Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90578
標題: Enzyme immobilization and metal nanostructure decoration on functionalized electrode surface for sensor and fuel cell applications
酵素固定與奈米金屬修飾之官能基化電極應用於感測器與燃料電池之研究
作者: 雅哈
NATARAJAN THIYAGARAJAN
關鍵字: functional platform;enzyme immobilization;dispersion;Pt nanoflowers mechanism;PtRu nanoparticles.;functional platform;enzyme immobilization;dispersion;Pt nanoflowers mechanism;PtRu nanoparticles.
引用: 1. Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications. Wiley: 2000. 2. RA, D.; Baumner, A.; Murray, R.; Buck, R.; Andrieux, C., Chemically modified electrodes: recommended terminology and definitions. 1997. 3. Zen, J.-M.; Senthil Kumar, A.; Tsai, D.-M., Recent Updates of Chemically Modified Electrodes in Analytical Chemistry. Electroanalysis 2003, 15 (13), 1073-1087. 4. Murray, R. W.; Ewing, A. G.; Durst, R. A., Chemically modified electrodes. Molecular design for electroanalysis. Analytical Chemistry 1987, 59 (5), 379A-390A. 5. Thevenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S., Electrochemical biosensors: Recommended definitions and classification. Analytical Letters 2001, 34 (5), 635-659. 6. Clark, L. C.; Lyons, C., ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY. Annals of the New York Academy of Sciences 1962, 102 (1), 29-45. 7. Baskar, S.; Chang, J.-L.; Zen, J.-M., Simultaneous detection of NADH and H2O2 using flow injection analysis based on a bifunctional poly(thionine)-modified electrode. Biosensors and Bioelectronics 2012, 33 (1), 95-99. 8. Cosnier, S., Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosensors and Bioelectronics 1999, 14 (5), 443-456. 9. Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P.; Somorjai, G. A., Platinum Nanoparticle Shape Effects on Benzene Hydrogenation Selectivity. Nano Letters 2007, 7 (10), 3097-3101. 10. Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S., Synthesis of Monodisperse Pt Nanocubes and Their Enhanced Catalysis for Oxygen Reduction. Journal of the American Chemical Society 2007, 129 (22), 6974-6975. 11. Tian, N.; Zhou, Z.-Y.; Sun, S.-G.; Ding, Y.; Wang, Z. L., Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity. Science 2007, 316 (5825), 732-735. 12. Patolsky, F.; Weizmann, Y.; Willner, I., Long-Range Electrical Contacting of Redox Enzymes by SWCNT Connectors. Angewandte Chemie International Edition 2004, 43 (16), 2113-2117. 13. Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J. F.; Willner, I., 'Plugging into Enzymes': Nanowiring of Redox Enzymes by a Gold Nanoparticle. Science 2003, 299 (5614), 1877-1881. 14. Banks, C. E.; Davies, T. J.; Wildgoose, G. G.; Compton, R. G., Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chemical Communications 2005, (7), 829-841. 15. Sudhakara Prasad, K.; Muthuraman, G.; Zen, J.-M., The role of oxygen functionalities and edge plane sites on screen-printed carbon electrodes for simultaneous determination of dopamine, uric acid and ascorbic acid. Electrochemistry Communications 2008, 10 (4), 559-563. 16. Banks, C. E.; Crossley, A.; Salter, C.; Wilkins, S. J.; Compton, R. G., Carbon Nanotubes Contain Metal Impurities Which Are Responsible for the 'Electrocatalysis' Seen at Some Nanotube-Modified Electrodes. Angewandte Chemie International Edition 2006, 45 (16), 2533-2537. 17. Zhao, Q.; Buongiorno Nardelli, M.; Lu, W.; Bernholc, J., Carbon Nanotube−Metal Cluster Composites:  A New Road to Chemical Sensors? Nano Letters 2005, 5 (5), 847-851. 18. Kong, J.; Chapline, M. G.; Dai, H., Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors. Advanced Materials 2001, 13 (18), 1384-1386. 19. Buglione, L.; Pumera, M., Graphene/carbon nanotube composites not exhibiting synergic effect for supercapacitors: The resulting capacitance being average of capacitance of individual components. Electrochemistry Communications 2012, 17 (0), 45-47. 20. Song, W.; Li, H.; Liu, H.; Wu, Z.; Qiang, W.; Xu, D., Fabrication of streptavidin functionalized silver nanoparticle decorated graphene and its application in disposable electrochemical sensor for immunoglobulin E. Electrochemistry Communications 2013, 31 (0), 16-19. 21. Xu, Q.; Yan, F.; Lei, J.; Leng, C.; Ju, H., Disposable Electrochemical Immunosensor by Using Carbon Sphere/Gold Nanoparticle Composites as Labels for Signal Amplification. Chemistry – A European Journal 2012, 18 (16), 4994-4998. 22. Lu, D.; Wang, J.; Wang, L.; Du, D.; Timchalk, C.; Barry, R.; Lin, Y., A Novel Nanoparticle-Based Disposable Electrochemical Immunosensor for Diagnosis of Exposure to Toxic Organophosphorus Agents. Advanced Functional Materials 2011, 21 (22), 4371-4378. 23. Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X. W., Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage. Advanced Materials 2012, 24 (38), 5166-5180. 24. Inzelt, G. Conducting polymers a new era in electrochemistry. http://dx.doi.org/10.1007/978-3-642-27621-7. 25. Alonso, B.; Armada, P. G. a.; Losada, J.; Cuadrado, I.; Gonzalez, B.; Casado, C. M., Amperometric enzyme electrodes for aerobic and anaerobic glucose monitoring prepared by glucose oxidase immobilized in mixed ferrocene–cobaltocenium dendrimers. Biosensors and Bioelectronics 2004, 19 (12), 1617-1625. 26. Losada, J.; Armada, M. P. G. a.; Cuadrado, I.; Alonso, B.; Gonzalez, B.; Casado, C. M.; Zhang, J., Ferrocenyl and permethylferrocenyl cyclic and polyhedral siloxane polymers as mediators in amperometric biosensors. Journal of Organometallic Chemistry 2004, 689 (17), 2799-2807. 27. Foulds, N. C.; Lowe, C. R., Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers. Analytical Chemistry 1988, 60 (22), 2473-2478. 28. Ashok Kumar, S.; Chen, S.-L.; Chen, S.-M., Amperometric Sensor for Detection of the Reduced Form of Nicotinamide Adenine Dinucleotide Using a Poly(pyronin B) Film Modified Electrode. Electroanalysis 2009, 21 (12), 1379-1386. 29. Sha, Y.; Gao, Q.; Qi, B.; Yang, X., Electropolymerization of Azure B on a Screen-Printed Carbon Electrode and its Application to the Determination of NADH in a Flow Injection Analysis System. Microchim. Acta 2004, 148 (3-4), 335-341. 30. Gao, Q.; Cui, X.; Yang, F.; Ma, Y.; Yang, X., Preparation of poly(thionine) modified screen-printed carbon electrode and its application to determine NADH in flow injection analysis system. Biosensors and Bioelectronics 2003, 19 (3), 277-282. 31. Gerard, M.; Chaubey, A.; Malhotra, B. D., Application of conducting polymers to biosensors. Biosensors and Bioelectronics 2002, 17 (5), 345-359. 32. Janata, J.; Josowicz, M., Conducting polymers in electronic chemical sensors. Nature materials 2003, 2 (1), 19-24. 33. Bai, H.; Shi, G., Gas sensors based on conducting polymers. Sensors 2007, 7 (3), 267-307. 34. Manivel, P.; Dhakshnamoorthy, M.; Balamurugan, A.; Ponpandian, N.; Mangalaraj, D.; Viswanathan, C., Conducting polyaniline-graphene oxide fibrous nanocomposites: preparation, characterization and simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. RSC Advances 2013, 3 (34), 14428-14437. 35. Zhang, L.; Zheng, N.; Gao, A.; Zhu, C.; Wang, Z.; Wang, Y.; Shi, Z.; Liu, Y., A robust fuel cell cathode catalyst assembled with nitrogen-doped carbon nanohorn and platinum nanoclusters. Journal of Power Sources 2012, 220 (0), 449-454. 36. Jia, W.; Su, L.; Lei, Y., Pt nanoflower/polyaniline composite nanofibers based urea biosensor. Biosensors and Bioelectronics 2011, 30 (1), 158-164. 37. Chen, P.; Fryling, M. A.; McCreery, R. L., Electron Transfer Kinetics at Modified Carbon Electrode Surfaces: The Role of Specific Surface Sites. Analytical Chemistry 1995, 67 (18), 3115-3122. 38. Chen, P.; McCreery, R. L., Control of Electron Transfer Kinetics at Glassy Carbon Electrodes by Specific Surface Modification. Analytical Chemistry 1996, 68 (22), 3958-3965. 39. Wildgoose, G. G.; Banks, C. E.; Compton, R. G., Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications. Small 2006, 2 (2), 182-193. 40. Sieben, J. M.; Duarte, M. M. E.; Mayer, C. E., Electro-Oxidation of Methanol on PtRu Nanostructured Catalysts Electrodeposited onto Electroactivated Carbon Fiber Materials. ChemCatChem 2010, 2 (2), 182-189. 41. Enterkin, J. A.; Poeppelmeier, K. R.; Marks, L. D., Oriented Catalytic Platinum Nanoparticles on High Surface Area Strontium Titanate Nanocuboids. Nano Letters 2011, 11 (3), 993-997. 42. Hsieh, Y.-C.; Chang, L.-C.; Wu, P.-W.; Chang, Y.-M.; Lee, J.-F., Displacement reaction of Pt on carbon-supported Ru nanoparticles in hexachloroplatinic acids. Applied Catalysis B: Environmental 2011, 103 (1–2), 116-127. 43. Guo, L.; Chen, S.; Li, L.; Wei, Z., A CO-tolerant PtRu catalyst supported on thiol-functionalized carbon nanotubes for the methanol oxidation reaction. Journal of Power Sources 2014, 247 (0), 360-364. 44. Thiyagarajan, N.; Chang, J.-L.; Senthilkumar, K.; Zen, J.-M., Disposable electrochemical sensors: A mini review. Electrochemistry Communications 2014, 38 (0), 86-90. 45. Baskar, S.; Liao, C.-W.; Chang, J.-L.; Zen, J.-M., Electrochemical synthesis of electroactive poly(melamine) with mechanistic explanation and its applicability to functionalize carbon surface to prepare nanotube–nanoparticles hybrid. Electrochimica Acta 2013, 88 (0), 1-5. 46. Grimes, C. A., Encyclopedia of sensors. Vol. 6, Vol. 6. American Scientific Publishers: Stevenson Ranch, 2006. 47. Liu, S.; Ju, H., Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosensors & bioelectronics 2003, 19 (3), 177-83. 48. Ahuja, T.; Mir, I. A.; Kumar, D.; Rajesh, Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 2007, 28 (5), 791-805. 49. Cai, C.; Chen, J., Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Analytical biochemistry 2004, 332 (1), 75-83. 50. Liu, G.; Lin, Y., Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes. Electrochemistry Communications 2006, 8 (2), 251-256. 51. Nien, P.-C.; Tung, T.-S.; Ho, K.-C., Amperometric Glucose Biosensor Based on Entrapment of Glucose Oxidase in a Poly(3,4-ethylenedioxythiophene) Film. Electroanalysis 2006, 18 (13-14), 1408-1415. 52. Ivnitski, D.; Artyushkova, K.; Rincon, R. A.; Atanassov, P.; Luckarift, H. R.; Johnson, G. R., Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: glucose oxidase-catalyzed direct electron transfer. Small 2008, 4 (3), 357-64. 53. Yang, X.; Hua, L.; Gong, H.; Tan, S. N., Covalent immobilization of an enzyme (glucose oxidase) onto a carbon sol–gel silicate composite surface as a biosensing platform. Analytica Chimica Acta 2003, 478 (1), 67-75. 54. Masson, J.-F.; Kranz, C.; Booksh, K. S.; Mizaikoff, B., Improved sensitivity and stability of amperometric enzyme microbiosensors by covalent attachment to gold electrodes. Biosensors and Bioelectronics 2007, 23 (3), 355-361. 55. Liu, X.; Neoh, K. G.; Cen, L.; Kang, E. T., Enzymatic activity of glucose oxidase covalently wired via viologen to electrically conductive polypyrrole films. Biosensors and Bioelectronics 2004, 19 (8), 823-834. 56. Abasıyanık, M. F.; Şenel, M., Immobilization of glucose oxidase on reagentless ferrocene-containing polythiophene derivative and its glucose sensing application. Journal of Electroanalytical Chemistry 2010, 639 (1–2), 21-26. 57. Jiang, H.; Zhang, A.; Sun, Y.; Ru, X.; Ge, D.; Shi, W., Poly(1-(2-carboxyethyl)pyrrole)/polypyrrole composite nanowires for glucose biosensor. Electrochimica Acta 2012, 70 (0), 278-285. 58. Zhang, S.; Yang, W.; Niu, Y.; Sun, C., Multilayered construction of glucose oxidase on gold electrodes based on layer-by-layer covalent attachment. Analytica Chimica Acta 2004, 523 (2), 209-217. 59. Yang, W.; Wang, J.; Zhao, S.; Sun, Y.; Sun, C., Multilayered construction of glucose oxidase and gold nanoparticles on Au electrodes based on layer-by-layer covalent attachment. Electrochemistry Communications 2006, 8 (4), 665-672. 60. Chou, A.; Bocking, T.; Singh, N. K.; Gooding, J. J., Demonstration of the importance of oxygenated species at the ends of carbon nanotubes for their favourable electrochemical properties. Chemical Communications 2005, (7), 842-844. 61. Li, J.; Wang, Y.-B.; Qiu, J.-D.; Sun, D.-c.; Xia, X.-H., Biocomposites of covalently linked glucose oxidase on carbon nanotubes for glucose biosensor. Anal Bioanal Chem 2005, 383 (6), 918-922. 62. Yang, T.-H.; Hung, C.-L.; Ke, J.-H.; Zen, J.-M., An electrochemically preanodized screen-printed carbon electrode for achieving direct electron transfer to glucose oxidase. Electrochemistry Communications 2008, 10 (7), 1094-1097. 63. Chi, Q.; Zhang, J.; Dong, S.; Wang, E., Direct electrochemistry and surface characterization of glucose oxidase adsorbed on anodized carbon electrodes. Electrochimica Acta 1994, 39 (16), 2431-2438. 64. Haghighi, B.; Tabrizi, M. A., Direct electron transfer from glucose oxidase immobilized on a nano-porous glassy carbon electrode. Electrochimica Acta 2011, 56 (27), 10101-10106. 65. Kang, X.; Mai, Z.; Zou, X.; Cai, P.; Mo, J., A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Analytical biochemistry 2007, 363 (1), 143-150. 66. Prasad, K. S.; Chen, J. C.; Ay, C.; Zen, J. M., Mediatorless catalytic oxidation of NADH at a disposable electrochemical sensor. Sensors and Actuators B: Chemical 2007, 123 (2), 715-719. 67. Laviron, E., The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1979, 100 (1–2), 263-270. 68. Zheng, J.; He, Y.; Sheng, Q.; Zhang, H., DNA as a linker for biocatalytic deposition of Au nanoparticles on graphene and its application in glucose detection. Journal of Materials Chemistry 2011, 21 (34), 12873-12879. 69. Ahmadalinezhad, A.; Wu, G.; Chen, A., Mediator-free electrochemical biosensor based on buckypaper with enhanced stability and sensitivity for glucose detection. Biosensors and Bioelectronics 2011, 30 (1), 287-293. 70. Laviron, E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1979, 101 (1), 19-28. 71. Liu, X.; Shi, L.; Niu, W.; Li, H.; Xu, G., Amperometric glucose biosensor based on single-walled carbon nanohorns. Biosensors and Bioelectronics 2008, 23 (12), 1887-1890. 72. Wang, Y.; Liu, L.; Li, M.; Xu, S.; Gao, F., Multifunctional carbon nanotubes for direct electrochemistry of glucose oxidase and glucose bioassay. Biosensors and Bioelectronics 2011, 30 (1), 107-111. 73. Stephens, I. E. L.; Bondarenko, A. S.; Gronbjerg, U.; Rossmeisl, J.; Chorkendorff, I., Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy & environmental science 2012, 5 (5), 6744-6762. 74. Wang, M.; Wang, X.; Li, J.; Liu, L., In situ synthesis of 3D platinum nanoflowers on porous silicon for monolithic integrated micro direct methanol fuel cells. Journal of Materials Chemistry A 2013, 1 (28), 8127-8133. 75. Lee, Y.-W.; Han, S.-B.; Kim, D.-Y.; Park, K.-W., Monodispersed platinum nanocubes for enhanced electrocatalytic properties in alcohol electrooxidation. Chemical Communications 2011, 47 (22), 6296-6298. 76. Chen, J.; Herricks, T.; Geissler, M.; Xia, Y., Single-Crystal Nanowires of Platinum Can Be Synthesized by Controlling the Reaction Rate of a Polyol Process. Journal of the American Chemical Society 2004, 126 (35), 10854-10855. 77. Lim, B.; Wang, J.; Camargo, P. H. C.; Jiang, M.; Kim, M. J.; Xia, Y., Facile Synthesis of Bimetallic Nanoplates Consisting of Pd Cores and Pt Shells through Seeded Epitaxial Growth. Nano Letters 2008, 8 (8), 2535-2540. 78. Wang, L.; Wang, H.; Nemoto, Y.; Yamauchi, Y., Rapid and Efficient Synthesis of Platinum Nanodendrites with High Surface Area by Chemical Reduction with Formic Acid. Chemistry of Materials 2010, 22 (9), 2835-2841. 79. Choi, K.-S., Shape control of inorganic materials via electrodeposition. Dalton Transactions 2008, (40), 5432-5438. 80. Chen, X.; Su, B.; Wu, G.; Yang, C. J.; Zhuang, Z.; Wang, X.; Chen, X., Platinum nanoflowers supported on graphene oxide nanosheets: their green synthesis, growth mechanism, and advanced electrocatalytic properties for methanol oxidation. Journal of Materials Chemistry 2012, 22 (22), 11284-11289. 81. Rajesh; Paul, R. K.; Mulchandani, A., Platinum nanoflowers decorated three-dimensional graphene–carbon nanotubes hybrid with enhanced electrocatalytic activity. Journal of Power Sources 2013, 223 (0), 23-29. 82. Kawasaki, H.; Yao, T.; Suganuma, T.; Okumura, K.; Iwaki, Y.; Yonezawa, T.; Kikuchi, T.; Arakawa, R., Platinum Nanoflowers on Scratched Silicon by Galvanic Displacement for an Effective SALDI Substrate. Chemistry – A European Journal 2010, 16 (35), 10832-10843. 83. Sun, S. H.; Yang, D. Q.; Villers, D.; Zhang, G. X.; Sacher, E.; Dodelet, J. P., Template- and Surfactant-free Room Temperature Synthesis of Self-Assembled 3D Pt Nanoflowers from Single-Crystal Nanowires. Advanced Materials 2008, 20 (3), 571-574. 84. Zhang, M.; Lv, J.-J.; Li, F.-F.; Bao, N.; Wang, A.-J.; Feng, J.-J.; Zhou, D.-L., Urea assisted electrochemical synthesis of flower-like platinum arrays with high electrocatalytic activity. Electrochimica Acta 2014, 123 (0), 227-232. 85. Tiwari, J. N.; Pan, F.-M.; Lin, K.-L., Facile approach to the synthesis of 3D platinum nanoflowers and their electrochemical characteristics. New Journal of Chemistry 2009, 33 (7), 1482-1485. 86. Zhang, H.; Zhou, W.; Du, Y.; Yang, P.; Wang, C., One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation. Electrochemistry Communications 2010, 12 (7), 882-885. 87. Zhang, H.; Jiang, F.; Zhou, R.; Du, Y.; Yang, P.; Wang, C.; Xu, J., Effect of deposition potential on the structure and electrocatalytic behavior of Pt micro/nanoparticles. International Journal of Hydrogen Energy 2011, 36 (23), 15052-15059. 88. Li, L.-L.; Chang, C.-W.; Wu, H.-H.; Shiu, J.-W.; Wu, P.-T.; Wei-Guang Diau, E., Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry 2012, 22 (13), 6267-6273. 89. Hsin, Y. L.; Hwang, K. C.; Yeh, C.-T., Poly(vinylpyrrolidone)-Modified Graphite Carbon Nanofibers as Promising Supports for PtRu Catalysts in Direct Methanol Fuel Cells. Journal of the American Chemical Society 2007, 129 (32), 9999-10010. 90. Yao, Z.; Zhu, M.; Jiang, F.; Du, Y.; Wang, C.; Yang, P., Highly efficient electrocatalytic performance based on Pt nanoflowers modified reduced graphene oxide/carbon cloth electrode. Journal of Materials Chemistry 2012, 22 (27), 13707-13713. 91. Yang, W.; Wang, Y.; Li, J.; Yang, X., Polymer wrapping technique: an effective route to prepare Pt nanoflower/carbon nanotube hybrids and application in oxygen reduction. Energy & environmental science 2010, 3 (1), 144-149. 92. Wu, B.; Hu, D.; Kuang, Y.; Liu, B.; Zhang, X.; Chen, J., Functionalization of Carbon Nanotubes by an Ionic-Liquid Polymer: Dispersion of Pt and PtRu Nanoparticles on Carbon Nanotubes and Their Electrocatalytic Oxidation of Methanol. Angewandte Chemie International Edition 2009, 48 (26), 4751-4754. 93. Hepel, M., The electrocatalytic oxidation of methanol at finely dispersed platinum nanoparticles in polypyrrole films. Journal of the Electrochemical Society 1998, 145 (1), 124-134. 94. Huang, L.-M.; Tang, W.-R.; Wen, T.-C., Spatially electrodeposited platinum in polyaniline doped with poly(styrene sulfonic acid) for methanol oxidation. Journal of Power Sources 2007, 164 (2), 519-526. 95. Napporn, W. T.; Laborde, H.; Leger, J. M.; Lamy, C., Electro-oxidation of C1 molecules at Pt-based catalysts highly dispersed into a polymer matrix: effect of the method of preparation. Journal of Electroanalytical Chemistry 1996, 404 (1), 153-159. 96. O'Mullane, A.; Dale, S.; Day, T.; Wilson, N.; Macpherson, J.; Unwin, P., Formation of polyaniline/Pt nanoparticle composite films and their electrocatalytic properties. J Solid State Electrochem 2006, 10 (10), 792-807. 97. Zhao, H.; Li, L.; Yang, J.; Zhang, Y., Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications. Journal of Power Sources 2008, 184 (2), 375-380. 98. Chang, T.-K.; Chang, C.-C.; Wen, T.-C., The methanol adsorption behavior on platinum/poly(2,5-dimethoxyaniline) composites for application in methanol sensing. Journal of Power Sources 2008, 185 (2), 603-608. 99. Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T., Ultra-large-scale syntheses of monodisperse nanocrystals. Nature materials 2004, 3 (12), 891-5. 100. Zach, M. P.; Penner, R. M., Nanocrystalline Nickel Nanoparticles. Advanced Materials 2000, 12 (12), 878-883. 101. Kloke, A.; von Stetten, F.; Zengerle, R.; Kerzenmacher, S., Strategies for the Fabrication of Porous Platinum Electrodes. Advanced Materials 2011, 23 (43), 4976-5008. 102. Kloke, A.; Kohler, C.; Gerwig, R.; Zengerle, R.; Kerzenmacher, S., Cyclic Electrodeposition of PtCu Alloy: Facile Fabrication of Highly Porous Platinum Electrodes. Advanced Materials 2012, 24 (21), 2916-2921. 103. Li, Y.; Xian, H.; Zhou, Y., Formation of platinum nanoflowers on 3-aminopropyltriethoxysilane monolayer: Growth mechanism and electrocatalysis. Applied Catalysis A: General 2011, 401 (1–2), 226-232. 104. Yin, J.; Wang, J.; Li, M.; Jin, C.; Zhang, T., Iodine Ions Mediated Formation of Monomorphic Single-Crystalline Platinum Nanoflowers. Chemistry of Materials 2012, 24 (14), 2645-2654. 105. Niu, L.; Li, Q.; Wei, F.; Wu, S.; Liu, P.; Cao, X., Electrocatalytic behavior of Pt-modified polyaniline electrode for methanol oxidation: Effect of Pt deposition modes. Journal of Electroanalytical Chemistry 2005, 578 (2), 331-337. 106. Li, Y.; Gao, W.; Ci, L.; Wang, C.; Ajayan, P. M., Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 2010, 48 (4), 1124-1130. 107. Wang, R.; Da, H.; Wang, H.; Ji, S.; Tian, Z., Selenium functionalized carbon for high dispersion of platinum-ruthenium nanoparticles and its effect on the electrocatalytic oxidation of methanol. Journal of Power Sources 2013, 233, 326-330. 108. Wei, Z. D.; Chan, S. H., Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation. Journal of Electroanalytical Chemistry 2004, 569 (1), 23-33. 109. Hsieh, Y.-C.; Chang, L.-C.; Tseng, Y.-C.; Wu, P.-W.; Lee, J.-F., Structural characterizations of PtRu nanoparticles by galvanostatic pulse electrodeposition. Journal of Alloys and Compounds 2014, 583 (0), 170-175. 110. He, Z.; Chen, J.; Liu, D.; Zhou, H.; Kuang, Y., Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Diamond and Related Materials 2004, 13 (10), 1764-1770. 111. Rodrı́guez-Nieto, F. J.; Morante-Catacora, T. Y.; Cabrera, C. R., Sequential and simultaneous electrodeposition of Pt–Ru electrocatalysts on a HOPG substrate and the electro-oxidation of methanol in aqueous sulfuric acid. Journal of Electroanalytical Chemistry 2004, 571 (1), 15-26. 112. Frackowiak, E.; Beguin, F., Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39 (6), 937-950. 113. Arbizzani, C.; Beninati, S.; Manferrari, E.; Soavi, F.; Mastragostino, M., Electrodeposited PtRu on cryogel carbon–Nafion supports for DMFC anodes. Journal of Power Sources 2006, 161 (2), 826-830. 114. Wang, R.; Da, H.; Wang, H.; Ji, S.; Tian, Z., Selenium functionalized carbon for high dispersion of platinum–ruthenium nanoparticles and its effect on the electrocatalytic oxidation of methanol. Journal of Power Sources 2013, 233 (0), 326-330. 115. Bauer, A.; Gyenge, E. L.; Oloman, C. W., Electrodeposition of Pt–Ru nanoparticles on fibrous carbon substrates in the presence of nonionic surfactant: Application for methanol oxidation. Electrochimica Acta 2006, 51 (25), 5356-5364. 116. Rioux, R. M.; Song, H.; Grass, M.; Habas, S.; Niesz, K.; Hoefelmeyer, J. D.; Yang, P.; Somorjai, G. A., Monodisperse platinum nanoparticles of well-defined shape: synthesis, characterization, catalytic properties and future prospects. Top Catal 2006, 39 (3-4), 167-174. 117. Nirmala Grace, A.; Pandian, K., Pt, Pt–Pd and Pt–Pd/Ru nanoparticles entrapped polyaniline electrodes – A potent electrocatalyst towards the oxidation of glycerol. Electrochemistry Communications 2006, 8 (8), 1340-1348. 118. Kim, H. J.; Choi, S. M.; Seo, M. H.; Green, S.; Huber, G. W.; Kim, W. B., Efficient electrooxidation of biomass-derived glycerol over a graphene-supported PtRu electrocatalyst. Electrochemistry Communications 2011, 13 (8), 890-893. 119. Ishiyama, K.; Kosaka, F.; Shimada, I.; Oshima, Y.; Otomo, J., Glycerol electro-oxidation on a carbon-supported platinum catalyst at intermediate temperatures. Journal of Power Sources 2013, 225 (0), 141-149. 120. Reitz, W., Handbook of Fuel Cells: Fundamentals, Technology, and Applications, (Volume 2) W. Vielstich, A. Lamm, and H. A. Gasteiger (editors). Materials and Manufacturing Processes 2007, 22 (6), 789-789. 121. Davis, S. E.; Ide, M. S.; Davis, R. J., Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chemistry 2013, 15 (1), 17-45. 122. Ketchie, W. C.; Murayama, M.; Davis, R. J., Selective oxidation of glycerol over carbon-supported AuPd catalysts. Journal of Catalysis 2007, 250 (2), 264-273. 123. Li, S.-S.; Hu, Y.-Y.; Feng, J.-J.; Lv, Z.-Y.; Chen, J.-R.; Wang, A.-J., Rapid room-temperature synthesis of Pd nanodendrites on reduced graphene oxide for catalytic oxidation of ethylene glycol and glycerol. International Journal of Hydrogen Energy 2014, 39 (8), 3730-3738. 124. Demirel, S.; Lehnert, K.; Lucas, M.; Claus, P., Use of renewables for the production of chemicals: Glycerol oxidation over carbon supported gold catalysts. Applied Catalysis B: Environmental 2007, 70 (1–4), 637-643. 125. Chatzifragkou, A.; Papanikolaou, S., Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes. Appl Microbiol Biotechnol 2012, 95 (1), 13-27. 126. Hajek, M.; Skopal, F.; Machek, J., Determination of free glycerol in biodiesel. European Journal of Lipid Science and Technology 2006, 108 (8), 666-669. 127. Fauhl, C.; Wittkowski, R.; Lofthouse, J.; Hird, S.; Brereton, P.; Versini, G.; Lees, M.; Guillou, C., Gas chromatographic/mass spectrometric determination of 3-methoxy-1,2-propanediol and cyclic diglycerols, by-products of technical glycerol, in wine: Interlaboratory study. Journal of Aoac International 2004, 87 (5), 1179-1188. 128. Mittelbach, M.; Roth, G.; Bergmann, A., Simultaneous gas chromatographic determination of methanol and free glycerol in biodiesel. Chromatographia 1996, 42 (7-8), 431-434. 129. Falase, A.; Garcia, K.; Lau, C.; Atanassov, P., Electrochemical and in situ IR characterization of PtRu catalysts for complete oxidation of ethylene glycol and glycerol. Electrochemistry Communications 2011, 13 (12), 1488-1491. 130. Fernandez, P. S.; Martins, M. E.; Camara, G. A., New insights about the electro-oxidation of glycerol on platinum nanoparticles supported on multi-walled carbon nanotubes. Electrochimica Acta 2012, 66 (0), 180-187. 131. Fernandez, P. S.; Martins, C. A.; Martins, M. E.; Camara, G. A., Electrooxidation of glycerol on platinum nanoparticles: Deciphering how the position of each carbon affects the oxidation pathways. Electrochimica Acta 2013, 112 (0), 686-691. 132. Zhang, Z.; Xin, L.; Qi, J.; Chadderdon, D. J.; Sun, K.; Warsko, K. M.; Li, W., Selective electro-oxidation of glycerol to tartronate or mesoxalate on Au nanoparticle catalyst via electrode potential tuning in anion-exchange membrane electro-catalytic flow reactor. Applied Catalysis B: Environmental 2014, 147 (0), 871-878. 133. Zhou, H. H.; Ning, X. H.; Chen, J. H.; Wei, W. Z.; Kuang, Y. F., Pt-Ru electrodeposition on nanofibrous polyaniline and their electrocatalytic properties for methanol oxidation. Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry 2005, 44 (5), 1009-1015. 134. Lu, X.; Hu, J.; Foord, J. S.; Wang, Q., Electrochemical deposition of Pt–Ru on diamond electrodes for the electrooxidation of methanol. Journal of Electroanalytical Chemistry 2011, 654 (1–2), 38-43. 135. Toghill, K. E.; Compton, R. G., Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation. International Journal of Electrochemical Science 2010, 5 (9), 1246-1301. 136. Baskar, S.; Chang, J.-L.; Zen, J.-M., Extremely Stable Copper–Polymelamine Composite Material for Amperometric Hydrogen Peroxide Sensing. Journal of Polymer Science Part B: Polymer Physics 2013, 51 (22), 1639-1646.
摘要: 
This thesis describes the utilization of functional platform for stable immobilization of enzyme and dispersion of high surface area noble metal catalyst for sensor and fuel cell applications. An in-situ generated oxygen functionalities along with edge/defect plane likes sites on screen printed carbon electrode (SPCE*) were used for covalent linkage of glucose oxidase enzyme and 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide (EDC), N-Hydroxysuccinimide (NHS) coupling reagent was used to create the amide linkage for the preparation of stable glucose sensor. In the later sections, an amine and nitrogen rich poly(melamine) surface was utilized for the dispersion of deposited noble metal nanoparticles, platinum and platinum-ruthenium, and these modified surfaces were used for methanol oxidation and glycerol determination. As a future prospect, a nickel/copper poly(melamine) system for non enzymatic glucose sensing and detection of dicyandiamide and its catalytic ability towards NADH and hydrazine on (SPCE*) electrode surface have been demonstrated, respectively.
URI: http://hdl.handle.net/11455/90578
Rights: 同意授權瀏覽/列印電子全文服務,2015-05-21起公開。
Appears in Collections:化學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-8099051008-1.pdf4.49 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.