Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90475
標題: Low-loss hybrid plasmonic waveguide applied in novel through-silicon via technologies
以混合型低損耗電漿波導作為先進矽穿孔結構之研究
作者: Tang-Chin Hung
洪堂欽
關鍵字: 矽穿孔;混合型低損耗電漿波導;耦合器;混合型低損耗電漿波導元件;through-silicon via (TSV);hybrid low-loss plasmonic waveguide;coupler
引用: [1] K. Johguchi, T. Hatanaka, and K. Takeuchi, 'Through-Silicon-Via Design with Clustering Structure and Adaptive Through-Silicon-Via Control for Three- Dimentional Solid-State-Drive Boost Converter System,' Japanese Journal of Applied Physics 51, 02BE02, 02BE02.1-02BE02.8 (2012). [2] P. Ramm, M. J. Wolf, A. Klumpp, R. Wieland, B. Wunderle, and B. Michel, 'Through Silicon Via Technology –Processes and Reliability for Wafer-Level 3D System Integration,' IEEE Components Packaging and Manufacturing Technology Society 841-846 (2008). [3] ITRS, http://www.itrs.net/. [4] P. Monajemi, M. Newman, C. Uzoh, C. Woychik, L. Ayat, and T. Caskey, 'Development and Optimization of Through Silicon Via Interposers,' Surface Mount Technology Association International Conference 1, 142-146. [5] P. A. Thadesar, A. Dembla, D. Brown, and M. S. Bakir, 'Novel Through-Silicon Via Technologies for 3D System Integration,' IEEE Interconnect Technology Conference (IITC), 1-3 (2013). [6] D. K. Gramotnev and S. I. Bozhevolnyi, 'Plasmonics beyond the diffraction limit,' Nature Photonics 4, 83-91 (2010). [7] Y. Kou, F. Ye, and X. Chen, 'Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration,' Optics Express 19, 11746- 11752 (2011). [8] Y. Bian and Q. Gong, 'Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,' Optics Express 21, 23907-23920 (2013). [9] C. Y. Jeong, M. Kim, and S. Kim, 'Circular hybrid plasmonic waveguide with ultra-long propagation distance,' Optics Express 21, 17404-17412 (2013). 40 [10] Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, 'Ultracompact low- loss coupler between strip and slot waveguides,' Optics Letters 34, 1498-1500 (2009). [11] X. Guan, H. Wu, Y. Shi, L. Wosinski, and D. Dai1, 'Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,' Optics Letters 38, 3005-3008 (2013). [12] G. Veronis and S. Fan, 'Crosstalk between three-dimensional plasmonic slot waveguides,' Optics Express 16, 2129-2140 (2008). [13] W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, 'Broadband Sharp 90-degree Bends and T‐Splitters in Plasmonic Coaxial Waveguides,' Nano Letters 13, 4753−4758 (2013). [14] 吳民耀、劉威志, '表面電漿子理論與模擬,' 物理雙月刊 28, 486-496 (2006). [15] M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, 'Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,' IEEE Journal of Selected Topics in Quantum Electronics 8, 839-862 (2002). [16] 邱國斌、蔡定平, '金屬表面電漿簡介,' 物理雙月刊 28, 477-485 (2006). [17] S. A. Maier, 'Plasmonics: Fundamentals and Applications,' Springer (2007). [18] T. Radu, H. Wilhelm, V. Yushankhai, D. Kovrizhin, R. Coldea, Z. Tylczynski, T. Lühmann, and F. Steglich, 'Bose-Einstein Condensation of Magnons in Cs2CuCl4,' Physics Review Letters 95, 127202 (2005). [19] Shuo Wang, F.C.Lee and J.D. Wyk, 'Inductor Winding Capacitance Cancellation Using Mutual Capacitance Concept for Noise Reduction Application,' IEEE Transactions on Electromagnetic Compatibility 48, 311-318 (2006). [20] R. F. Oulton, G. Bartal, D. F. P. Pile, and X, Zhang, 'Confinement and propagation characteristics of subwavelength plasmonic modes,' New Journal of Physics 10, 41 105018 (2008). [21] K. P. Stuby, 'Hourglass-shaped conductive connection through semiconductor structures,' Patent US3648131 (1972). [22] B. J. Park, 'CMOS image sensor of preventing optical crosstalk and method of manufacturing the same,' Patent US20070045665 A1 (2007). [23] S. Gupta, M. Hilbert, S. Hong, and R. Patti, 'Techniques for producing 3DICs with high-density interconnect,' Proc. 21st International VLSI Multilevel Interconnection Conference 93-97 (2004). [24] Wiley-Vch, http://www.wiley-vch.de/publish/dt/.
摘要: 
本研究利用表面電漿波導的次波長模態面積特性製作成混合型低損耗電漿
波導元件,此結構是由金屬奈米線覆以二氧化矽與高折射率的矽,最外層的批覆層也是低折射率的二氧化矽,由於此結構中具有金屬奈米線,因此我們將此結構運用於半導體後段先進矽穿孔結構重佈線製程以及三維集成電路。此外,為了評估混合型低損耗電漿波導在集成電路的集成度,我們也分析了波導在 x 與 y 方向對齊排列的耦合強度,以評估元件的集成密度,由於對稱結構,因此本研究所提出的混合電漿波導具低損耗,經計算結果顯示,其傳播長度可達數百微米且具次波長模態面積,這個構造對於緊密的元件排列設計或矽穿孔排列密度評估將非常有幫助,可有助於本結構的高密度光電集成訊號傳遞的應用。

In the research we construct a hybrid low-loss plasmonic waveguide using the
subwavelength mode area of plasmonic waveguides. The proposed structure is
composed of a metallic nanowire covered by low-index silica, high-index silicon and
low-index silica from inner to outer layers, respectively. By the metallic nanowire, the
proposed structure is thus introduced in novel semiconductor through-silicon via (TSV)
technologies and 3D integrated circuits processes. Moreover, we also study the
coupling strengths of two parallel waveguides arranged in x and y directions for
evaluating the integration density. The proposed structure is able to propagate beyond
hundreds of micrometers with subwavelength mode areas because of the symmetric
structure with respect to the metallic nanowire. These characteristics apparently help us
compute precisely the compactness of TSV technologies and make that the proposed
hybrid plasmonic waveguide is advantage to apply in the high-density integration of
optical signal transporation.
URI: http://hdl.handle.net/11455/90475
Rights: 同意授權瀏覽/列印電子全文服務,起公開。
Appears in Collections:物理學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-5101054611-1.pdf2.5 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.