Please use this identifier to cite or link to this item:
標題: Anisotropic Hybrid Plasmonic Waveguide
作者: Yu-Cheng Lo
關鍵字: 異向性材料;液晶;混合電漿子波導;光波導;極化分離器;anisotropic materials;liquid crystal;hybrid plasmonic waveguide;optical waveguide;polarization beam splitter
引用: 1 Atwater, H. A. The promise of plasmonics. Sci.Am. 296, 56-63 (2007). 2 Wood, R. W. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Proceedings of the Physical Society of London 18, 269 (1902). 3 Fano, U. The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld's Waves). J. Opt. Soc. Am. 31, 213-222 (1941). 4 Hessel, A. & Oliner, A. A. A New Theory of Wood's Anomalies on Optical Gratings. Appl. Optics 4, 1275-1297 (1965). 5 Ritchie, R. H. Plasma Losses by Fast Electrons in Thin Films. Physical Review 106, 874-881 (1957). 6 Ritchie, R. H., Arakawa, E. T., Cowan, J. J. & Hamm, R. N. Surface-Plasmon Resonance Effect in Grating Diffraction. Phys. Rev. Lett. 21, 1530-1533 (1968). 7 Kretschmann, E. & Raether, H. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. A 23, 2135 (1968). 8 Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Physik 216, 398, (1968). 9 Garcia-Vidal, F. J., Martin-Moreno, L., Ebbesen, T. W. & Kuipers, L. Light passing through subwavelength apertures. Reviews of Modern Physics 82, 729-787 (2010). 10 Martín-Moreno, L. et al. Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays. Phys. Rev. Lett. 86, 1114-1117 (2001). 11 Tan, W. C., Preist, T. W., Sambles, J. R. & Wanstall, N. P. Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings. Phys. Rev. B 59, 12661-12666 (1999). 12 Porto, J. A., García-Vidal, F. J. & Pendry, J. B. Transmission Resonances on Metallic Gratings with Very Narrow Slits. Phys. Rev. Lett. 83, 2845-2848 (1999). 13 Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667-669 (1998). 14 Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824-830 (2003). 15 Lamprecht, B. et al. Surface plasmon propagation in microscale metal stripes. Appl. Phys. Lett. 79, 51-53 (2001). 16 Charbonneau, R., Berini, P., Berolo, E. & Lisicka-Shrzek, E. Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width. Opt. Lett. 25, 844-846 (2000). 17 Berini, P. Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics. Opt. Express 7, 329-335 (2000). 18 Berini, P. Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures. Phys. Rev. B 61, 10484-10503 (2000). 19 Berini, P. Plasmon-polariton modes guided by a metal film of finite width. Opt. Lett. 24, 1011-1013 (1999). 20 Moreno, E., Rodrigo, S. G., Bozhevolnyi, S. I., Martin-Moreno, L. & Garcia-Vidal, F. J. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys. Rev. Lett. 100, 4 (2008). 21 Yan, M. & Qiu, M. Guided plasmon polariton at 2D metal corners. J. Opt. Soc. Am. B-Opt. Phys. 24, 2333-2342 (2007). 22 Pile, D. F. P. et al. Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl. Phys. Lett. 87, 3 (2005). 23 Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J. Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508-511 (2006). 24 Bozhevolnyi, S. I., Volkov, V. S., Devaux, E. & Ebbesen, T. W. Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95, 4 (2005). 25 Pile, D. F. P. & Gramotnev, D. K. Channel plasmon-polariton in a triangular groove on a metal surface. Opt. Lett. 29, 1069-1071 (2004). 26 Veronis, G. & Fan, S. H. Modes of subwavelength plasmonic slot waveguides. J. Lightwave Technol. 25, 2511-2521 (2007). 27 Veronis, G. & Fan, S. H. Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt. Lett. 30, 3359-3361 (2005). 28 Grandidier, J. et al. Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip. Appl. Phys. Lett. 96, 3 (2010). 29 Gosciniak, J. et al. Thermo-optic control of dielectric-loaded plasmonic waveguide components. Opt. Express 18, 1207-1216 (2010). 30 Krasavin, A. V. & Zayats, A. V. Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides. Phys. Rev. B 78, 8 (2008). 31 Holmgaard, T. & Bozhevolnyi, S. I. Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys. Rev. B 75, 12 (2007). 32 Steinberger, B. et al. Dielectric stripes on gold as surface plasmon waveguides. Appl. Phys. Lett. 88, 3 (2006). 33 Alam, M. Z., Meier, J., Aitchison, J. S. & Mojahedi, M. in Lasers and Electro-Optics, 2007. CLEO 2007. Conference on. 1-2. 34 Oulton, R. F., Sorger, V. J., Genov, D. A., Pile, D. F. P. & Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2, 496-500 (2008). 35 Adato, R. & Guo, J. P. Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers. J. Appl. Phys. 105, 11 (2009). 36 Guo, J. P. & Adato, R. Control of 2D plasmon-polariton mode with dielectric nanolayers. Opt. Express 16, 1232-1237 (2008). 37 Guo, J. P. & Adato, R. Extended long range plasmon waves in finite thickness metal film and layered dielectric materials. Opt. Express 14, 12409-12418 (2006). 38 Lu, Y.-J. et al. in Conference on Lasers and Electro-Optics 2012. CTh5C.7 (Optical Society of America). 39 Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629-632 (2009). 40 Sorger, V. J. et al. Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nature Communications 2, 5 (2011). 41 Yang, X. D., Liu, Y. M., Oulton, R. F., Yin, X. B. & Zhang, X. A. Optical Forces in Hybrid Plasmonic Waveguides. Nano Lett. 11, 321-328 (2011). 42 Okuno, M., Sugita, A., Jinguji, K. & Kawachi, M. Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch. Lightwave Technology, Journal of 12, 625-633 (1994). 43 Min-Cheol, O., Lee, M.-H. & Hyung-Jong, L. TE-pass and TM-pass waveguide polarisers with buried birefringent polymer. Electronics Letters 35, 471-472 (1999). 44 Fukuda, H. et al. Ultrasmall polarization splitter based on silicon wire waveguides. Opt. Express 14, 12401-12408 (2006). 45 Guan, X. W., Wu, H., Shi, Y. C. & Dai, D. X. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide. Opt. Lett. 39, 259-262 (2014). 46 Xiao, J. B., Xu, Y., Wang, J. Y. & Sun, X. H. Compact polarization rotator for silicon-based slot waveguide structures. Appl. Optics 53, 2390-2397 (2014). 47 Hao, R., Du, W., Li, E. P. & Chen, H. S. Graphene Assisted TE/TM-Independent Polarizer Based on Mach-Zehnder Interferometer. IEEE Photonics Technol. Lett. 27, 1112-1115 (2015). 48 Huang, Y., Zhu, S. Y., Zhang, H. J., Liow, T. Y. & Lo, G. Q. CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform. Opt. Express 21, 12790-12796 (2013). 49 Yeh, P. & Gu, C. Optics of Liquid Crystal Displays. (Wiley Publishing, 2009). 50 Tame, M. S. et al. Quantum plasmonics. Nat Phys 9, 329-340 (2013).

Recently, anisotropic materials have been popular in designing and manufacturing of photonic integrated circuits. We adopted the anisotropic materials, to design polarizer beam splitters because of the flexibility and controllability of materials. In the thesis, we employed 4-Cyano-4'-pentylbiphenyl (5CB liquid crystal) to design an anisotropic hybrid plasmonic wavguide, which simplifies the configuration of polarizer beam splitter, and a straight waveguide structure, increases the simplicity and device density of photonic integrated circuit. In addition, the proposed hybrid plasmonic waveguide effectively shrinks the mode area, and increases propagation length. With controlling the structure parameters and external electric field, the performances of the proposed design can be flexibly adjusted. After optimizing the parameters of mode characteristics, we design polarization beam splitter with high extinction ratio of about 20 dB and insertion loss of 2.19 dB.
Rights: 同意授權瀏覽/列印電子全文服務,起公開。
Appears in Collections:物理學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101054018-1.pdf7.65 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.