Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/9071
標題: 以光調制光譜研究InN和GaAsSbN-第三代太陽光電材料
Photoreflectance Study of InN and GaAsSbN-Third-Generation Photovoltaic Materials
作者: 林國隆
Lin, Guo-Lung
關鍵字: 光調制光譜;Photoreflectance spectra;光激發螢光光譜;拉曼光譜;自旋軌道分裂;晶場分裂;Photoluminescence spectra;Raman spectroscopy;Spin-orbit splitting;Crystal field splitting
出版社: 電機工程學系所
引用: 1. F. H. Pollak and H. Shen, J. Cryst. Growth 98, 53(1989). 2. N. P. Lakshmi and F. G. Thomas, Appl. Phys. Lett. 61, 1081. 3. F. H. Pollak and H. Shen, J. Cryst. Growth 98, 53(1989). 4. D. E. Aspnes, in M. Balkanski, Handbook on Semiconductors, Vol. 2,North-Holland, New York, 1980, p.109; also Surf. Sci, 37, 418(1973). 5. D. E. Aspnes, Phys. Rev. B10, 4228(1974). 6. T. M. Hsu, Y. C. Tien, N. H. Lu, S. P. Ysai, D. G. Liu and C. P. Lee, J.Appl. Phys. 72, 1065(1992). 7. N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C.Ito and D. McIntyre, J. Cryst. Growth, 93, 481(1988). 8. D. E. Aspnes and A. A. Studna, Phys. Rev. B7, 4605(1973). 9. M. Kondow, T. Kitatani, S. Nakatsuka,M. C. Larson, K. Nakahara, Y.Yazawa, and M.Okai, IEEE and Kazuhisa Uo mi,IEEE J.Select. Topics Quantum Electron., Vol. 3, p. 719-730 (1997). 10. 鄭育俐,非極性氮化鎵其光致發光、螢光激發光譜與吸收光譜之光學研究,國立中山大學, 碩士論文(2007). 11. P. Misra, Optical polarization anisotropy in nonpolar GaN thin films due to crystal symmetry and anisotropic strain,Humboldt-university, PhD thesis (2005). 12. P. Y. Yu , Fundamentals of Semiconductors (Springer, 2001). 13. J. D. Perkins, A. Mascarenhas, Yong Zhang, J. F. Geisz, D. J. Friedman, J. M. Olson, and Sarah R. Kurtz, Phys. Rev. Letters,Vol.82,Number 16,p.3312-3315 (1999). 14. K. Alberi, J. Wu, W. Walukiewicz, K. M. Yu, O. D. Dubon, S.P. Watkins,C. X. Wang, X. Liu, Y. J. Cho, and J. Furdyna,Phys. Rev. B 75,p.045203 (2007). 15. Y. T. Lin,T. C. Ma, T. Y. Chen,and H. H. Lin,Appl. Phys. Lett. 93,p.171914(2008). 16. S. Tiwari and D. J. Frank, Appl. Phys. Lett. 60,p.630 (1992). 17. W. Shan, W. Walukiewicz, and J. W. Ager III, Phys. Review. Lett,Vol.82, Number 6,p.1221-1224 (1999). 18. I. Suemune, K. Uesugi, and W. Walukiewicz, Appl. Phys. Lett.77,p.3021 (2000). 19. C. Skierbiszewski, P. Perlin, P. Wisniewski, T. Suski, J.F. Geisz, K.Hingerl, W. Jantsch, D. E. Mars, and W.Walukiewicz, Phys. Rev. B 65,p.035207 (2002). 20. Skierbiszewski, P. Perlin, P. Wisniewski, W. Knap, T. Suski,W. Walukiewicz,W. Shan, K. M. Yu, J. W. Ager, E. E. Haller,J. F. Geisz, and J. M.Olson, Appl. Phys. Lett. 76,p.2409 (2000). 21. S. A. Lourenc, I. F. L. Dias1, J. L. Duarte1, E. Laureto1,V. M. Aquino1, and J. C. Harmand, J. Appl. Phys. Vol.37. no.4 ,p.1212-1218 (2007). 22. 李佳任,台灣師範大學碩士論文(2001). 23. N. Ben Sedrine, C. Bouhafs, J. C. Harmand, R. Chtourou, and V. Darakchieva, Appl. Phys. Lett. 97, 201903 (2010). 24. G. R. Mutta, J. M. Routoure, B. Guillet, L. Mechin, J. Grandal, S. M.-Horcajo, T. Brazzini, F. Calle, M. A. S.-Garcia, P. Marie, and P. Ruterana, Appl. Phys. Lett. 98, 252104 (2011).
摘要: 
氮銻砷化鎵和氮化銦是第三代太陽能電池的相關材料,本論文探討此兩種材料的光電特性,以期有助於太陽能電池的發展。近年來,低含氮的三五族化合物半導體已被廣泛的研究。由於半導體材料加入氮後,會發生明顯的能隙縮減,主要是因為氮原子能階會和半導體導帶能階產生交互作用,造成能帶分裂,且在能隙縮減的同時,低含氮的半導體材料的晶格常數也會縮減,因此適合做長波長光電子元件。而光調制光譜(PR)具有非接觸性和非破壞性的特點,廣範的操作溫度和抑制背景效應等優點,所以我們以PR對四元半導體材料氮銻砷化鎵做研究,並且利用Double Band Anticrossing Model去擬合PR測量所獲得的氮銻砷化鎵之相關訊號。
對於InN,我們分別利用了PR、光激發螢光光譜、拉曼光譜進行研究。我們發現InN在溫度100 K以上時是類似金屬導體的化合物,無法測得PR的訊號,而溫度低於100 K後會轉變為半導體性質,此時才測得到PR的訊號,這個結果可以歸因於溫度下降使得自由電子冷卻到陷阱態中。之後我們根據InN在溫度30 K下的PR光譜圖去做擬合,獲得自旋軌道分裂值和晶場分裂值。而自旋軌道分裂值和晶場分裂值是半導體的基本參數,然而目前文獻上沒有InN的實驗值,本論文達到這個目標。

GaAsSbN and InN is the third-generation of solar cells related materials, so we study the GaAsSbN and InN of relevant characteristics to help the development of solar cells. In the last decade, low-nitrogen-containing III-V compound semiconductors have been extensively studied. Nitrogen adding into the semiconductor materials will cause significant reduction of the energy gap, because of the nitrogen atomic level and conduction band energy level interact with each other. The band will split and reduce the energy gap and at the same time reduce the lattice constant. So it’s suitable application for long-wavelength optoelectronic components. Photoreflectance (PR) spectrum has non-contact and non-destructive characteristics and a wide range of operating temperatures. It also has advantage of reducing background effects. Therefore, we use PR spectra to research the semiconductor materials GaAsSbN and use the double band anticrossing model to fit the PR results of GaAsSbN.
For InN, we were using PR spectra, photoluminescence spectra, Raman spectroscopy to study the samples.We found that InN at temperatures above 100K is similar to metal conductors, andPR signals can not be measured. At temperature below 100K, InN will transform into the semiconductor-like properties, and PR signal can be measured. This results from free electrons cooling down to the trap states at such low temperatures. Then we fit the PR results at 30K to obtain the spin-orbit splitting and crystal field splitting values.The spin-orbit splitting and crystal field splitting are the basic parameters of semiconductors. So far there is no experimental values of InN in literature, but this thesis has achieved this goal.
URI: http://hdl.handle.net/11455/9071
其他識別: U0005-2608201315165600
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.