Please use this identifier to cite or link to this item:
標題: Fabrication and application of electrochemical gas sensors based on metal nanoparticals-deposited screen-printed carbon ultramicroelectrodes
作者: 陳韋仲
Wei-Chung Chen
關鍵字: gas sensor;electrochemistry;ultramicroelectrode;氣體感測器;超微電極;電化學
引用: 第四章 [1] J. P. Kehrer, Toxicology 2000, 149, 43. [2] Hydrogen peroxide, European Union Risk Assessment Report 2003, 38, 1. [3] M. E. Abbas, W. Luo, L. Zhu, J. Zou and H. Tang, Food Chem. 2010, 120, 327. [4] O. Demirkol, A. C. Mehmetoglu, Z. Qiang, N. Ercal and C. Adams, J. Arg.Food Chem. 2008, 56, 10414. [5] W. Luo, M. E. Abbas, L. Zhu, K. Deng and H. Tang, Anal. Chim. Acta 2008, 629, 1. [6] X. Wang and K. Jiao, Anal. Chim. Acta 2010, 664, 34. [7] M. Liang and L.-H. Guo, Environ. Sci. Technol. 2007, 41, 658. [8] S. Jia, M. Liang and L.-H. Guo, J. Phys. Chem. B 2008, 112, 4461. [9] E. Brillas, I. Sires and M. A. Oturan, Chem. Rev. 2009, 109, 6570. [10] B. Halliwell and J. M. C. Gutterridge, Free Radicals in Biology and Medicine, Clarendon Press, Oxford, 2nd ed. 1989. [11] D. Huang, B. Ou and R. L. Prior, J. Agric. Food Chem. 2005, 53, 1841. [12] D. A. Stoyanovsky, Z. Melnkikov and A. I. Cederbaum, Anal. Chem. 1999, 71, 715. [13] Q. Xiang, J. Yu and P. K. Wong, J. Colloid Interf. Sci. 2011, 357, 163. [14] E. Kilinc, Talanta 2005, 65, 876. [15] D. Z. Suznjevic, F. T. Pastor, Z. Stanislava and S. Z. Gorjanovic, Talanta 2011, 85, 1398. [16] A. Mansouri, D. P. Makris and P. Kefalas, J. Pharm. Biomed. Anal. 2005, 39, 22. [17] A. Nikokavoura, D. Christodouleas, E. Yannakopoulou, K. Papadopoulos and A. C. Calokerinos, Talanta 2011, 84, 874. [18] C.P Huang, C. Dong, Z. Tang, Waste Mgmt. 1993, 13, 361. [19] E. Neyens, J. Baeyens, J. Hazard. Mater. 2003, 98, 33. [20] T. Rigg, W. Taylor, J. Weiss, J. Chem. Phys. 1954, 22, 575. [21] C. Walling, A. Goosen, J. Am. Chem. Soc. 1973, 95, 2987. [22] J. De Latt, H. Gallard, Environ. Sci. Technol. 1999, 33, 2726. [23] B.H.J. Bielski, D.E. Cablelli, R.L, Arudi, J. Phys. Chem. Soc. 1971, 93, 1041. [24] G. Cui, Z. Ye, J. Chen, G. Wang and J. Yuan, Talanta, 2011, 84, 971. [25] M. Liu, S. Liu, S.L. Peterson, M. Miyake and K.J. Liu, Mol. Cell. Biochem. 2002, 234, 379. [26] M. Kumamoto, T. Sonda, K. Nagayama and M. Tabata, Biosci. Biotechnol. Biochem. 2001, 65, 126. [27] E. Lipczynska-Kochany, G. Sprah, S. Harms, Chemosphere ,1995, 30, 9. 第五章 [1] 林天送, 科學發展, 2011, 461, 72. [2] C. Cantalini, H.T. Sun, M. Faccio, G. Ferri and M. Pelino, Sens. Actuators B 1995, 24, 673. [3] W. Raymond,F. Darbyshire, E. Saavedra, D. Christodoulou, I. Hanbauer, W. Cox, B. Grisham, F. Lavel, A. Cook, C. Krishna and A. Wink, Methods, 1995, 7, 48. [4] M.R. McCurdy, Y. Bakhirkin, G. Wysocki and F.K. Tittel, J. Biomed. Opt. 2007, 12, 034034. [5] K.C. Ho, W.T. Hung and J.C. Yang Sensors 2003, 3, 290. [6] D. N. Maynard, A. Barker, A. V. Mimotti, N. H. Peck, Adv. Agron. 1976, 28, 71. [7] World Health Organization, 1973, Toxicology Evaluation of Certain Food Additives with a Review of General Principles and Specifications, 17th Report of Joint FAO/WHO Expert Committee on Food Additives, FAO Nutrition Report Series, No. 53(Geneva). [8] C. K. Chow, C. B. Hong, Toxicology, 2002, 180, 195. [9] 衛生署食品藥物管理局-消費者資訊網對亞硝酸鹽之介紹 [10] M. J. Moorcroft, J. Davis, R. G. Compton, Talanta, 2001, 54, 785. [11] L. A. Ridnour, J. E. Sim, M. A. Hayward, D. A. Wink,S. M. Martin, G. R. Buettner, D. R. Spitz, Anal. Biochem., 2000, 281, 223. [12] H. Chen, Y. Fang, T. An, K. Zhu, J. Lu, Int. J. Environ.Anal. Chem., 2000, 76, 89. [13] F. Yang, E. Troncy, M. Francoeur, B. Vinet, P. Vinay,G. Czaika, G. Blaise, Clin. Chem., 1997, 43, 657. [14] Z. K. He, B. Fuhrmann, U. Spohn, Fres. J. Anal. Chem., 2000, 367, 264. [15] M. I. H. Helaleh, T. Korenaga, Microchem. J., 2000, 64, 241. [16] H. Li, C. J. Meininger, G. Y. Wu, J. Chromatogr. B., 2000, 746, 199. [17] J. P. Greiss, Ber. Dtsch. Chem. Ges., 1879, 12, 426. [18] 行政院衛生署「食品中亞硝酸鹽之檢驗方法」 [19] D. Tsikas, F.M. Gutzki, J.C. Fro‥lich, Fres. J. Anal. Chem., 1992, 342, 95. [20] D. Tsikas, S. Rossa, J. Sandmann, J.C. Fro‥lich, J.Chromatogr. B., 1999, 724, 199. [21] S. H. Lee, L. R. Field, Anal. Chem., 1984, 56, 2647. [22] A. Tanaka, N. Nose, H. Iwasaki, J. Chromatogr., 1982, 235, 173. [23] V. Rizzo, L. Montalbetti, A. L. Rozza, W. Bolzani, C. Porta, G. Balduzzi, E. Scoglio, R. Moratti, J. Chromatogr. A., 1998, 798, 103. [24] M. Lookabaugh, I. S. Krull, J. Chromatogr., 1988, 452, 295. [25] D. Tsikas, I. Fuchs, F. M. Gutzki, J. C. Fro‥lich, J. Chromatogr. B., 1998, 715, 441. [26] D. Tsikas, R. H. Bo‥ger, S. M. Bode-Bo‥ger, F. M. Gutzki, J. C. Fro‥lich, J. Chromatogr. B., 1994, 661, 185. [27] J. P. Landers, Clin. Chem., 1995, 41, 495. [28] P. N. Bories, E. Scherman, L. Dziedzic, Clin. Biochem., 1999, 32, 9. [29] M. Duca, V. Kavvadia, P. Rodriguez, S. C. S. Lai, T. Hoogenboom, M. T. M. Koper, J. Electroanal. Chem., 2010, 649, 59. [30] D. Pletcher, M. Bertotti, j. Braz. Chem. Soc., 1997, 8, 391. [31] G. Zhao, K. Liu, S. Lin., G. Liang, X. Guo, Z. Zhang., Microchemical Acta. 2003, 144, 75. [32] B. Strehlitz, B. Grunsig, W. Schumacher, B. M. H. Kroneck., K. D. Vorlop, H. Kott, Anal. Chem., 1996, 68, 807. [33] Z. H. Dai, X. X. Xu, H. X. Ju, Anal. Bio., 2004, 332, 23. [34] X. Huang, Y. Li, Y. Chen, L. Wang, Sens. Acuators B., 2008, 134, 780. [35] K. C. Ho, W. T. Hung, J. C. Yang, Sensors, 2003,3, 290. [36] P. Wang, F. Li, X. Huang, Y. Li, L. Wang, Electrochem. Commun., 2008, 10, 195. [37] S. Wang, Y. Yin, X. Lin, Electrochem. Commun., 2004, 6, 259. [38] K. Zhao, H. Song, S. Zhuang, L. Dai, P. He, Y. Fang, Electrochem. Commun., 2007, 9, 65. [39] N. Zhu, Q. Xu, S. Li, H. Gao, Electrochem. Commun., 2009, 11, 2308. [40] S. Rajesh, A. K. Kanugula, K. Bhargava, G. Ilavazhagan, S. Kotamraju, C. Karunakaran, Biosens. Bioelectron., 2010, 26, 689. [41] Z. Yuan, H. Xian, F. Li, S. Wu, Q. Lu, Y. Li, L. Wang, Electrochim. Acta., 2010, 55, 5905. [42] H. Wang, X. Bo, J. Nai., L. Wang, L. Guo, J. Electroanal. Chem., 2011, 662, 281. 第六章 [1] L.C. Meher, D.V. Sagar, S.N. Naik, Renew Sust. Energ. Rev. 10 (2006) 248. [2] M. Mittelbach, Bioresour. Technol. 56 (1996) 7. [3] A. Neher, et al., USPTO Patent Full, Patent 5,387,720 (1995). [4] ANP, Agencia Nacional de Petroleo. Resolucao no. 7 de 19 de Marco de 2008, Regulamento Tecnico ANP no. 1/2008, Brasilia, Diario Oficial da Uniao. [5] P. Bondiolli, C. Mariani, A. Lanzani, E. Fedeli, S. Veronese, Riv. Ital. Sostanze Gr. 69 (1992) 7. [6] J. Bailer, K. Hueber, Fresenius J. Anal. Chem. 340 (1991) 186. [7] P. Lozano, N. Chirat, J. Graille, D. Pioch, Fresenius J. Anal. Chem. 354 (1996) 319. [8] L.C.G. Filho, G.A. Micke, J. Chromatogr. A 1154 (2007) 477. [9] C.-H. Chou, J.-L. Chang, J.-M. Zen, Sen. Actuat. B. 147(2) (2010) 669. [10] M. Watanabe, S. Motoo, J Electroanal. Chem. 60 (1975) 267. [11] H. A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns, J. Phys. Chem. 97 (1993) 12020. [12] J. S. Spendelow, P.K. Babu, A. Wieckowski, Curr. Opin. Solid State Mater. Sci. 9 (2005) 37. [13] D. Zhao, B. Q. Xu, Angew. Chem. Int. Ed. 45 (2006) 4955. 第七章 [1] H. Wang, X. Bo, J. Nai., L. Wang, L. Guo, J. Electroanal. Chem. 2011, 662, 281. [2] X. Niu, M. Lan, C. Chen, H. Zhao, Talanta 2012, 99, 1062. [3] N. Toshima, M. Harada, T. Yonezawa, K. Kushihashi, K. Asakura, J. Phys. Chem. 1991, 95, 7448.
In this study, we have successfully developed novel electrochemical gas sensors based on electrochemical deposition of high catalytic metal particles (e.g., Pt and Pd) on the surface of screen-printed carbon ultramicroelectrode (SPUME). A more efficient mass transfer effect of ultramicroelectrode is facilitates for the electrochemical reduction of metals. Homogeneous size and distribution of Pt nanoparticles can be easily decorated at the surface of carbon ultramicroelectrode without either protective or capped agents for catalysis. The as-prepared Pt/SPUME was then applied for the development of sensitive nitric oxide, formaldehyde, formic acid and hydrogen peroxide gas sensors. In addition, the system can also be applied to develop hydroxyl radical, glycerol and triglyceride sensors as well. As to H2O2 sensor, a highly selective hydroxyl radical (●OH) assay through the depletion of H2O2 as an indicator for iron-catalysed hydroxyl radical formation without any separation process and chemical probe was demonstrated. The proposed method successfully applied to evaluate the antioxidative activity of phenolic compounds. By using a reaction involving sulfuric acid and sodium nitrite, in-situ evaluation of NO gas can be carried out in an inert atmosphere and sensing in the gas phase. This new approach was successfully demonstrated for the determination of nitrite in food samples such as sausage and vegetable by using the standard addition method and the results were compared with the classical spectroscopic method to verify the analytical applicability of the method. These promising analytical performances open new possibilities for easy and selective determination of nitrite and nitric oxide in environmental and biological samples. Glycerol sensor in bio-diesel purity identification used a AuRuPt modified electrode to avoid being poison with CO adsorption on the surface of Pt and prevent the interferences from methanol and ethanol at the same time. By using periodate (HIO4-) as oxidant to decomposed glycerol into formaldehyde (HCHO) and formic acid (HCOOH), we can collect the oxidation current by amperometry of HCHO and HCOOH. Finally, we discussed the fabrication of PdPt bimetal on SPUME and its property. The PdPt bimetal oxidizes nitric acid very well than pure Pt and favors the development of highly sensitive gas sensor.

Rights: 同意授權瀏覽/列印電子全文服務,2014-12-16起公開。
Appears in Collections:化學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-8098051008-1.pdf7.04 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.