'–triiodothyronine, T3),進而刺激下視丘分泌促性腺刺激素釋放激素(gonadotropin-releasing hormone, GnRH)的神經末梢擴展接近腦下垂體門脈系統以利GnRH由下視丘釋放,GnRH再促進腦下垂體-性腺軸線(pituitary-gonad)。c-Fos在被激活神經元去極化後大量表現,其蛋白質產物 c-Fos 被當作是辨認神經元細胞活化的生物標記。因此本研究以蛋白質體學方法探討T3對禽類下視丘神經元與GnRH的分泌之影響路徑。試驗使用50週齡來航雞,於夏季光照進入黑暗時期(傍晚六點)翼靜脈注射T3 (5 μg/kg body weight)或生理食鹽水(1 mL/kg body weight)分別作為處理組和控制組,4小時後犧牲取其下視丘供蛋白質體分析。結果顯示: 在所有定量的420個蛋白質點中有14個蛋白質點有顯著差異(P < 0.05),其中有六個蛋白質點表現量上升,另外八個蛋白質點表現量下降,這些有差異的蛋白質多與調控能量代謝相關路徑及細胞骨架的形成有關,以西方吸漬法進一步確認丙酮酸激酶(pyruvate kinase)蛋白質表現,的確於T3處理後顯著下降(P<0.05)。免疫組織螢光染色法分析發現,T3處理下,c-Fos在的第三腦室周圍神經元細胞大量表現,且c-Fos和GnRH兩者具有共同的神經元表現位置,西方吸漬法進一步確認 T3處理後下視丘中c-Fos的表現顯著高於控制組(P < 0.05)。過去研究顯示: 由白天進入晚上時由周邊施打甲狀腺素後,蛋雞下視丘能量感測和調節相關基因(UCP, SIRT, LKB, PGC-1α)表現脈動提早,以產生能量應付活動作狀態,而晝夜節律基因CLOK、BMAL1在白天時表現量有較顯著的波動,綜何過去與本研究結果可推測周邊循環T3可藉由直接影響下視丘或經影響身體周邊組織能量狀態後,以能量缺乏訊號刺激下視丘,活化下視丘神經元來調控GnRH表現。

Animals can adjust their physical, physiological, and behavioral responses such as reproduction, migration, hibernation, and molting, in response to changing lengths of sun light. Behavioral adjustment in adaption to seasonal changes is called photoperiodism. Photoreceptors detect stimulation of light. A central clock or timer translates the signals. Then the outputs of neuroendocrine information activate behaviors and ally physiological responses such as reproductive functions. In addition to the effect on energy homeostasis, thyroid hormone can also regulate reproduction. Mediobasal hypothalamus is an important center controlling photoperiodic rhythm in avian species. The level of type 2 iodothyronine deiodinase (Dio2) in the mediobasal hypothalamus increases under the long-day photoperiod to catalyze thyroxine (T4) to its active form, 3,5,3'–triiodothyronine (T3), which in turn stimulates gonadotropin-releasing hormone (GnRH) nerve terminals located in close contact with the basal lamina for GnRH release, which then go through the hypophysial portal system to activate the pituitary-gonad axis. The c-Fos is highly expressed after neuron depolarization, and its protein product, c-Fos, tends to be used as a biomarker of neuron activation. Therefore, the aim of this study was to delineate the possible mechanisms how circulating T3 exerts effects on the hypothalamic neurons in relation to the secretion of GnRH by proteomic approaches. Leghorn hens at 50 weeks of age were given T3 (5μg/kg) or saline (1 mL/kg body weight) by intravenous injection before dark (at 6 o'clock, PM). The hypothalamuses were collected for proteomic analysis 4 hours after treatment. Results showed that 14 out of 420 quantified protein spots differed significantly by T3 induction (P < 0.05). Among the differentially expressed proteins, 6 and 8 spots were upregulated and downregulated, respectively. Most of the differentially expressed proteins are involved in metabolic pathways of energy homeostasis and formation and mobilization of cytoskeletons. Western blotting analysis confirmed the downregulation of pyruvate kinase expression by T3 induction as observed in proteomic analysis (P<0.05). Immunohistochemical studies further showed that T3 treatment promoted c-Fos expression, which were highly located in the neurons along the third ventricle, and were co-localized with GnRH-releasing neurons. Significant activation of c-Fos in the hypothalamus by T3 induction was further confirmed by Western blotting analysis (P < 0.05). Past studies suggested that T3 stimulation in hens mimics the light cue, which in turn drives the hypothalamus to reply an early ignition and fluctuation of energy-sensing and regulatory gene expressions including liver kinase B1 (LKB1), uncoupling protein (UCP), NAD-dependent deacetylase sirtuin-1 (SIRT1), and peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α). T3 treatment also induced a more fluctuating pattern of CLOCK and BMAL1 expression during the day. In combination with the results in the current study, it was concluded that circulating T3 may affect hypothalamic activation and following GnRH secretion pulse by directly acting on the hypothalamus or via a feedback loop as a low energy status from peripheral tissues.
Rights: 同意授權瀏覽/列印電子全文服務,2018-02-06起公開。
Appears in Collections:動物科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101037003-1.pdf1.48 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.