Please use this identifier to cite or link to this item:
標題: Gait identification using cumulants of ankle accelerometer
作者: 賴辰哲
Chen-Che Lai
關鍵字: 步態辨識;感知機;決策邊界;gait recognition;perceptron;decision boundary
引用: 1. United States. Department of Health, & Human Services. (1996). Physical activity and health: a report of the Surgeon General. DIANE Publishing.. 2. Williams, C. L., Hayman, L. L., Daniels, S. R., Robinson, T. N., Steinberger, J., Paridon, S., & Bazzarre, T. (2002). Cardiovascular Health in Childhood A Statement for Health Professionals From the Committee on Atherosclerosis, Hypertension, and Obesity in the Young (AHOY) of the Council on Cardiovascular Disease in the Young, American Heart Association. Circulation. 106(1), 143-160. 3. Waxman, A. (2005). Why a global strategy on diet, physical activity and health? 95,162-166. Karger Publishers. 4. Pate, R. R., Pratt, M., Blair, S. N., Haskell, W. L., Macera, C. A., Bouchard, C.,& Wilmore, J. H. (1995). Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. Journal of the American Medical Association. 273(5), 402-407. 5. Javier O. G., Josef B, Douglas R, & Joaquin G.R., (2004) Authentication gets personal with biometrics.Signal Processing Magazine, IEEE. 21(2) 50-62. 6. Catrine T. L., & David R. B. Jr. (2004). How many steps/day are enough? Sports medicine. 34(1), 1-8. 7. Bouten, C. V., Koekkoek, K., Verduin, M., Kodde, R., & Janssen, J. D. (1997). A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity.Biomedical Engineering, IEEE Transactions on. 44(3), 136-147. 8. Aminian, K., Robert, P., Jequier, E., & Schutz, Y. (1995). Estimation of speed and incline of walking using neural network. Instrumentation and Measurement, IEEE Transactions on. 44(3), 743-746. 9. 薛召军, 靳静娜, & 明东. (2008). 步态识别研究现状与进展.生物医学工程学杂志, 25(5), 1217-1221 10. Jakicic J.M., Winters C., Lagally K., Ho J., Robertson R.J.,& Wing R.R. (1999). The accuracy of the TriTrac-R3D accelerometer to estimate energy expenditure. Medicine and science in sports and exercise, 31(5), 747-754. 11. Crouter, S. E., Clowers, K. G., & Bassett, D. R. (2006). A novel method for using accelerometer data to predict energy expenditure. Journal of applied physiology, 100(4), 1324-1331. 12. Freedson, P. S. & Miller, K. (2000). Objective monitoring of physical activity using motion sensors and heart rate. Research quarterly for exercise and sport, 71(2), 21-29. 13. Schofield, G., Schofield, L., Hinckson, E. A., & Mummery, W. K. (2009). Daily step counts and selected coronary heart disease risk factors in adolescent girls. Journal of Science and Medicine in Sport, 12(1), 148-155. 14. Tudor-Locke, C. E., & Myers, A. M. (2001). Challenges and opportunities for measuring physical activity in sedentary adults. Sports Medicine, 31(2), 91-100. 15. Talbot, L. A., Gaines, J. M., Huynh, T. N., & Metter, E. J. (2003). A home-based pedometer-driven walking program to increase physical activity in older adults with osteoarthritis of the knee: a preliminary study. Journal of the American Geriatrics Society, 51(3), 387-392. 16. Hendelman, D., Miller, K., Baggett, C., Debold, E., & Freedson, P. (2000). Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Medicine and science in sports and exercise, 32(9 Suppl), S442-9. 17. Fehling, P. C., Smith, D. L., Warner, S. E., & Dalsky, G. P. (1999). Comparison of accelerometers with oxygen consumption in older adults during exercise. Medicine and science in sports and exercise, 31(1), 171-175. 18. Terrier, P., Aminian, K., & Schutz, Y. (2001). Can accelerometry accurately predict the energy cost of uphill/downhill walking? Ergonomics, 44(1), 48-62. 19. Ayen, T. G. (1987). Estimating energy expenditure with a simulated three dimensional accelerometer. University of Wisconsin--Madison.. 20. Yoshida, T., Sakane, N., Umekawa, T., & Kondo, M. (1994). Relationship between basal metabolic rate, thermogenic response to caffeine, and body weight loss following combined low calorie and exercise treatment in obese women. International journal of obesity and related metabolic disorders: journal of the International Association for the Study of Obesity, 18(5), 345-350. 21. 林其範、高材,'以三軸加速規和心率估測日常活動能量消耗',國立陽明大學,碩士論文,民國97年10月。 22. Shutler, J. D., Nixon, M. S., & Harris, C. J. (2000). Statistical gait description via temporal moments. Image Analysis and Interpretation,. Proceedings. 4th IEEE Southwest Symposium. 291-295. 23. Hayfron-Acquah, J. B., Nixon, M. S., & Carter, J. N. (2003). Automatic gait recognition by symmetry analysis. Pattern Recognition Letters, 24(13), 2175-2183. 24. BenAbdelkader, C., Cutler, R., & Davis, L. (2002). Motion-based recognition of people in eigengait space. Automatic Face and Gesture Recognition .Proceedings. 5th IEEE International Conference. 267-272. 25. Foster, J. P., Nixon, M. S., & Prügel-Bennett, A. (2003). Automatic gait recognition using area-based metrics. Pattern Recognition Letters, 24(14), 2489-2497. 26. Begg, R. K., Palaniswami, M., & Owen, B. (2005). Support vector machines for automated gait classification. Biomedical Engineering, IEEE Transactions on,52(5), 828-838. 27. Song, Y., Shin, S., Kim, S., Lee, D., & Lee, K. H. (2007). Speed estimation from a tri-axial accelerometer using neural networks. Engineering in Medicine and Biology Society. EMBS 2007. 29th Annual International Conference of the IEEE. 3224-3227. 28. Mäntyjärvi, J., Lindholm, M., Vildjiounaite, E., Mäkelä, S. M., & Ailisto, H. A. (2005). Identifying users of portable devices from gait pattern with accelerometers. Acoustics, Speech, and Signal Processing, 2005. Proceedings.(ICASSP'05). IEEE International Conference on 2. ii-973. 29. Cleland, I., Kikhia, B., Nugent, C., Boytsov, A., Hallberg, J., Synnes, K., & Finlay, D. (2013). Optimal placement of accelerometers for the detection of everyday activities. Sensors, 13(7), 9183-9200. 30. Wang, J. H., Ding, J. J., Chen, Y., & Chen, H. H. (2012). Real time accelerometer-based gait recognition using adaptive windowed wavelet transforms. Circuits and Systems (APCCAS), 2012 IEEE Asia Pacific Conference on. 591-594. 31. Bao, L., & Intille, S. S. (2004). Activity recognition from user-annotated acceleration data. Pervasive computing. 3001(1-17). 32. Lester, J., Choudhury, T., Kern, N., Borriello, G., & Hannaford, B. (2005). A Hybrid Discriminative/Generative Approach for Modeling Human Activities. IJCA. 5. 766-772. 33. Ravi, N., Dandekar, N., Mysore, P., & Littman, M. L. (2005). Activity recognition from accelerometer data. AAAI. 5. 1541-1546. 34. Ward, J. A., Lukowicz, P., & Tröster, G. (2005). Gesture spotting using wrist worn microphone and 3-axis accelerometer. Proceedings of the 2005 joint conference on Smart objects and ambient intelligence: innovative context-aware services: usages and technologies. 99-104. 35. Lester, J., Choudhury, T., Borriello, G., Consolvo, S., Landay, J., Everitt, K., & Smith, I. (2005). Sensing and modeling activities to support physical fitness. Proc. of Ubicomp Workshop: Monitoring, Measuring, and Motivating Exercise: Ubiquitous Computing to Support Fitness), Tokyo, Japan. 36. Mäntyjärvi, J., Himberg, J., & Seppänen, T. (2001). Recognizing human motion with multiple acceleration sensors. Systems, Man, and Cybernetics, 2001 IEEE International Conference on 2. 747-752. 37. Olguın, D. O., & Pentland, A. S. (2006). Human activity recognition: Accuracy across common locations for wearable sensors. Proceedings of 2006 10th IEEE International Symposium on Wearable Computers, Montreux, Switzerland. 11-14. 38. Subramanya, A., Raj, A., Bilmes, J. A., & Fox, D. (2012). Recognizing activities and spatial context using wearable sensors. arXiv preprint arXiv:1206.6869. 39. Subramanya, A., Raj, A., Bilmes, J., & Fox, D. (2006). Hierarchical models for activity recognition. In Multimedia Signal Processing, IEEE 8th Workshop on. 233-237 40. Lester, J., Choudhury, T., Kern, N., Borriello, G., & Hannaford, B. (2005). A Hybrid Discriminative/Generative Approach for Modeling Human Activities. IJCAI. 5. 766-772. 41. Ravi, N., Dandekar, N., Mysore, P., & Littman, M. L. (2005). Activity recognition from accelerometer data. AAAI. 5. 1541-1546. 42. Pärkkä, J., Ermes, M., Korpipää, P., Mäntyjärvi, J., Peltola, J., & Korhonen, I. (2006). Activity classification using realistic data from wearable sensors. Information Technology in Biomedicine, IEEE Transactions on,10(1). 119-128. 43. Maurer, U., Smailagic, A., Siewiorek, D. P., & Deisher, M. (2006). Activity recognition and monitoring using multiple sensors on different body positions. Wearable and Implantable Body Sensor Networks, BSN 2006. International Workshop on. 4-pp. 44. Pachi, A., & Tianjian J. (2005). Frequency and velocity of people walking. Structural Engineer, 83(3) 45. Benbasat, A. Y., & Paradiso, J. A. (2007). A framework for the automated generation of power-efficient classifiers for embedded sensor nodes. Proceedings of the 5th international conference on Embedded networked sensor systems. 219-232. 46. Sprager, S., & Zazula, D. (2009). Gait identification using cumulants of accelerometer data. 2nd WSEAS International Conference on Sensors, and Signals and Visualization, Imaging and Simulation and Materials Science. (94-99). 47. Ibrahim, R. K., Ambikairajah, E., Celler, B. G., & Lovell, N. H. (2008). Gait pattern classification using compact features extracted from intrinsic mode functions. Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE. 3852-3855. 48. Muscillo, R., Conforto, S., Schmid, M., & D'Alessio, T. (2008). Minimizing the Set Up for ADL Monitoring through DTW Hierarchical Classification on Accelerometer Data. WSEAS Transactions on biology and biomedicine,5(3), 47-53. 49. Tumkur, K., & Subbiah, S. (2012). Modeling Human Walking for Step Detection and Stride Determination by 3-Axis Accelerometer Readings in Pedometer. Computational Intelligence, Modelling and Simulation (CIMSiM), 2012 Fourth International Conference on. 199-204. 50. Wang, J. S., Lin, C. W., Yang, Y. T., & Ho, Y. J. (2012). Walking pattern classification and walking distance estimation algorithms using gait phase information. Biomedical Engineering, IEEE Transactions on, 59(10), 2884-2892. 51. Khusainov, R., Azzi, D., Achumba, I. E., & Bersch, S. D. (2013). Real-time human ambulation, activity, and physiological monitoring: Taxonomy of issues, techniques, applications, challenges and limitations. Sensors, 13(10), 12852-12902. 52. Hagan, M. T., Dcmuth H. Beale, M. B., (2002)Neural Network Design 53. Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. 1. 496. Cambridge: Cambridge university press.
Obesity is one of the serious problem in the modern world, and pose a serious impact with human in the future. It can cause many deadly diseases, such as: heart disease, diabetes, etc. Physical activity is strongly important solution to reduce the threat of obesity. It is difficult to quantify the energy consumed of the activities, while the accelerometer is a kind of tool to tell the user the amount of energy consumed.
Type of activity, intensity and duration can affect the body's energy consumption, so this research proposes an identification of distinguishing the gait of walking and up the stairs. All of the 20 young subjects that were age of 22.7 ± 2.1 years old, height 170.7 ± 6.5 centimeters and weight 67.9 ± 12.1 kilograms. They wear three-axis accelerometer on the left ankle, using the sampling frequency is 200Hz and the sensitivity is 68count/(m/s^2) to collect acceleration signal.
We found out that the acceleration signal of subjects were quite different in walking and walking up the stairs. In this research, we used nine statistical parameters (maximum, minimum, mean, standard deviation, range, sum, median, skewness and kurtosis), the threshold, using the relationship between the parameters entering perceptron to calculate decision boundary , then do the gait recognition. The accuracy of the results were over 90%. Therefore, this research proposed a simple and effective method of gait recognition.
Keywords:gait recognition、perceptron、decision boundary

發現受測者在走路與上樓梯時的加速度訊號有著明顯的差異,本研究利用九項統計參數(最大值、最小值、平均數、標準差、值域、總和、中位數、偏度與峰度)與門檻值,以及利用參數間的關係輸入感知機(perceptron)計算出決策邊界(decision boundary),進而做到行走步態的辨識,其結果的準確率高達90%以上。故本研究提出一個簡單且有效的步態辨識方法。
Rights: 同意授權瀏覽/列印電子全文服務,2018-07-17起公開。
Appears in Collections:應用數學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7101053112-1.pdf8.08 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.