Please use this identifier to cite or link to this item:
標題: Designs of Polarizers Based on Hybrid Plasmonic Waveguide Structures
作者: Ken-Wei Chang
關鍵字: 混合型電漿波導;TE-pass極化器;極化器;轉彎結構;消光比;Hybrid plasmonic waveguide;TE-pass polarizer;polarizer;bent structure;extinction ratio
引用: [1]. J. A. Conway, S. Sahni, and T. Szkopek, 'Plasmonic interconnects versus conventional interconnects: a comparison of latency, cross-talk and energy costs,' Opt. Express, vol. 15, pp. 4474-4484 (2007). [2]. T. Tamir, H. Kogelnik, W. K. Burns, A. F. Milton, R. C. Alferness, I. P. Kaminow, R. S. Tucker, F. J. Leonberger and J. F. Donnelly, Guide-Wave Optoelectronics , Springer-Verlag (1988). [3]. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits, Pan Stanford Publishing, pp. 1-33(2009). [4]. Masayuki Okuno, Akio Sugita, Kaname Jinguji, and Masao Kawachi, 'Birefringence Control of Silica Waveguides on Si and Its Application to a Polarization-Beam SplittedSwitch,' IEEE, pp. 625-633 (1994). [5]. Min-Cheol Oh, Myung-Hyun Lee and Hyung-Jong Lee, 'TE-pass and TM-pass waveguide polarisers with buried birefringent polymer,' Electronics Letters, vol. 35,pp. 471-472 (1999). [6]. Hiroshi Fukuda, Koji Yamada, Tai Tsuchizawa, Toshifumi Watanabe,Hiroyuki Shinojima and Sei-ichi Itabashi, 'Ultrasmall polarization splitter based on silicon wire waveguides,' Opt. Express, vol. 14, pp. 12401-12408 (2006). [7]. R. F. Oulton, V. J. Sorger, D. A. GEnov, D. F. P. Pile and X. Zhang, 'A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,' Nature Photonics, vol. 2, pp. 496-500 (2008). [8]. X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, 'Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator -metal strip waveguides,' Opt. Express, vol. 18, pp. 18945-18959 (2010). [9]. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, 'Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,' Opt. Express, vol. 18, pp. 23756-23762 (2010). [10]. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, 'Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra–deep-subwavelength mode confinement,' Opt. Express, vol. 19, pp. 22417-22422 (2011). [11]. P. Berini, 'Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,' Phys. Rev. B, vol. 61, pp. 10484-10503 (2000). [12]. B. F. Yun, G. H. Hu, and Y. P. Cui, 'Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides,' Opt. Express, vol. 17, pp. 3610-3618 (2009). [13]. Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, 'Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,' Opt. Express, vol. 17, pp. 21320-21325 (2009). [14]. Chang Yeong Jeong, Myunghwan Kim, and Sangin Kim, 'Circular hybrid plasmonic waveguide with ultra-long propagation distance,' Opt. Express, vol. 21, pp. 17404-17412 (2013). [15]. Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, 'Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,' IEEE Photon. Technol. Lett., vol. 24, pp. 1279-1281 (2012). [16]. Yusheng Bian and Qihuang Gong, 'Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,' Opt. Express, vol. 21, pp. 23907-23918 (2013). [17]. M. Z. Alam, J. Stewart Aitchison and M. Mojahedi, 'Compact and silicon-on-insulator- compatible hybrid plasmonic TE-pass polarizer,' Opt. Lett. , vol. 37, pp. 55-57 (2012). [18]. X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, and M. Mojahedi, 'Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform,' Opt. Lett. , vol. 37, pp. 4814-4816 (2012). [19]. Ying Huang, Shiyang Zhu, Huijuan Zhang, Tsung-Yang Liow and Guo-Qiang, 'CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-oninsulator platform,' Opt. Express , vol. 21, pp. 12790-12796 (2013). [20]. Qiang Li, Yi Song, Gan Zhou, Yikai Su, and Min Qiu, 'Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss,' Opt. Lett , vol. 35, pp. 3153-3155 (2010). [21]. Xiaowei Guan, Hao Wu, Yaocheng Shi, Lech Wosinski, and Daoxin Dai, 'Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,' Opt. Lett, vol. 38, pp. 3005-3007 (2013). [22]. Xiaowei Guan, Hao Wu, Yaocheng Shi, and Daoxin Dai, 'Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,' Opt. Lett. , vol 39, pp. 259-262 (2014). [23]. Sangsik Kim and Minghao Qi, 'Copper nanorod array assisted silicon waveguide polarization beam splitter,' Opt. Express, vol 22, pp. 9508-9516 (2014). [24]. 邱國斌與蔡定平, '金屬表面電漿簡介,' 物理雙月刊, 28卷二期, 472-485 (2006). [25]. Stefan A. Maier, Plasmonics:fundamentals and applications, Springer (2007) [26]. 吳民耀與劉威志, '表面電漿子理論與模擬,' 物理雙月刊, 28卷二期, 486-496 (2006). [27]. Daoxin Dai and Sailing He, 'A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,' Opt. Express, vol 22, pp. 16646-16653 (2009). [28]. Robert G. Hunsperger, Integrated Optics, Springer (1995). [29]. D. M. Pozar, Microwave Engineering, Wiley (2009).
本論文利用混合電漿波導設計三種不同的極化器,達到縮小元件尺寸同時維持良好性能。第一種是TE-pass極化器,利用週期性的結構變化讓TM mode快速損耗,達成TE-pass的功能,當元件長度L = 800 、1800與3000 nm時,極化消光比分別可達10 dB、15 dB與19.14 dB,且具有低插入損耗特性。第二種為具轉彎結構的極化器,省去一般耦合的步驟,直接將TE模態進行九十度彎曲波導的轉彎,使TE和TM模態直接分離,達到縮小元件尺寸的目的,在彎曲波導的曲率半徑R = 250 nm時,TE 模態消光比可達到10.7 dB和插入損耗0.27 dB,而TM 模態消光比可達到14.2 dB和插入損耗0.19 dB,因此具有一個極小的元件尺寸,面積約為375×375 ?nm?^2。第三種極化器具斜走結構,我們設計讓TE模態在入射後,直接進行斜向的傳播,達到將TE和TM模態分離的目的,在面積為850×1000 ?nm?^2下,具有良好的TE和TM 模態消光比為17.1 dB和19.3 dB和低的插入損耗為1.21 dB和0.32 dB。

We design three different waveguide polarizers using the hybrid plasmonic waveguide concept to shrink the component size while maintaining good transmission performance. The first one we propose is a TE-pass polarizer by changing structure periodically in order to quickly loss TM polarization. When the element lengths are L = 800, 1800 and 3000 nm, the polarization extinction ratios are 10 dB, 15 dB and 19.14 dB, respectively, with a low insertion loss. The second polarizer is a bent waveguide structure. We separate TE mode from TM mode by turning TE mode ninety degrees along the bent waveguide but keep the TM mode propagating straight. For the radius of curvature R = 250 nm, the extinction ratio of TE and TM polarizations are 10.7 and 14.2 dB, respectively, and the insertion loss are as low as 0.27 dB and 0.19 dB for TE and TM polarizations, respectively. With this design, the device has a footprint as small as 375×375 ?nm?^2. The third one is with oblique propagation structure. The TE mode is designed to be oblique propagation and the TM mode propagates straight. The area of this design is 850×1000 ?nm?^2 with the extinction ratios 17.1 and 19.3 dB and the insertion losses 0.32 dB and 0.88 dB for TE and TM polarizations, respectively.
Rights: 同意授權瀏覽/列印電子全文服務,2016-08-31起公開。
Appears in Collections:物理學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101054002-1.pdf6.37 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.