Please use this identifier to cite or link to this item:
標題: 以室溫製程製作非晶氧化物半導體薄膜電晶體
Room temperature fabrication of amorphous oxide semiconductor thin film transistors
作者: 林文凱
Lin, Wen-Kai
關鍵字: 高介電質;high-k;非晶氧化物半導體;室溫製程;amorphous oxide semiconductor;room temperature fabrication
出版社: 電機工程學系所
引用: [1] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” J. Non-Cryst. Solids, vol. 352, pp. 851-858, 2006. [2] H. Hosono, M. Yasukawa and H. Kawazoe, “Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides,” J. Non-Cryst. Solids, vol. 203, pp. 334-344, 1996. [3] C.-S. Yang, L. L. Smith, C. B. Arthur, and G. N. Parsons, “Stability of low-temperature amorphous silicon thin film transistors formed on glass and transparent plastic substrates,” J. Vac. Sci. Technol. B, Vol. 18, No. 2, pp. 683-689, 2000. [4] P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H. H. Johannes, W. Kowalsky and T. Riedl, “Towards see-through displays: Fully transparent thin-film transistors driving transparent organic light-emitting diodes,” Adv. Mater., vol.18, no.6, pp. 738-741, 2006. [5] RF and Analog/Mixed-Signal Technologies for Wireless Communications, International Roadmap for Semiconductors (Semiconductor Industry Association). [6] MarK t. bohr, robert s. chau, tahir ghani, KaiZad Mistry, “The High-k solution,” IEEE Spectrum, pp. 30-35, 2007. [7] M.-H. Cho, H. S. Chang, Y. J. Cho, D. W. Moon, K.-H. Min, R. Sinclair, S. K. Kang, D.-H. Ko, J. H. Lee, J. H. Gu, and N. I. Lee, “Change in the chemical state and thermal stability of HfO2 by the incorporation of Al2O3,” Appl. Phys. Lett., vol. 84, no. 4, pp. 571-573, 2004. [8] S.-W. Jeong, H.J. Lee, K.S. Kim, M.T. You, Y. Roh, T. Noguchi b, W. Xianyu b, and J. Jung, “Effects of annealing temperature on the characteristics of ALD-deposited HfO2 in MIM capacitors,” Thin Solid Films, vol. 515, pp. 526– 530, 2006. [9] A. Callegari, E. Cartier, M. Gribelyuk, H. F. Okorn-Schmidt, and T. Zabel, “Physical and electrical characterization of Hafnium oxide and Hafnium silicate sputtered films,” J. Appl. Phys., vol. 90, no. 12, pp. 6466-6475, 2001. [10] W. J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T. P. Ma, “Effect of Al inclusion in HfO2 on the physical and electrical properties of the dielectrics,” IEEE Electron Device Lett., vol. 23, no. 11, pp. 649-651, 2002. [11] M.-Y. Ho, H. Gonga, G. D. Wilk, B. W. Busch, M. L. Green, W. H. Lin, A. See, S. K. Lahiri, M. E. Loomans, Petri I. RaEisaEnen, and T. Gustafsson, “Suppressed crystallization of Hf-based gate dielectrics by controlled addition of Al2O3 using atomic layer deposition,” Appl. Phys. Lett., vol. 81, no. 22, pp. 4218-4220, 2002. [12] Cheng-Li Lin, Mei-Yuan Chou, Jia-Jun Hong, Tsung-Kuei Kang, Shich-Chuan Wu1, and Pi-Chun Juan, “Comparison of Breakdown Mechanism of HfO2 and HfSiOx High-k Gate Dielectrics with N2 RTA Treatment on TDDB Constant Voltage Stress,” IPFA 2009, pp. 163-168, 2009. [13] Li-ping Feng, Zheng-tang Liu, Ya-ming Shen, “Compositional, structural and electronic characteristics of HfO2 and HfSiO dielectrics prepared by radio frequency magnetron sputtering,” Vacuum, vol. 83, no. 5, pp. 902–905, 2009. [14] Quan Li,a K. M. Koo, W. M. Lau, P. F. Lee, J. Y. Dai, Z. F. Hou and X. G. Gongb, “Effects of Al addition on the native defects in hafnia,” Appl. Phys. Lett., vol. 88, pp. 182903-1-182903-3, 2006. [15] John F. Wager, Douglas A. Keszler and Rick E. Presley, “Transparent Electronics,” Springer, 2010. [16] Toshio Kamiya, Hideo Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater., Vol. 2, pp. 15–22, 2010. [17] C. D. Dimitrakopoulos and D. J. Mascaro, “Organic thin-film transistors: A review of recent advances,” IBM Journal of Research and Development, vol. 45, no. 1, pp. 11-27, 2001. [18] R. J. Chesterfield, C. R. Newman, T. M. Pappenfus, P. C. Ewbank, M. H. Haukaas, K. R. Mann, L. L. Miller and C. D. Frisbie, “High electron mobility and ambipolar transport in organic thin-film transistors based on a pi-stacking quinoidal terthiophene,” Adv. Mater., vol. 15, no. 15, pp. 1278-+, 2003. [19] R. L. Hoffman, “ZnO-channel thin-film transistors: Channel mobility,” J. Appl. Phys., vol. 95, no. 10, pp. 5813-5819, 2004. [20] S. Sze, Physics of Semiconductor Devices. New York: John Wiley & Sons, 1981. [21] C. G. Choi, S. J. Seo and B. S. Bae, “Solution-processed indium-zinc oxide transparent thin-film transistors,” Electrochem. and Solid State Lett., vol. 11, no. 1, pp. H7-H9, 2008. [22] E. Fortunato , P. Barquinha, G. Goncalves, L. Pereira, R. Martins, “High mobility and low threshold voltage transparent thin film transistors based on amorphous indium zinc oxide semiconductors,” Solid-State Electronics, vol. 52, pp. 443-448, 2008. [23] E. Fortunato, P. Barquinha, A. Pimentel, L. Pereira, G. Goncalves, and R. Martins, “Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs,” phys. stat. sol. (RRL), vol. 1, no. 1, pp. R34–R36, 2007. [24] M. Orita, H. Ohta, H. Hosono, K.Morita, H. Tanji, and H. Kawazoe, “Properties of a novel amorphous transparent conductive oxide, InGaO3(ZnO)M,” Materials Research Society Symposium, vol. 623, pp. 291–296, 2000. [25] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Jpn. J. Appl. Phys., vol. 45, no. 5B, pp. 4303-4308, 2006. [26] K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano and H. Hosono, “Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-o: Experiment and ab initio calculations,” Phys. Rev. B, vol. 75, no. 3, pp. 035212-1-035212-5, 2007. [27] K. Nomura, T. Kamiya, H. Ohta, K. Ueda, M. Hirano and H. Hosono, “Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films,” Appl. Phys. Lett., vol. 85, no. 11, pp. 1993-1995, 2004. [28] J. E. Lilienfeld, “Device for controlling electric current,” US Pat. 1,900,018, 1933. [29] Kanicki, Jerzy, “Amorphous & microcystalline semiconductor devices volume II: Materials and device physics,” Artech House, 1992. [30] R. L. Hoffman, B. J. Norris and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett., vol. 82, no. 5, pp. 733-735, 2003. [31] Lin, Y.-Y., Gundlach, D.J., Nelson, S.F., Jackson, T.N., “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Lett., vol.18, pp.606-608, 1997. [32] Sandra E. Fritz, Tommie Wilson Kelley, and C. Daniel Frisbie, “Effect of Dielectric Roughness on Performance of Pentacene TFTs and Restoration of Performance with a Polymeric Smoothing Layer,” J. Phys. Chem. B, vol.109, pp.10574-10577, 2005. [33] A. C. Tickle, Thin-film transistors: a new approach to microelectronics. John Wiley and Sons, Inc., 1969. [34] C. R. Kagan and P. Andry, Thin-film transistors. Marcell Dekker, Inc., 2003. [35] M. J. Powell, “The physics of amorphous-silicon thin-film transistors,” IEEE Trans. Electron Device, vol. 36, pp. 2753–2763, 1989. [36] D. Hong, G. Yerubandi, H. Q. Chiang, M. C. Spiegelberg, and J. F. Wager, “Electrical modeling of thin-film transistors,” Crit. Rev. Solid State., vol. 33, no. 2, pp. 101–132, 2008. [37] N. C. Su, S. J. Wang, and Albert Chin, “A low operating voltage ZnO thin film transistor using a high-κ HfLaO gate dielectric,” Electrochem. Solid-State Lett., vol. 13, no. 1, pp. H8-H11, 2010. [38] N. C. Su, S. J. Wang, and A. Chin, “High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric,” IEEE Electron Device Lett., vol. 30, no. 12, pp. 1317-1319, 2009. [39] Y. J. Cho , J. H. Shin , S. M. Bobade , Y. B. Kim , D. K, Choi, “Evaluation of Y2O3 gate insulators for a-IGZO thin film transistors,” Thin Solid Films, vol. 517, pp. 4115–4118, 2009. [40] N. G. Cho, D. H. Kim, H. G. Kim, J. M. Hong, I. D. Kim, “Zinc oxide thin film transistors using MgO–Bi1.5Zn1.0Nb1.5O7 composite gate insulator on glass substrate,” Thin Solid Films, vol. 518, pp. 2843-2846, 2010. [41] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata and T. Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” J. Appl. Phys., vol. 93, no. 3, pp. 1624-1630, 2003. [42] P. F. Carcia, R. S. McLean, M. H. Reilly and G. Nunes, “Transparent ZnO thin-film transistor fabricated by RF magnetron sputtering,” Appl. Phys. Lett., vol. 82, no. 7, pp. 1117-1119, 2003. [43] E. M. C. Fortunato, P. M. C. Barquinha, A. Pimentel, A. M. F. Goncalves, A. J. S. Marques, L. M. N. Pereira and R. F. P. Martins, “Fully transparent ZnO thin-film transistor produced at room temperature,” Adv. Mater., vol. 17, no. 5, pp. 590-+, 2005. [44] P. F. Carcia, R. S. McLean and M. H. Reilly, “Oxide engineering of ZnO thin-film transistors for flexible electronics,” J. Soc. Inf. Display, vol. 13, no. 7, pp. 547-554, 2005. [45] B. Yaglioglu, H. Y. Yeom, R. Beresford, and D. C. Paine, “High-mobility amorphous In2O3–10 wt %ZnO thin film transistors,” Appl. Phys. Lett., vol. 89, pp. 062103-1-062103-3, 2006. [46] Yu-Lin Wang, F. Ren, Wantae Lim, D. P. Norton, and S. J. Pearton, I. I. Kravchenko, J. M. Zavada, “Room temperature deposited indium zinc oxide thin film transistors,” Appl. Phys. Lett., vol. 90, pp. 232103-1-232103-3, 2007. [47] Ju-Il Song, Jae-Soung Park, Howoon Kim, Young-Woo Heo, Joon-Hyung Lee, and Jeong-Joo Kim, G. M. Kim, Byeong Dae Choi, “Transparent amorphous indium zinc oxide thin-film transistors fabricated at room temperature,” Appl. Phys. Lett., vol. 90, pp. 022106-1-022106-3, 2007. [48] P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, and E. Fortunato, “Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide,” J. Non-Cryst. Solids, vol. 352, no. 9-20F, pp. 1749~1752, 2006. [49] Chang-Ken Chen, Hsing-Hung Hsieh, Jing-Jong Shyue, and Chung-Chih Wu, “The influence of channel compositions on the electrical properties of solution-processed indium-zinc oxide thin-film transistors,” J. Display Technol., vol. 5, no. 12, pp. 509-514, 2009 [50] Ai Hua Chen, Ling Yan Liang, Hai Zhong Zhang, Zhi Min Liu, Xiao J uan Ye, Zheng Yu, Hong Tao Cao, “Enhancement of a-IZO TTFT performance by using Y2O3/Al2O3 bilayer dielectrics,” Electrochem. Solid-State Lett., vol. 14 , no. 2, pp. H88-H92, 2011. [51] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, no. 5623, pp. 1269-1272, 2003. [52] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488-492, 2004. [53] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature RF-magnetron sputtering,” Appl. Phys. Lett., vol.89, no.11, pp. 112123-1-112123-3, 2006. [54] T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya and H. Hosono, “Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in In-Ga-Zn-O system,” Appl. Phys. Lett., vol. 90, no. 24, pp. 242114-1-242114-3, 2007. [55] H. Kumomi, K. Nomura, T. Kamiya and H. Hosono, “Amorphous oxide channel TFTs,” Thin Solid Films, vol. 516, no. 7, pp. 1516-1522, 2008. [56] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo and H. D. Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” Appl. Phys. Lett., vol. 90, no. 21, pp. 212114-1-212114-3, 2007. [57] D. Kang, H. Lim, C. Kim, I. Song, J. Park, Y. Park and J. Chung, “Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules,” Appl. Phys. Lett., vol. 90, no. 19, pp. 192101-1-192101-3, 2007. [58] J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo and H. D. Kim, “Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water,” Appl. Phys. Lett., vol. 92, no. 7, pp. 072104-1-072104-3, 2008. [59] J. Park, I. Song, S. Kim, C. Kim, J. Lee, H. Lee, E. Lee, H. Yin, K. K. Kim, K. W. Kwon and Y. Park, “Self-aligned top-gate amorphous gallium indium zinc oxide thin film transistors,” Appl. Phys. Lett., vol. 93, no. 5, pp. 053501-1-053501-3, 2008. [60] H. Lim, H. Yin, J. S. Park, I. Song, C. Kim, J. Park, S. Kim, S. W. Kim, C. B. Lee, Y. C. Kim, Y. S. Park and D. Kang, “Double gate GaInZnO thin film transistors,” Appl. Phys. Lett., vol. 93, no. 6, pp. 063505-1-063505-3, 2008. [61] G. H. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, W. J. Park and H. J. Kim, “Formation mechanism of solution-processed nanocrystalline InGaZnO thin film as active channel layer in thin-film transistor,” J. Electrochem. Soc., vol. 156, no. 1, pp. H7-H9, 2009. [62] R. Navamathavan, E. J. Yang, J. H. Lim, D. K. Hwang, J. Y. Oh, J. H. Yang, J. H. Jang and S. J. Park, “Effects of electrical bias stress on the performance of ZnO-based TFTs fabricated by RF magnetron sputtering,” J. Electrochem. Soc., vol. 153, no. 5, pp. G385-G388, 2006. [63] R. B. M. Cross and M. M. De Souza, “Investigating the stability of zinc oxide thin film transistors,” Appl. Phys. Lett., vol. 89, no. 26, pp. 263513-1-263513-3, 2006. [64] P. Gorrn, P. Holzer, T. Riedl, W. Kowalsky, J. Wang, T. Weimann, P. Hinze and S. Kipp, “Stability of transparent zinc tin oxide transistors under bias stress,” Appl. Phys. Lett., vol. 90, no. 6, pp. 063502-1-063502-3, 2007. [65] J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo and H. D. Kim, “Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors,” Appl. Phys. Lett., vol. 93, no. 12, pp. 123508-1-123508-3, 2008. [66] H.Q.Chiang, B.R. McFarlane, D. Hong, R. E. Presley and J. F. Wager, “Processing effects on the stability of amorphous indium gallium zinc oxide thin-film transistors,” J. Non-Cryst. Solids, vol. 354, no. 19-25, pp. 2826-2830, 2008. [67] I. T. Cho, J. M. Lee, J. H. Lee and H. I. Kwon, “Charge trapping and detrapping characteristics in amorphous InGaZnO TFTs under static and dynamic stresses,” Semicond. Sci. Technol., vol. 24, no. 1, pp. 015013, 2009. [68] Kwang Hwan Ji, Ji-In Kim, Yeon-Gon Mo, Jong Han Jeong, Shinhyuk Yang, Chi-Sun Hwang, Sang-Hee Ko Park, Myung-Kwan Ryu, Sang-Yoon Lee, and Jae Kyeong Jeong, “Comparative study on light-induced bias stress instability of IGZO transistors with SiNx and SiO2 gate dielectrics,” IEEE Electron Device Lett., vol. 31, no. 12, pp. 1404-1406, 2010. [69] Kyoung-Seok Son, Ji-Sim Jung, Kwang-Hee Lee, Tae-Sang Kim, Joon-Seok Park, KeeChan Park, Jang-Yeon Kwon, Bonwon Koo, and Sang-Yoon Lee, “Highly stable double-gate Ga–In–Zn–O thin-film transistor,” IEEE Electron Device Lett., vol. 31, no. 8, pp. 812-814, 2010. [70] Sang-Hyuk Lee, Jung-Hwan Bang, Won Kim, Hyun-Seok Uhm, Jin-Seok Park, “Effects of additive hydrogen gas on the instability due to air exposure in ZnO-based thin fi lm transistors,” Thin Solid Films, vol. 520, pp. 1479–1483, 2011. [71] Chieh-Jen Ku, Ziqing Duan, Pavel I. Reyes, Yicheng Lu, Yi Xu, Chien-Lan Hsueh, and Eric Garfunkel, “Effects of Mg on the electrical characteristics and thermal stability of MgxZn1−xO thin film transistors,” Appl. Phys. Lett., vol. 98, pp. 123511-1-123511-3, 2011. [72] Woong-Sun Kim, Yeon-Keon Moon, Kyung-Taek Kim, Sae-Young Shin a, Byung Du Ahn, Je-Hun Lee, Jong-Wan Park, “Improvement in the negative bias temperature stability of ZnO based thin film transistors by Hf and Sn doping,” Thin Solid Films, vol. 519, pp. 6849–6852, 2011. [73] Po-Tsun Liu, Yi-Teh Chou, Li-Feng Teng, Fu-Hai Li, and Han-Ping Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett., vol. 98, pp. 052102-1-052102-3, 2011. [74] K. Xiong, J. Robertson, S. J. Clark, “Passivation of oxygen vacancy states in HfO2 by nitrogen,” J. Appl. Phys., vol. 99, pp. 044105-1-044105-2, 2006. [75] K. Tse, J. Robertson, “Defect passivation in HfO2 gate oxide by fluorine,” Appl. Phys. Lett., vol. 89, pp. 142914-1-142914-3, 2006. [76] Tae Joo Park, Jeong Hwan Kim, Jae Hyuck Jang, Choong-Ki Lee, Kwang Duk Na, Sang Young Lee, Hyung-Suk Jung, Miyoung Kim, Seungwu Han, Cheol Seong Hwang, “Reduction of electrical defects in atomic layer deposited HfO2 films by Al doping,” Chem. Mater., vol. 22, pp. 4175-4184, 2010. [77] K. Tse, D. Liu, K. Xiong, J. Robertson, “Oxygen vacancies in high-k oxides,” Microelectron. Eng., vol. 84, pp. 2028-2031, 2007. [78] Ebrahim Nadimi, Rolf Ottking, Philipp Planitz, Martin Trentzsch, Torben Kelwing, Rick Carter, Michael Schreiberand Christian Radehaus. “Interaction of oxygen vacancies and lanthanum in Hf-based high-k dielectrics: an ab initio investigation,” J. Phys.: Condens. Matter, vol. 23, pp. 365502, 2011. [79] Z. F. Hou, X. G. Gong,and Quan Li, “Energetics and electronic structure of aluminum point defects in HfO2: A first-principles study,” J. Appl. Phys., vol. 106, pp. 014104-1-014104-6, 2009. [80] A. Kerber and E. A. Cartier, “Reliability challenges for CMOS technology qualifications with hafnium oxide/titanium nitride gate stacks,” IEEE Trans. on Device and Materials Reliability, vol. 9, pp. 147-162, 2009. [81] X. Wang, G. Shahidi, P. Oldiges and M. Khare, “Device scaling of high performance MOSFET with metal gate high-k at 32nm technology node and beyond,” SISPAD, p. 309-312 , 2008. [82] M. Passlack, M. Hong and J. P. Mannaerts, “Quasistatic and high frequency capacitance–voltage characterization of Ga2O3–GaAs structures fabricated by in situ molecular beam epitaxy,” Appl. Phys. Lett., vol. 68, pp. 1099-1101, 1996. [83] M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul and D. A. Muller, “HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition,” Appl. Phys. Lett., vol. 86, pp. 152904-1-152904-3, 2005. [84] Fei. Gao, S. J. Lee, D. Z. Chi, S. Balakumar and D.-L. Kwong, “GaAs metal-oxide-semiconductor device with HfO2/TaN gate stack and thermal nitridation surface passivation,” Appl. Phys. Lett., vol. 90, pp. 252904-1-252904-3, 2007. [85] Henry J. H. Chen and Barry B. L. Yeh, Jpn. “Optimization of the Fabrication Process for ZnO Thin-Film Transistors with HfO2 Gate Dielectrics,” Jpn. J. Appl. Phys., vol. 48, pp. 031103-1-031103-5, 2009. [86] S. Chang, Y.-W. Song, S. Lee, S. Y. Lee and B.-K. Ju, “Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al2O3/HfO2/Al2O3 structure,” Appl. Phys. Lett., vol. 92, pp. 192104-1-192104-3, 2008. [87] John Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Rep. Prog. Phys., vol. 69, pp. 327, 2006. [88] Seok-Woo Nam, Jung-Ho Yoo, Suheun Nam, Hyo-Jick Choi, Dongwon Lee, Dae-Hong Ko, Joo Ho Moon, Ja-Hum Ku, Siyoung Choi, “Influence of annealing condition on the properties of sputtered hafnium oxide,” J. Non-Cryst. Solids, vol. 303, pp. 139, 2002. [89] Hyo Sik Chang, Hyunsang Hwang, Mann-Ho Cho, Dae Won Moon, Seok Joo Doh, Jong Ho Lee, Nae-In Lee, “Thermal stability and decomposition of the HfO2–Al2O3 laminate system,” Appl. Phys. Lett.,vol. 84, pp. 28-30, 2004. [90] Pan Kwi Park and Sang-Won Kang, “Enhancement of dielectric constant in HfO2 thin films by the addition of Al2O3,” Appl. Phys. Lett., vol. 89, pp. 192905-1-192905-3, 2006. [91] Jensen, William B. “The Origin of the ''Delta'' Symbol for Fractional Charges,” J. Chem. Educ., vol. 86, pp. 545, 2009. [92] S.Berg, T.Nyberg, “Fundamental understanding and modeling of reactive sputtering processes,” Thin Solid Films, vol. 476, no. 2, pp. 215–230, 2005. [93] Yan Yang, Wenjuan Zhu, T. P. Ma, Susanne Stemmer, “High-temperature phase stability of hafnium aluminate films for alternative gate dielectrics,” J. Appl. Phys., vol. 95, pp. 3772, 2004. [94] M. Toledano-Luque, E. San Andre’s, J. Olea, A. del Prado, I. Ma’rtil, W. Bohne, J. Ro‥hrich, E. Strub, “Hafnium oxide thin films deposited by high pressure reactive sputtering in atmosphere formed with different Ar/O2 ratios,” Mat. Sci. Semicond. Proc., vol. 9, pp. 1020, 2004. [95] Xin Liu, Dejie Li, “Influence of charged particle bombardment and sputtering parameters on the properties of HfO2 films prepared by dc reactive magnetron sputtering,” Appl. Surface Sci., vol. 253, pp. 2143, 2006. [96] M. J. Guittet, J. P. Crocombette, and M. Gautier-Soyer, “Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: Charge transfer and electrostatic effects,” Phys. Rev. B, vol. 63, pp. 125117, 2001. [97] H. Y. Yu, M. F. Li, B. J. Cho, C. C. Yeo, and M. S. Joo, D.-L. Kwong, J. S. Pan, C. H. Ang, J. Z. Zheng, S. Ramanathan, “Energy gap and band alignment for (HfO2)x(Al2O3)1−x on (100) Si,” Appl. Phys. Lett., vol. 81, pp. 376-378, 2002. [98] E. Gusev and C. P. D’Emic, “Charge detrapping in HfO2 high-κ gate dielectric stacks,” Appl. Phys. Lett., vol. 83, pp. 5223, 2003. [99] S. Zafar, A. Callegari, E. Gusev, and M. V. Fischetti, “Charge trapping related threshold voltage instabilities in high permittivity gate dielectric stacks,” J. Appl. Phys., vol. 93, p. 9298, 2003. [100] Kenji Sera, Fujio Okumura, Hiroyuki Uchida, Shinji Itoh, Setsuo Kaneko, Kazuaki Hotta, “High-performance TFTs fabricated by XeCl excimer laser annealing of hydrogenated amorphous-silicon film,” IEEE Trans. Electron Devices, vol. 36, pp. 2868, 1989. [101] Se Hwan Kim, Seung Hoon Lee, Won Hoon Park, Nam Kil Son, Ah Ruem Kim, Ji Ho Hur, Jang Hyuk Kwon, Jin Jang, SID 08 DIGEST, Los Angeles, pp. 724, 2008. [102] Hoonha Jeon, Ved Prakash Verma, Sookhyun Hwang, Sooyeon Lee, Chiyoung Park, Do-Hyun Kim, Wonbong Choi, Minhyon Jeon, “Characteristics of gallium-doped zinc oxide thin-film transistors fabricated at room temperature using radio frequency magnetron sputtering method,” Jpn. J. Appl. Phys., vol. 47, pp. 87, 2008. [103] Doo-Hee Cho, Shinhyuk Yang, Chunwon Byun, Jaeheon Shin, Min Ki Ryu, Sang-Hee Ko Park, Chi-Sun Hwang, Sung Mook Chung, Woo-Seok Cheong, Sung Min Yoon, Hye-Yong Chu, “Transparent Al–Zn–Sn–O thin film transistors prepared at low temperature,” Appl. Phys. Lett., vol. 93, pp. 142111, 2008. [104] Andrew J. Leenheer, John D. Perkins, Maikel F. A. M. van Hest, Joseph J. Berry, Ryan P. O’Hayre, David S. Ginley, “General mobility and carrier concentration relationship in transparent amorphous indium zinc oxide films,” Phys. Rev. B, vol. 77, pp. 115215, 2008. [105] Yeon Sik Jung, Ji Yoon Seo, Dong Wook Lee, Duk Young Jeon, “Influence of DC magnetron sputtering parameters on the properties of amorphous indium zincoxide thin film,” Thin Solid Films, vol. 445, pp. 63, 2003. [106] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, J. M. Shaw, “Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators,” Science, vol. 283, pp. 822, 1999. [107] I. Vasiliev, S. Ogut, J.R. Chelikowsky, “Ab initio absorption spectra and optical gaps in nanocrystalline silicon,” Phys. Rev. Lett., vol. 86, pp. 1813, 2001. [108] Korhan Kaftanoglu, Sameer M. Venugopal, Michael Marrs, Aritra Dey, Edward J. Bawolek, David R. Allee, and Doug Loy, “Stability of IZO and a-Si:H TFTs Processed at Low Temperature (200 °C),” J. Display Technol. vol. 7, pp. 339, 2011. [109] Sun-Jae Kim, Sang-Myeon Han, and Min-Koo Han, “Nanocrystalline silicon thin-film transistor fabricated without substrate heating for flexible display,” Jpn. J. Appl. Phys., vol. 48, pp. 081202, 2009. [110] I-Chung Chiu, Jung-Jie Huang, Yung-Pei Chen, I-Chun Cheng, Jian Z. Chen, and Min-Hung Lee, “Electromechanical stability of flexible nanocrystalline silicon thin-film transistors,” IEEE Electron Device Lett., vol.31, pp. 222, 2010. [111] Nai-Chao Su, Shui-Jinn Wang, Chin-Chuan Huang, Yu-Han Chen, Hao-Yuan Huang, Chen-Kuo Chiang, and Albert Chin, “Low-voltage-driven flexible InGaZnO thin-film transistor with small subthreshold swing,” IEEE Electron Device Lett., vol. 31, pp. 680, 2010. [112] Wantae Lim, Jung Hun Jang, S.-H. Kim, D. P. Norton, V Craciun, S. J. Pearton,F. Ren, and H. Shen, “High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates,” Appl. Phys. Lett., vol. 93, pp. 082102, 2008. [113] Burag Yaglioglu, Yen-Jung Huang, Hyo-Young Yeom, David C. Paine,“A study of amorphous and crystalline phases in In2-O3-10wt%ZnO thin films deposited by DC magnetron sputtering,” Thin Solid Films, vol. 496, pp. 89, 2006. [114] John F. Conley, Jr., “Instabilities in amorphous oxide semiconductor thin-film transistors,” IEEE Trans. on Device and Materials Reliability, vol. 10, pp. 460, 2010. [115] H. Lee, Y. C. Lin, H. P. D. Shieh, and J. Kanicki, IEEE Trans. “Current-scaling a-Si:H TFT pixel-electrode circuit for AM-OLEDs: electrical properties and stability,” IEEE Trans. on Electron Devices, vol. 54, pp. 2403, 2007. [116] C. H. Park, Kwang H. Lee, Min Suk Oh, Kimoon Lee, Seongil Im, Byoung H. Lee, Myung M. Sung, “Dual gate ZnO-based thin-film transistors operating at 5 V: NOR gate application,” IEEE Electron. Device Lett., vol. 30, pp. 30, 2009. [117] D. P. Norton, S. J. Pearton, F. Ren, S. Y. Son, J. H. Yuh, H. Shen, W. Chang, “Transparent dual-gate InGaZnO thin film transistors: OR gate operation,” J. Vac. Sci. Technol. B, vol. 27, pp. 2128, 2009. [118] C. H. Park, Seongil Im, Jungheum Yun, Gun Hwan Lee, Byoung H. Lee, Myung M. Sung, “Transparent photostable ZnO nonvolatile memory transistor with ferroelectric polymer and sputter-deposited oxide gate,” Appl. Phys. Lett., vol. 95, pp. 223506-1-223506-3, 2009. [119] Jeong-Min Lee, In-Tak Cho, Jong-Ho Lee, Woo-Seok Cheong, Chi-Sun Hwang, Hyuck-In Kwon, “Comparative study of electrical instabilities in top-gate InGaZnO thin film transistors with Al2O3 and Al2O3/SiNx gate dielectrics,” Appl. Phys. Lett., vol. 94, pp. 222112-1-222112-3, 2009. [120] Hsing-Hung Hsieh and Chung-Chih Wu, Appl. “Amorphous ZnO transparent thin-film transistors fabricated by fully lithographic and etching processes,” Appl.Phys. Lett., vol. 91, pp. 013502-1-013502-3, 2007. [121] Kimoon Lee, Jae Hoon Kim, Seongil Im, Chang Su Kim, Hong Koo Baik, “Low-voltage-driven top-gate ZnO thin-film transistors with polymer/high-k oxide double-layer dielectric,” Appl. Phys. Lett., vol. 89, pp. 133507-1-133507-3, 2006. [122] XinAn Zhang, JingWen Zhang, WeiFeng Zhang, Xun Hou, “Fabrication and comparative study of top-gate and bottom-gate ZnO–TFTs with various insulator layers,” J Mater Sci: Mater Electron, vol. 21, pp. 671, 2010. [123] Pung Keun Song, Yuzo Shigesato, Masayuki Kamei, Itaru Yasui, “Electrical and structural properties of Tin-doped indium oxide films deposited by DC sputtering at room temperature,” Jpn. J. Appl. Phys., vol. 38, pp. 2921, 1999. [124] Doo-Hee Cho, Sang-Hee Ko Park, Shinhyuk Yang, Chunwon Byun, Min Ki Ryu, Jeong-Ik Lee, Chi-Sun Hwang, Sung Min Yoon, Hye Yong Chu, and Kyoung Ik Cho, “Al-Zn-Sn-O thin film transistors with top and bottom gate structure for AMOLED,” IEICE Trans. Electron., vol. E92–C, pp. 1340-1346, 2009. [125] Qi Hua Fan, Michael Deng, Xianbo Liao, Xunming Deng, “Damage mechanisms in thin film solar cells during sputtering deposition of transparent conductive coatings,” J. Appl. Phys., vol. 105, pp. 033304, 2009. [126] A. Suresh and J. F. Muth, “Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors,” Appl. Phys. Lett., vol. 92, pp. 033502-1 -033502-3, 2008.
將上述室溫製程的高品質絕緣層及氧化釤作為薄膜電晶體的閘極絕緣層,來製作底部閘極結構氧化銦鋅或氧化銦鎵鋅薄膜電晶體。以經氧電漿處理氧化鉿當作絕緣層之氧化銦鋅薄膜電晶體和氧化銦鎵鋅薄膜電晶體,其遷移率為28 cm2/V-s和21 cm2/V-s,臨界電壓為-0.05 V和2.66 V,次臨界擺幅為0.35 V/dec和0.25 V/dec,on/off ratio為8×107和1×107。而由參雜鋁的氧化鉿當作絕緣層之氧化銦鋅薄膜電晶體,其遷移率為9.4 cm2/V-s,臨界電壓為1.67 V,次臨界擺幅為0.42 V/dec,on/off ratio為1.3×107。而由室溫濺鍍氧化釤當作絕緣層之氧化銦鋅薄膜電晶體和氧化銦鎵鋅薄膜電晶體,其遷移率平均值可高達88.7 cm2/V-s和55 cm2/V-s,臨界電壓平均值為1.08 V和2.17 V,次臨界擺幅平均值為0.26 V/dec和0.23 V/dec,on/off ratio平均值為1.7×107和3.1×107。此研究的全室溫製程提供了未來全室溫生產透明及軟性的高性能電子元件之可行性。

In recent years, green technology attracts a great deal of attention on reduced energy consumption and use of the nature non-depleted energy. The development of room-temperature process replace with the high consumption of high temperature annealing can indeed reduce energy consumption. We believe that the development of room-temperature process will be one of the trends for the future green technology.
In this work, hafnium oxide (HfO2) with high dielectric constant is in urgent need, HfO2 has been verified having a dielectric constant much higher than SiO2. ¬Thus, Oxygen plasma treatment process was used to passivate the non-stoichiometric HfO2 films deposited by DC magnetron sputtering. After optimal oxygen plasma treatment, the gate leakage, capacitance of voltage nonlinearity, surface roughness and dielectric breakdown voltage of HfOx films would be improved. XPS spectrum was used to analysis the non-stoichiometric HfO2 films after oxygen plasma treatment which demonstrate a higher concentration of incorporated oxygen atoms at the surface in comparison to the bulk HfOx. This simple method can maintain high-k dielectric deposition process at room temperature by sputtering. Moreover, it is also validated the Al incorporation of the HfAlOx films by reactive co-sputter system at room temperature. We can confirm the components of deposited film by XPS analysis which shows the Al content of HfAlOx film increasing with the increase of sputtering power on aluminum target. Root-mean-square of surface roughness decreases with increasing Al content. The electric characteristics of MIM devices have also been improved with the Al incorporation. On the basis of the XPS analysis, the intrinsic defects passivate at room temperature due to the incorporation of Al in HfOx films being elucidated by XPS analyses and electrical measurements.
We used high-k dielectric such as HfO2, HfAlO and Sm2O3 as gate insulator for fabricating IZO or IGZO TFT. The a-IZO and O2 plasma-treated HfO2 are used as the channel and the insulator in transparent TFTs, respectively. The IZO-based transparent TFT with low gate leakage current shows that the field effect saturation mobility, Ion/Ioff ratio, sub-threshold swing, and threshold voltage are extracted to be 28 cm2/V-s, 8.17�107, 0.35 V/decade, and -0.05 V, respectively. In addition, the IGZO and HfO2 were used as channel and insulator in a transparent TFT, respectively. It showed that the field effect saturation mobility, Ion/Ioff ratio, sub-threshold swing, and threshold voltage were extracted to be 21 cm2/V-s, 1.09�107, 0.258 V/decade, and 2.66 V, respectively. Moreover, with the best electric characteristics obtained from HAO3, it has the highest Al incorporation in the formation of HfAlOx while using that as the gate insulator in a transparent IGZO TFT. The device shows 1.34�107 of Ion/Ioff ratio, accepted interface-trap density, 9.48 cm2/V-s of field effect saturation mobility, low operation voltage, and low gate leakage current. Then, the IZO and Sm2O3 were used as channel and insulator in a transparent TFT, respectively. It showed that the field effect saturation mobility, Ion/Ioff ratio, sub-threshold swing, and threshold voltage were extracted to be 138.8 cm2/V-s, 9.49�106, 0.308 V/decade, and 1.31 V, respectively. The IGZO and Sm2O3 were used as channel and insulator in a transparent TFT, respectively. It showed that the field effect saturation mobility, Ion/Ioff ratio, sub-threshold swing, and threshold voltage were extracted to be 46.8 cm2/V-s, 4.87�107, 0.197 V/decade, and 1.962 V, respectively.
The influence of fabrication process is comparing the top-gate TFT with the bottom-gate TFT. The bottom-gate TFTs exhibit the optimum electrical characteristics, but the top-gate TFTs do not demonstrate even typical electrical characteristics. Therefore, the interface between a-IZO film and HfO2 film in the top-gate structure may be contaminated or damaged during the active layer patterning and gate insulator deposition process. The top-gate TFTs could, however, show good electrical characteristics by reducing the DC sputtering power of depositing gate insulator. In the bias stability, the Vth shift in the top-gate a-IZO TFT is more obvious than that in the bottom-gate a-IZO TFT because the interface, between the a-IZO and HfO2 in top-gate a-IZO TFT, is subjected to higher energy bombardment than that in the bottom-gate a-IZO TFT.
其他識別: U0005-2808201209463700
Appears in Collections:電機工程學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.