Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/9094
標題: 以射頻磁控濺鍍製備氫化鋁氟共摻雜氧化鋅薄膜及其特性之研究
Fabrication and characterization of hydrogenated Al,F co-doped zinc oxide thin films by radio-frequency magnetron sputtering
作者: 楊東欣
Yang, Tung-Hsin
關鍵字: 透明導電膜;Transparent conductive oxide;氧化鋅;濺鍍;薄膜;ZnO;sputtering;Thin film
出版社: 電機工程學系所
引用: [1]Chang Jung Kim, Donghun Kang, Ihun Song, Jae Chul Park, Hyuck Lim, Sunil Kim, Eunha Lee, Ranju Chung, Jae Cheol Lee and Youngsoo Park, “Highly Stable Ga2O3-In2O3-ZnO TFT for Active-Matrix Organic Light-Emitting Diode Display Application”, International Electron Devices Meeting, 2006. IEDM ''06. [2]Ken Nakahara, Kentaro Tamura, Mitsuhiko Sakai, Daisuke Nakagawa, Norikazu Ito, Masayuki Sonobe, Hidemi Takasu, Hitoshi Tampo, Paul Fons, Koji Matsubara, Kakuya Iwata, Akimasa Yamada and Shigeru Niki, “Improved External Efficiency InGaN-Based Light-Emitting Diodes with Transparent Conductive Ga-Doped ZnO as p-Electrodes”, Japanese Journal of Applied Physics Vol. 43, No. 2A, 2004, pp. L 180–L182. [3]X. Jiang, F.L. Wong, M.K. Fung, and S.T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices”,Appl. Phys. Lett. 83(2003) 1875-1877. [4]Jianhua Hu, Roy G. Gordon, “Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells”, Sol. Cells 30 (1991) 437-450. [5]C. Becker, E.Conrad , P.Dogan , F.Fenske , B.Gorka , T.Ha‥nel , K.Y.Lee , B.Rau , F.Ruske , T.Weber , M.Berginski , J.Hupkes , S.Gall , B.Rech, “Solid-phase crystallization of amorphous silicon on ZnO:Al for thin-film solar cells”, Solar Energy Materials & Solar Cells 93 (2009) pp. 855–858. [6]羅吉宗 編著,“薄膜科技與應用” , 全華圖書股份有限公司 , 4-16(2004) [7]S. A. Campbell, “The Science and Engineering of Microelectronic Fabrication”, 2nd edition, Oxford University Press, 2001S. A. Campbell. [8]S. Suzuki, T. Miyat, M. Ishii, T. Minami, “Transparent conducting V-co-doped AZO thin films prepared by magnetron sputtering”, Thin Solid Films 434(2003)pp. 14-19 [9]白木 靖寬、吉田 貞史 編著,“薄膜工程學” , 全華圖書股份有限公司 , 2-34(2008) [10]J.Hu and R.G.Gordon, “Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition”, J.Appl.Phys, 71[2] (1992) 880-890. [11]F.Furusaki, J. Takahashi and K.Kodaira, “Preparation of ITO Thin Films by Sol-Gel Method”, J. of the Ceramic Society of Japan, 102 [2] (1994) 200-205. [12]R. Vinodkumar, K.J. Lethy, D. Beena, A.P. Detty, I. Navas, U.V. Nayar, V.P. Mahadevan-Pillai, “Effect of ITO buffer layers on the structural, optical and electrical properties of ZnO multilayer thin films prepared by pulsed laser deposition technique”, Solar Energy Materials & Solar Cells 94 (2010) 68–74. [13]C. Eberspacher, A.L. Fahrenbruch and R.H. Bube, “Properties of ZnO films deposited onto InP by spray pyrolysis”, Thin Solid Films, 136(1986) 1-10. [14]Klaus Ellmer, “Magnetron sputtering of transparent conductive zinc oxide : relation between the sputtering parameters and the electronic properties”, Journal of Physics D: Applied Physics, 33(2000) r17-32. [15]姜辛, 孙超, 洪瑞江, 戴达煌, “透明导电氧化物薄膜”, 高等教育出版社, 2008年. [16]Yasushi Sato , Hisao Makino, Naoki Yamamoto, Tetsuya Yamamoto, “Structural, electrical and moisture resistance properties of Ga-doped ZnO films”, Thin Solid Films 520 (2011) 1395–1399. [17]J.P. Kar , S. Kim , B. Shin , K.I. Park, K.J. Ahn , W. Lee , J.H. Cho , J.M. Myoung, “Influence of sputtering pressure on morphological, mechanical and electrical properties of Al-doped ZnO films”, Solid-State Electronics 54 (2010) 1447–1450. [18]Deok-Kyu Kim, Hong-Bae Kim, “Dependence of the properties of sputter deposited Al-doped ZnO thin films on base pressure”, Journal of Alloys and Compounds 522 (2012) 69–73. [19]Tiefeng Wei, Pinjun Lan, Ye Yang, Xianpeng Zhang, Ruiqin Tan, Yong Li , Weijie Song, “Tailoring the refractive index of aluminum doped zinc oxide thin films by co-doping with titanium”, Applied Surface Science 263 (2012) 210–214. [20]Yu-Zen Tsai, Na-Fu Wang, Chun-Lung Tsai, “Fluorine-doped ZnO transparent conducting thin films prepared by radio frequency magnetron sputtering”, Thin Solid Films 518 (2010) 4955–4959. [21]Yu-Zen Tsai, Na-Fu Wang, Chun-Lung Tsai, “Formation of F-doped ZnO transparent conductive films by sputtering of ZnF2”, Materials Letters 63 (2009) 1621–1623. [22]Younghun Hwang, Hyungmin Kim, Youngho Um, Hyoyeol Park, “Optical and electronic properties of highly stable and textured hydrogenated ZnO:Al thin films”, Materials Research Bulletin 47 (2012) 2487–2491. [23]B.L. Zhu, J. Wang, S.J. Zhu, J. Wu, D.W. Zeng, and C.S. Xie,“Thickness study of AZO films by RF sputtering in Ar+H2 atmosphere at room temperature”, Phys. Status Solidi A 209, No.7, 1251–1258(2012). [24]H.B. Zhou, H.Y. Zhang, M.L. Tan, Z.G. Wang, “Effects of substrate temperature on the efficiency of hydrogen incorporation on the properties of Al-doped ZnO films”, Superlattices and Microstructures 51 (2012) 644–650. [25]S.J. Tark, Y.-W. Ok, M.G. Kang, H.J. Lim, W.M. Kim, D. Kim,“Effect of a hydrogen ratio in electrical and optical properties of hydrogenated Al-doped ZnO films”, J Electroceram (2009) 23:548–553. [26]Dong-Ho Kim, Sung-Hun Lee, Gun-Hwan Lee, Hyun-Bum Kim, Kwang Ho Kim, “Effects of deposition temperature on the effectiveness of hydrogen doping in Ga-doped ZnO thin films”, J. Appl. Phys. 108, 023520(2010). [27]W.F. Liu, G.T. Du, Y.F. Sun, J.M. Bian, Y. Cheng, T.P. Yang, Y.C. Chang, Y.B. Xu, “Effects of hydrogen flux on the properties of Al-doped ZnO films sputtered in Ar + H2 ambient at low temperature”, Applied Surface Science 253 (2007) 2999–3003. [28]Joel N. Duenow, Timothy A. Gessert, David M. Wood, David L. Young, Timothy J. Coutts, “Effects of hydrogen content in sputtering ambient on ZnO:Al electrical properties”, Journal of Non-Crystalline Solids 354 (2008)2787–2790. [29]B.L. Zhu, J. Wang, S.J. Zhu, J. Wu, R. Wu, D.W. Zeng, C.S. Xie “Influence of hydrogen introduction on structure and properties of ZnO thin films during sputtering and post-annealing”, Thin Solid Films 519 (2011) 3809–3815. [30]Martin A. Green “太陽電池工作原理、技術與系統應用”, 五南圖書出版. [31]謝宜暾 “氧化鋅摻銅及鎳之物性研究”,國立臺南大學自然科學教育研究學系碩士論文,民國九十五年一月 [32]Jingbiao Cui, “Zinc oxide nanowires”, Materials characterization 64(2012)43-52. [33]S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO”, Superlattices and Microstructures 34 (2003) 3–32. [34]J.B. Lee, H.J. Lee, S.H. Seo, J.S. Park, “Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications”,Thin Solid Films 398-399 (2001) 641-646. [35]Y.C. Lin, C.R. Hong, H.A. Chuang, “Fabrication and analysis of ZnO thin film bulk acoustic resonators”, Appl. Surf. Sci. 254 (2008) 3780-3786. [36]P.P. Sahay, R.K. Nath, “Al-dopend ZnO thin films as methanol sensors”, Sensors and Actuators B 134(2008) pp.654-659. [37]Youn-Seon Kang, Hae-Yeol Kim, and Jai-Young Lee, “Effects of Hydrogen on the Structural and Electro optical Properties of Zinc Oxide Thin Films”, Journal of The Electrochemical Society, 147 (12) 4625-4629 (2000). [38]Wendi Zhang , Eerke Bunte , Florian Ruske , Dominik Kohl , Astrid Besmehn , Janine Worbs , Hilde Siekmann , Joachim Kirchhoff , Aad Gordijn , Jurgen Hupkes, “As-grown textured zinc oxide films by ion beam treatment and magnetron sputtering”, Thin Solid Films 520 (2012) 4208–4213. [39]B.E. Sernelius, K.-F. Berggren, Z.-C. Jim, I Hamberg, C.G. Granqvist, “Band-gap tailoring of Zno by means of hravy Al doping”, Physical review B, Volume 37, Number 17. [40]Boen Houng, Han Bin Chen, “Investigation of A1F3 doped ZnO thin films prepared by RF magnetron sputtering”, Ceramics International 38 (2012) 801 – 809. [41]Hyeongsik Park, Kyungsoo Jang, Krishna Kumar, Shihyun Ahn, Jaehyun Cho, Juyeon Jang, Kyungjun Ahn, Jeonghoon Yeom, Dongseok Kim, Junsin Yi, “Electrical mechanism analysis of Al2O3 doped zinc oxide thin films deposited by rotating cylindrical DC magnetron sputtering”, Thin Solid Films 519 (2011) 6910–6915. [42]Stephen A. Campbell, “The Science and Engineering of Microelectronic Fabrication”, 2nd edition, Oxford University Press, (2001). [43]姜辛, 孙超, 洪瑞江, 戴达煌, “透明导电氧化物薄膜”, 高等教育出版社, 2008年. [44]B.D. Cullity and S.R. Stock, “Elements of XRD”, Prentice Hall,Chap. 5-2 (2001) 167-171. [45]S.M. Sze, “Semiconductor Devices:Physics and Technology”, 2nd edition, John Wiley & Sons, Inc., (2002). [46]Fei Wang, Xin-liang Chen, Xin-hua Geng, De-kun Zhang, Chang-chun Wei, Qian Huang, Xiao-dan Zhang, Ying Zhao, “Development of natively textured surface hydrogenated Ga doped ZnO-TCO thin films for solar cells via magnetron sputtering”, Applied Surface Science 258 (2012) 9005– 9010. [47]陈建林,陈 鼎,张世英,陈振华,“铝掺杂对ZnO׃Al薄膜结晶性能与微观组织的影响”, The Chinese Journal of Nonferrous Metals, 1004-0609 (2009) 07-1284-05. [48]Young Ran Park a, Juho Kim b, Young Sung Kim,“Effect of hydrogen doping in ZnO thin films by pulsed DC magnetron sputtering”, Applied Surface Science 255 (2009) 9010–9014. [49]王家俊,“以射頻磁控濺鍍法成長摻氫之氧化鋅薄膜”, 國立成功大學化學工程研究所碩士論文, 民國九十二年六月 [50]G. Haacke, “New figure of merit for transparent conductors”, Journal of Applied Physics, Vol. 47, No.9, September 1976 [51]Tien-Chai Lina, Wen-Chang Huangb, Chin-Hung Liua, Shy-Chou Changa, “Structural, electrical and optical properties of ZnO:AlF3 thin films deposited by RF magnetron sputtering”, Applied Surface Science 258 (2012) 3302– 3308 [52]Hao Tong, Zhonghua Deng, Zhuguang Liu, Changgang Huang, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films”, Applied Surface Science 257 (2011) 4906–4911 [53]劉晉宏,“以射頻磁控共濺鍍法成長氧化鋅摻雜氟化鋁透明導電膜之光電性質研究”, 崑山科技大學電機工程系碩士論文, 民國九十七年七月 [54]Junhyeok Bang, K. J. Chang, “Diffusion and thermal stability of hydrogen in ZnO”, Appl. Phys. Lett. 92, 132109 (2008) [55]Donald A. Neamen, “An introduction to semiconductor devices”, 出版日期2007年1月. [56]H.P. Chang, F.H. Wang, J.Y. Wu, C.Y. Kung, H.W. Liu, “Enhanced conductivity of aluminum doped ZnO films by hydrogen plasma treatment”, Thin Solid Films 518 (2010) 7445–7449. [57]Qian Shi, Kesong Zhou, Minjiang Dai, HuijunHou, Songsheng Lin, Chunbei Wei, Fang Hu, “Room temperature preparation of high performance AZO films by MF sputtering”, Ceramics International 39(2013)1135–1141. [58]Seung Yeop Myong and Koeng Su Lim, “Highly stable and textured hydrogenated ZnO thin films”, Appl. Phys. Lett. 82, 3026 (2003). [59]C.G. Van de walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators and solutions”, Nature 423,626 (2003). [60]Jae-Hyeong Lee, “Effects of hydrogen incorporation and heat treatment on the properties of ZnO:Al films deposited on polymer substrate for flexible solar cell applications”, Current Applied Physics 10 (2010) S515–S519. [61]Fang-Hsing Wang, Hung-Peng Chang, Chih-Chung Tseng, Chia-Cheng Huang, “Effects of H2 plasma treatment on properties of ZnO:Al thin films prepared by RF magnetron sputtering”, Surface & Coatings Technology 205 (2011) 5269–5277. [62]B.Y. Oh, M.C. Jeong, D.S. Kim, W.Lee, J.M. Myoung, “Post-annealing of Al-doped ZnO films in hydrogen atmosphere”, J. Cryst. Growth 281(2005)475-480. [63]G. HAEMERS - J.J. VERBIST - S. MAROIE, “Surface oxidation of polycrystalline "alpha" ( 75% Cu et 25% Zn ) and "beta" ( 53% Cu et 47% Zn ) brass as studied by XPS : influenceof oxygen pressure.”, Applications of Surface Science, Vol 17, 463-476, 1984. [64]Byeong-Yun Oh, Min-Chang Jeong, Jae-Min Myoung , “Stabilization in electrical characteristics of hydrogen-annealed ZnO:Al films”, Applied Surface Science 253 (2007) 7157–7161. [65]Jung Cho,“Effects of H2 Annealing Treatment on Photoluminescence and Structure of ZnO:Al/Al2O3 Grown by Radio-Frequency Magnetron Sputtering”, Journal of The Electrochemical Society, 150 (10) H225-H228 (2003).
摘要: 
以氧化鋅材料製備之透明導電薄膜已廣泛被研究於光電產業中的應用。本論文將選用四種不同Al2O3含量(0, 1, 2, 4 wt.%)之鋁氟共摻雜氧化鋅靶材,分別命名為FZO、A1FZO、A2FZO、A4FZO,及使用五種不同氫氣流量比 ( H2 / (Ar + H2) = 0 , 3 , 5 , 7 , 10 % )於濺鍍環境中,於室溫下以射頻磁控濺鍍(RF magnetron sputtering)在玻璃基板上製備氫化鋁氟共摻雜氧化鋅(HAFZO)薄膜,並針對其結構、電性、光學特性做量測分析。
各系列薄膜之載子濃度隨著氫氣流量比的提高而增加,這是由於氫氣在薄膜中扮演著淺層施體的角色提供自由載子,在相同氫氣流量比之下,靶材Al2O3含量由0 wt.%提高至2 wt.%時,將使得載子濃度上升,當Al2O3含量上升至4 wt.%時,將導致載子濃度大幅下降;霍爾遷移率隨著氫氣流量比的上升,呈現先上升後下降的趨勢,這是由於一直上升的氫氣流量比將會使離子化雜質散射的現象變的較為明顯,靶材Al2O3含量由0 wt.%提高至4 wt.%時,整體而言將使得霍爾遷移率下降。不論那種Al2O3含量靶材所製備之薄膜,隨著氫氣流量比超過5 %後,其晶粒尺寸開始逐漸變小。在可見光範圍(400-700 nm)下之薄膜穿透率皆超過91 %以上。在本論文中,使用A1FZO靶材在氫氣流量比為3 %下所製備的薄膜能獲得最低之電阻率為 4.405 × 10-4 Ω-cm,其載子濃度為6.794 × 1020 cm-3 ,霍爾遷移率為20.86 cm2/Vs。
接著,將氫氣流量比為0 %及5 %之各系列樣品薄膜在真空環境下進行200與500 °C之退火後處理,退火時間一小時。各系列非氫化薄膜在真空退火處理後,其結晶性獲得提升,晶粒尺寸隨著退火溫度的增加而逐漸變大;各系列氫化薄膜,當退火溫度到達200 °C時,晶粒尺寸會有下降趨勢,而退火溫度增加至500 °C時,晶粒尺寸會開始上升。各系列薄膜經過真空退火後在光學穿透率皆超過91 %以上。各系列氫化薄膜經過500 °C真空退火後,電阻率有大幅上升之現象。
最後,使用A1FZO靶材,氫氣流量比為0 %及3 %的條件下製成之薄膜,以0.2 %稀鹽酸進行蝕刻,使薄膜霧度上升並當成矽太陽電池之上電極,再以電漿輔助化學氣相沉積(PECVD)依序沉積氫化非晶矽p-i-n層於薄膜上,最後使用熱蒸鍍機(TE)鍍上背電極鋁點,製成矽薄膜太陽能電池,分析電池光電特性。結果顯示,以氫氣流量比3 %的薄膜所製備之矽薄膜太陽電池轉換效率較氫氣流量比0 %的薄膜為佳。

ZnO-based transparent conducting thin films have been widely studied in opto-electronic field. In this research, Al, F co-doped zinc oxide targets with four different Al2O3 contents (0, 1, 2, 4 wt.%), named FZO, A1FZO, A2FZO and A4FZO, and five different hydrogen flow ratios (H2 / Ar + H2 = 0, 3, 5, 7, 10% ) in the sputtering atmosphere were used to prepared hydrogenated Al, F co-doped zinc oxide thin films by RF magnetron sputtering on glass substrates at room temperature. The structural, electrical and optical properties of the prepared thin films were investigated.
The carrier concentrations of all thin films increased with the increasing hydrogen flow ratio because hydrogen might act as a shallow donor and provides free carrier in films. The Hall mobility presented an increase with increasing hydrogen flow ratio and then decreased due to ionized impurity scattering. The crystallite sizes of thin films began to decrease gradually as the hydrogen flow ratio was over 5% in spite of Al2O3 contents in targets. The average transmittances in the visible wavelength region (400-700 nm) of the all samples were more than 91%. The minimum resistivity of 6.0×10−4 Ω-cm, together with the carrier concentration of 6.794 × 1020 cm-3 and the Hall mobility of 20.86 cm2/Vs was obtained with the A1FZO target and the hydrogen flow ratio of 3%.
Secondly, the samples prepared with the hydrogen flow ratios of 0% and 5% were furnace annealed in vacuum at the temperatures of 200 °C and 500 °C for 1 h. After post-annealing treatment, the crystallinity of all serial non-hydrogenated thin films was improved and the crystallite size was gradually increased. However, the crystallite size of the hydrogenated thin films worsened at the annealing temperature of 200 °C and improved at 500 °C. The optical transmittance of all serial post-annealed thin films exceeded 91%. The resistivity of all serial hydrogenated thin films was increased dramatically after a 500 °C vacuum-annealing treatment.
Finally, 1000 nm-thick thin films prepared by the A1FZO target and hydrogen flow ratios of 0% and 3% were etched by a 0.2% HCl solution to increase their haze ratios as front electrodes of silicon thin film solar cells. Then, the amorphous silicon (p-i-n) thin films were deposited by PECVD, and aluminum electrodes were thermally evaporated with a patterned shadow mask as back electrodes. The result of I-V measurement shows that the solar cell with the hydrogenated AFZO thin film as the front electrode has better conversion efficiency than that with the non-hydrogenated film.
URI: http://hdl.handle.net/11455/9094
其他識別: U0005-2108201312030100
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.