Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91113
DC FieldValueLanguage
dc.contributorChung-Yuan Kungen_US
dc.contributor貢中元zh_TW
dc.contributor.author陳俊翰zh_TW
dc.contributor.authorChun-Han Chenen_US
dc.contributor.other電機工程學系所zh_TW
dc.date2014zh_TW
dc.date.accessioned2015-12-10T05:49:40Z-
dc.identifierU0005-1004201514331400zh_TW
dc.identifier.citation[1] Alivov Y I,Liu C, et al. 'A comprehensive review of ZnO materials and devices'.J.Applied Physics Letter,2005,98(4):041301-1-103 [2] Bagnall D M,Chen Y F,Zhu Z,et al. 'Optically pumped lasing of ZnO at room temperature'. Applied Physics Letter 1997,70(17):2230-2232 [3] Tang Z K,Wong G K L,Yu P,et al.'Room-temperature ultraviolet laser emission from self-assembled ZnO microcrys-tallite thin film' Applied Physics Letter: 1998,72(25):3270-3272 [4] Sharma A K,Narayan J,Muth J F, et al.'Optical and structural properties of epitaxial MgxZn1-xO alloys' Applied Physics Letter 1999,75(21):3327-3329 [5] Zhang Deheng,Zhang Xijian, Wang Qingpu,et al'Luminescence characteristic of ZnMg of film and multiquantum wells and superlattices ' .Chin.J.Lumin,2004,25(2):111-116 [6] Ohtomo A,Kawasaki M, Koida T,et al' MgxZn1-xO as a II-VI widegap semiconductor alloy'. Applied Physics Letter.,1998,72(19):2466-2468 [7] Choopun S, Vispute R D,Yang W,et al'Realization of band gap above 5.0eV in metastable cubic-phase MgxZn1-xO'alloy filmsApplied Physics Letter 2002,80(9):1529-1531 [8] 陳致宏,'利用遠距氧電漿氧化熱蒸鍍鋅層製作氧化鋅之製程與特性研究',碩士論文(2008), 義守大學材料科學與工程學系。 [9] Y. Sun, N. G..Ndifor-Angwafor, D. J. Riley, and M. N.R. Ashfold, 'Synthesis and Photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth', Chem.Phys. Lett. 431(2006), pp. 352-357. [10] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, and J. A. Voigt,'Mechanisms behind green photoluminescence in ZnO phosphor powders', J.Appl. Phys. 79(1996), pp. 7983-7990. [11] J. S. Kang, H. S. Kang, S. S. Pang, E. S. Shim, and S. Y. Lee, 'Investigation on the origin of green luminescence from laser-ablated ZnOthin film', Thin Solid Films 443(2003), pp. 5-8. [12] Bixia Lin, Zhuxi Fu and Yunbo Jia, 'Green luminescent center in undoped zinc oxide films deposited on silicon substrates', Appl. Phys. Lett. 79(2001), pp.943-945. [13] P.S.Xu, Y.M.Sun, C.S. Shi, F.Q. Xu, and H.B.Pan, 'The electronic structure and spectral properties of ZnO and its defects', Phys. Research B199(2003), pp.286-290. [14] D. Bao, H. Gu, and A. Kuang, 'Sol-gel-derived c-axix oriented ZnO thin films',Thin Solid Films 312(1998), pp. 37-39. [15] G. Gordillo, and C. Calderon, 'Properties of ZnO thin films prepared by reactive evaporation', Solar Ener. Mate. & Solar Cells 69(2001), pp. 251-260. [16] 魏嘉瑩,'釓掺雜氧化鋅鋁透明導電膜特性分析',碩士論文(2009),國立中大學化學工程與材料工程研究所。 [17] P. Nunes, E. Fortunato, and R. Martins, 'Influence of the post-treatment on the properties of ZnO thin films', Thin Solid Films 383(2001), pp. 277-280. [18] V. Khranovskyy, J. Eriksson, A. Lloyd-Spetz, R. Yakimova, and L. Hultman,'Effect of oxygen exposure on the electrical conductivity and gas sensitivity of nanostructured ZnO films', Thin Solid Films 517(2009), pp. 2073-2078. [19] 楊明輝,'透明導電膜',藝軒圖書。 [20] J.Zhao,L.Qin,L.Zhang.'Synthesis of quasi-aligned Si-doped ZnO nanorods on Si substrate',Physica E,40,(2008),P795-799 [21] 王敏吉,'以溶膠凝膠法製備氧化鎂鋅薄膜及其在薄膜電晶體主動層之應用研究',碩士論文(2007),逢甲大學材料科學與工程學系。 [22] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, and H. Koinuma, 'MgxZn1 – xO as a II–VI widegap semiconductor alloy', Appl. Phys. Lett.72(1998), pp.2466-2468. [23]A. K. Shama, J. Narayan, J. F. Muth, C. W. Teng, and C. Jin et al, 'Optical and structural properties of epitaxial MgxZn1–xO alloys', Appl. Phys. Lett. 75(1999), pp. 3327-3329. [24] S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, and T. Venkatesan et al,'Realization of band gap above 5.0eV in metastable cubic-phase MgxZn1 –xO alloy films', Appl. Phys. Lett. 80(2002), pp. 1529-1531. [25] D. Zhao, Y. Liu, D. Shen, Y. Lu, and J. Zhang et al, 'Photoluminescence properties of MgxZn1–xO alloy thin films fabricated by the sol-gel deposition method', J.Appl. Phys. 90(2001), pp. 5561-5563. [26] L.Zhu,M.Zhi,Z.Ye and B.Zhao,'Catalyst-free two-step growth of quasialigned ZnMgO nanorods and their properties',Appl.Phys.Lett.,88,(2006),P113106 [27]M.X.Qiu , Z.Z.Ye , H.P.He , Y.Z.Zhang , H.P.Tang , X.Q.Gu , L.P.Zhu , B.H.Zhao ,J.Y.Huang and J.G.Lu,'Synthesis of ZnO/cubic(Zn,Mg)O heterostructure nanorods',J.Phy. D:Appl.Phy.D:Appl.Phy.,41(2008),P085109 [28]Y.W.Heo,M.Kaufman,K.Pruessner,K.N.Siebein,D.P.Norton,F.Ren,'ZnO/Cubic(Mg,Zn)O radial nanowire Heterostructures',Appl.Phy.A,80,(2005),P263-266 [29]C.J.Pan,H.C.Hsu,H.M.Cheng,C.Y.Wu,W.F.Hsieh,'Structural and optical properties of ZnMgO nanostructures formed by Mg in-diffused ZnO nanowires',Journal of solid state Chemistry,180,(2007),P1188-1192 [30] H.Pan,J.Luo,H.sun,Y.Feng,C.Poh and J.Lin,'Hydrogen storage of ZnO and Mg doped ZnO nanowires',Nanotechnology,17,(2006),P2963-2967 [31] 陳慧瑛,黃定加,朱泰億,'溶膠凝膠法在薄膜製備上之應用',化工技術 7(1999),pp. 152-167。 [32] 陳麒麟,'以溶膠凝膠法製備矽酸鉿高介電材料',碩士論文(2008),國立高雄大學應用化學系。 [33]楊閔智,'溶膠凝膠法製作 SrBi2Ta2O9 鐵電薄膜研究',碩士論文(2001),國立清華大學材料科學工程學系。 [34] 蔡育坣,'以溶膠-凝膠法與直流磁控濺鍍技術設備 ZnO/Pt/ZnO 多層膜之光與電特性研究',碩士論文(2007),國立高雄應用科技大學電子工程研究所。 [35] 陳振龍,'氧化鋅薄膜備製及其二極體應用',碩士論文(2011),崑山科技大學光電工程系。 [36] K. Vanheusden, C.H. Seager,W.L.Warren, D.R. Tallant, and J.A. Voigt,'Correlation between photoluminescenceand oxygen vacancies in ZnO phosphors'.Appl. Phys. Lett. 68(1996), pp. 403-405. [37] 吳秉勳,'以溶膠-凝膠法成長氧化鎂鋅薄膜光電特性之研究',碩士論文(2008),國立彰化師範大學光電科技研究所。 [38] 徐國偉,'氧化鋅鎵透明導電膜之光電特性與其在氮化鎵上歐姆接觸特性之研究',碩士論文(2006),國立成功大學光電科學與工程研究所。 [39] 楊紘先,'以濕式化學法合成氧化鋅/二氧化鈦複合奈米結構之研究',碩士論文(2008),國立成功大學化學工程研究所。 [40] 張閔欽,'以溶膠凝膠法製作 Zn1-xYxO 與 Zn1-xFexO 透明薄膜特性之研究',碩士論文(2009),修平技術學院電機工程研究所。 [41] 蔡育坣,'以溶膠-凝膠法與直流磁控濺鍍技術設備 ZnO/Pt/ZnO 多層膜之光與電特性研究',碩士論文(2007),國立高雄應用科技大學電子工程研究所。 [42] 陳俊男,'氧化鋅鎂化合物半導體之激子特性',碩士論文(2011),國立高雄大學應用物理學系。 [43] K. Yoshino, S. Oyama, and M. Yoneta, 'Structural, optical and electrical characterization of undoped ZnMgO film grown by spray pyrolysis method', J.Mater Sci. 19(2008), pp. 203-209. [44] 黃偉霞,'MgxZn1-xO 透明導電薄膜的製備及性能研究',碩士論文(2006),浙江大學材料物理與化學。 [45] K. Huang, Z. Tang, L. Zhang, J. Yu, J. Lv, X. Liu, and F. Liu, 'Preparation and characterization of Mg-doped ZnO thin films by sol-gel method', Appl. Surf.Scien. 258(2012), pp. 3710-3713. [46] K. Yoshino, S. Oyama, and M. Yoneta, 'Structural, optical and electrical characterization of undoped ZnMgO film grown by spray pyrolysis method', J.Mater Sci. 19(2008), pp. 203-209. [47] R. Ghosh, and D. Basak, 'Composition dependence of electrical and optical properties in sol-gel MgxZn1–xO thin films', J. Appl. Phys. 101(2007), pp.023507-1 – 023507-5. [48] A.Kaushal, and Davinder Kaur, 'Effect of Mg content on structural, electrical and optical properties of Zn1-xMgxO nanocomposite thin films', Solar Ener. Mate. & Solar Cells 93(2009), pp. 193-198. [49] 黃偉霞,'MgxZn1-xO 透明導電薄膜的製備及性能研究',碩士論文(2006),浙江大學材料物理與化學。 [50] K. Huang, Z. Tang, L. Zhang, J. Yu, J. Lv, X. Liu, and F. Liu, 'Preparation and characterization of Mg-doped ZnO thin films by sol-gel method', Appl. Surf.Scien. 258(2012), pp. 3710-3713. [51] 張鈺聲,'氧化鋅及氧化鋅摻雜鎂陣列奈米柱之光學特性',碩士論文(1995),國立台灣大學材料科學與工程研究所。 [52] 張湘瑜,'摻雜鎵之氧化鋅奈米柱薄膜的合成及特性研究',碩士論文(1999),國立成功大學化學工程學系。zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/91113-
dc.description.abstractIn this thesis, the Zn1-xMgxO films were deposited on Si wafer by the sol-gel spin coating technique and the Zn1-xMgxO nanorods were synthesized on ZnO seed layer by hydrothermal method. The purpose of this research is to explore the substitution effect of smaller Mg ion with same valence of Zn ion in the Zn1-xMgxO films and nanorods on the microstructural, optical and electrical properties and their application on photo sensors. From the XRD patterns, the (002) diffraction peaks are gradually shift to higher 2θ angle with the increase of Mg doping content for both Zn1-xMgxO films and nanorods. The reason is that crystal constants decrease as the Zn is substituted by the smaller Mg ion. The defect analysis is studied by optical the photoluminescence spectra which exhibits a strong UV emission and a weak visible one. With the increase of Mg content, obvious blue shift of the UV emission is observed as the increase of Mg content for both Zn1-xMgxO films and nanorods. The IVIS / IUV (visible to UV intensity ratio) decreases with the increase of annealing temperature and Mg concentration of the Zn1-xMgxO films indicating the inhabitation of defect. However, the opposite result for the Zn1-xMgxO nanorods also denotes the increase of defect as the Mg concentration increase. The dark and illuminated current-voltage characteristics are measured for the analysis of photo sensor application. For Zn1-xMgxO thin films, the maximum current variation percentage at 5 V applied bias is 34%. For the Zn1-xMgxO nanords grown on the n-type and p-type silicon substrate, the maximum current variation percentage are 384% and 1591%. Observed from the measured results,the Zn1-xMgxO nanords grown on p-type Si substrate exhibited better performance than the others, which promise the possibility for photo sensor applications.en_US
dc.description.abstract本研究利用溶膠凝膠法經由旋轉塗佈方式在矽基板上製備氧化鋅掺雜鎂的透明半導體薄膜,並利用水熱法在純氧化鋅薄膜上成長掺雜鎂的奈米柱 陣列。在氧化鋅結構中摻雜鎂的主要目的是以價數相同,體積較小的鎂離子取代鋅,以研究探討微結構與光電特性的改變的情形及應用於光檢測器的可能性。 X 光繞射分析儀的測量顯示,摻雜鎂的薄膜和奈米柱陣列皆有繞射峰往 高角度偏移的現象,且摻雜濃度增加,偏移角度會越大。利用光致螢光光譜儀的量測分析,當掺雜濃度增加,所製備的薄膜在紫外光吸收區有明顯的藍位移。隨著鎂摻雜濃度和退火溫度的增加,薄膜可見光放射峰與紫外光放射峰的比值(IVIS / IUV)逐漸變小。相反的,奈米柱陣列會隨著鎂摻雜濃度的增加,IVIS / IUV 均變大。 對 n 型矽基板上生長掺雜鎂之氧化鋅薄膜量測光電流及暗電流,並計算 出光/暗電流變化百分比,其摻雜鎂之氧化鋅薄膜電流變化百分比最大為 34%,而在 n 型矽基板與 p 型矽基板上生長掺雜鎂之氧化鋅奈米柱陣列,其電流變化百分比分別高達 384%與 1591%,以薄膜跟奈米柱的電流變化百分比比較看來,奈米柱在光感測器應用的可能性。zh_TW
dc.description.tableofcontents誌謝................................................... i 摘要 ................................................. ii Abstract .............................................iii 目錄 ................................................. iv 圖目錄 .............................................. xii 第一章緒論 ............................................. 1 1.1 研究動機與目的 ..................................... 1 第二章基礎理論與文獻回顧 ................................ 2 2.1 氧化鋅簡介 ......................................... 2 2.1.1 氧化鋅的光學特性 .................................. 2 2.1.2 氧化鋅的電學特性 .................................. 6 2.1.3 氧化鋅的摻雜特性 .................................. 9 2.2 ZnxMg1-x O 簡介 ................................... 9 2.2.1 Zn1-xMgxO 薄膜 .................................. 9 2.2.2 Zn1-xMgxO 一維奈米結構 .......................... 12 2.3 奈米材料的製備方法 ................................. 13 2.3.1 溶膠凝膠法 ...................................... 13 2.3.2 水熱法 ......................................... 15 第三章實驗步驟與方法 ................................... 16 3.1 Zn1-xMgxO 薄膜製作流程 ............................ 16 3.1.1 溶膠凝膠法製作 Zn1-xMgxO 薄膜使用化學藥品 ......... 17 3.1.2 溶膠凝膠法製作 Zn1-xMgxO 薄膜流程 ................ 17 3.1.3 基板清洗流程 .................................... 18 3.1.4 Zn1-xMgxO 薄膜製作流程 .......................... 19 3.2 Zn1-xMgxO 奈米柱製作流程 .......................... 19 3.2.1 溶膠凝膠製作 ZnO 薄膜晶種層使用化學藥品 ............ 20 3.2.2 溶膠凝膠法製作 ZnO 薄膜晶種層流程 ................. 21 3.2.3 基板清洗流程 .................................... 22 3.2.4 ZnO 薄膜晶種層製作流程 ........................... 23 3.2.5 水熱法製作 Zn1-xMgxO 使用化學藥品 ................ 24 3.2.6 Zn1-xMgxO 奈米柱生長流程......................... 24 3.3 實驗儀器介紹 ...................................... 24 3.3.1 X 光繞射分析儀(X-ray Diffraction, XRD) .......... 24 3.3.2 FE-SEM 場發射掃描電子顯微鏡 ...................... 26 3.3.3 光致螢光光譜儀(Photoluminescence, PL)............ 28 3.3.4 I-V 量測 ....................................... 29 第四章實驗結果與討論 ....................................31 4.1 Zn1-xMgxO 薄膜特性 ................................ 31 4.1.1 XRD 結構分析 .................................... 31 4.1.2 顯微結構分析 .................................... 35 4.1.3 光致螢光光譜分析 ................................. 38 4.1.4 薄膜成份分析 .................................... 41 4.1.5 n 型矽基板上成長 Zn1-xMgxO 薄膜的電流-電壓特性分析 . 41 4.2 Zn1-xMgxO 奈米柱陣列特性 .......................... 46 4.2.1 XRD 結構分析 .................................... 46 4.2.2 顯微結構分析 .................................... 49 4.2.3 光致螢光光譜分析 ................................ 53 4.2.4 奈米柱陣列成份分析............................... 56 4.2.5 p 型矽基板上成長 Zn1-xMgxO 奈米柱的電流-電壓特性分 . 56 4.2.6 n 型矽基板上成長 Zn1-xMgxO 奈米柱電流-電壓特性分析 . 61 第五章結論 ............................................ 65 參考文獻 .............................................. 67 圖目錄 圖 2.1 氧化鋅能帶與激子能階示意圖 ........................ 4 圖 2.2 氧化鋅綠光放射與氧空缺的數量和自由載子濃度隨溫度變化關係圖 .................................................... 5 圖 2.3 Bixia Lin 所提出氧化鋅之缺陷能階圖 ................ 6 圖 2.4 氧化鋅薄膜表面之空乏區 ............................ 7 圖 2.5 Zn1-xMgxO 薄膜的晶格常數和晶胞體積與鎂含量的對應關係.10 圖 2.6 Zn1-xMgxO 薄膜於室溫量測的 PL 光譜圖 ............. 11 圖 2.7 Zn1-xMgxO 薄膜的晶體結構、能隙寬度與 Mg 含量之間的關係 ...................................................... 11 圖 2.8 溶膠凝膠法製程與產物 ............................ 15 圖 3.1 Zn1-xMgxO 薄膜實驗流程圖 ........................ 16 圖 3.2 Zn1-xMgxO 薄膜-基板清洗流程圖 ................... 18 圖 3.3 Zn1-xMgxO 奈米陣列實驗流程圖 .................... 20 圖 3.4 Zn1-xMgxO 奈米陣列基板清洗流程圖 ................. 22 圖 3.5 X 光繞射原理及量測示意圖.......................... 26 圖 3.6 SEM 裝置原理示意圖 .............................. 27 圖 3.7 光致螢光系統架構圖 .............................. 28 圖 3.8 太陽光模擬器 SAN-EI ELECTRIC XES-40S1 .......... 30 圖 4.1 以溫度 500℃做燒結的 Zn1-xMgxO 薄膜之 X-ray 繞射圖 32 圖 4.2 以溫度 600℃做燒結的 Zn1-xMgxO 薄膜之 X-ray 繞射圖 32 圖 4.3 以溫度 700℃做燒結的 Zn1-xMgxO 薄膜之 X-ray 繞射圖 32 圖 4.4 以溫度 500℃~700℃燒結的 Zn1-xMgxO 薄膜之(002)繞射峰位置 ................................................... 33 圖 4.5 以溫度 500℃~700℃燒結的 Zn1-xMgxO 薄膜之 c 軸長度 33 圖 4.6 以溫度 500℃~700℃燒結的 Zn1-xMgxO 薄膜繞射峰之半高寬值.................................................... 34 圖 4.7 以溫度 500℃~700℃燒結的 Zn1-xMgxO 薄膜之晶粒大小圖 34 圖 4.8 (a)以溫度 500 ℃燒結的 Zn1-xMgxO (x=0.01)薄膜之 SEM 圖 ................................................... 35 圖 4.8 (b)以溫度 500 ℃燒結的 Zn1-xMgxO (x=0.03)薄膜之 SEM 圖 ................................................... 35 圖 4.8 (c)以溫度 500 ℃燒結的 Zn1-xMgxO (x=0.05)薄膜之 SEM 圖 ................................................... 35 圖 4.9 (a)以溫度 600 ℃燒結的 Zn1-xMgxO (x=0.01)薄膜之 SEM 圖 ................................................... 36 圖 4.9 (b)以溫度 600 ℃燒結的 Zn1-xMgxO (x=0.03)薄膜之 SEM 圖 ................................................... 36 圖 4.9 (c)以溫度 600 ℃燒結的 Zn1-xMgxO (x=0.05)薄膜之 SEM 圖 ................................................... 36 圖 4.10 (a)以溫度 700 ℃燒結的 Zn1-xMgxO (x=0.01)薄膜之 SEM 圖 ................................................... 37 圖 4.10(b)以溫度 700 ℃燒結的 Zn1-xMgxO (x=0.03)薄膜之 SEM 圖 ................................................... 37 圖 4.10 (c)以溫度 700 ℃燒結的 Zn1-xMgxO (x=0.05)薄膜之 SEM 圖 ................................................... 37 圖 4.11 溫度 500℃燒結的 Zn1-xMgxO 薄膜之螢光光譜 ...................................................... 39 圖 4.12 溫度 600℃燒結的 Zn1-xMgxO 薄膜之螢光光譜 ...................................................... 39 圖 4.13 溫度 700℃燒結的 Zn1-xMgxO 薄膜之螢光光譜 ...................................................... 39 圖 4.14 Zn1-xMgxO(x=0.05)薄膜之能量散射光譜強度圖 ....... 41 圖 4.15 Zn1-xMgxO 薄膜 I-V 量測方式 ................... 42 圖 4.16 (a) n-type 矽基板條件下,以溫度 500℃做燒結的 Zn1-xMgxO 薄膜之暗電流 I-V 曲線 ............................ 43 圖 4.16 (b) n-type 矽基板條件下,以溫度 500℃做燒結的 Zn1-xMgxO 薄膜之光電流 I-V 曲線 ............................ 43 圖 4.17 (a) n-type 矽基板條件下,以溫度 600℃做燒結的 Zn1-xMgxO 薄膜之暗電流 I-V 曲線 ............................ 44 圖 4.17 (b) n-type 矽基板條件下,以溫度 600℃做燒結的 Zn1-xMgxO 薄膜之光電流 I-V 曲線 ............................ 44 圖 4.18 (a) n-type 矽基板條件下,以溫度 700℃做燒結的 Zn1-xMgxO 薄膜之暗電流 I-V 曲線 ............................ 45 圖 4.18 (b) n-type 矽基板條件下,以溫度 700℃做燒結的 Zn1-xMgxO 薄膜之暗電流 I-V 曲線 ............................ 45 圖 4-19 以溫度 500℃做燒結的 Zn1-xMgxO 奈米柱之 X-ray 繞射圖 ...................................................... 47 圖 4-20 以溫度 600℃做燒結的 Zn1-xMgxO 奈米柱之 X-ray 繞射圖 ...................................................... 47 圖 4-21 以溫度 700℃做燒結的 Zn1-xMgxO 奈米柱之 X-ray 繞射圖 ...................................................... 47 圖 4-22 以溫度 500℃~700℃燒結的 Zn1-xMgxO 薄膜之(002)繞射峰位置 ................................................. 48 圖 4.23 以溫度 500℃~700℃燒結的 Zn1-xMgxO 薄膜之 c 軸長度 ...................................................... 48 圖 4.24 (a) n 型矽基板上以溫度 500 ℃燒結的 ZnO 晶種層上生Zn1-xMgxO 奈米柱(x=0.01).............................. 50 圖 4.24 (b) n 型矽基板上以溫度 500 ℃燒結的 ZnO 晶種層上生 Zn1-xMgxO 奈米柱(x=0.03).............................. 50 圖 4.24 (c) n 型矽基板上以溫度 500 ℃燒結的 ZnO 晶種層上生 Zn1-xMgxO 奈米柱(x=0.05).............................. 50 圖 4.25 (a) n 型矽基板上以溫度 600 ℃燒結的 ZnO 晶種層上生 Zn1-xMgxO 奈米柱(x=0.01).............................. 51 圖 4.25 (b) n 型矽基板上以溫度 600 ℃燒結的 ZnO 晶種層上生 Zn1-xMgxO 奈米柱(x=0.03).............................. 51 圖 4.25 (c) n 型矽基板上以溫度 600 ℃燒結的 ZnO 晶種層上生 Zn1-xMgxO 奈米柱(x=0.05).............................. 51 圖 4.26 (a) n 型矽基板上以溫度 700 ℃燒結的 ZnO 晶種層上生 Zn1-xMgxO 奈米柱(x=0.01).............................. 52 圖 4.26 (b) n 型矽基板上以溫度 700 ℃燒結的 ZnO 晶種層上生 Zn1-xMgxO 奈米柱(x=0.03).............................. 52 圖 4.26 (c) n 型矽基板上以溫度 700 ℃燒結的 ZnO 晶種層上生 Zn1-xMgxO 奈米柱(x=0.05).............................. 52 圖 4.27 溫度 500℃燒結的 Zn1-xMgxO (x=0.01、0.03、0.05)奈米柱之螢光光譜 .......................................... 54 圖 4.28 溫度 600℃燒結的 Zn1-xMgxO (x=0.01、0.03、0.05)奈米柱之螢光光譜 .......................................... 54 圖 4.29 溫度 700℃燒結的 Zn1-xMgxO (x=0.01、0.03、0.05)奈米柱之螢光光譜 .......................................... 54 圖 4.30 Zn1-xMgxO(x=0.05)奈米陣列之能量散射光譜強度圖 ... 56 圖 4.31 奈米柱陣列之 I-V 量測方式 ...................... 57 圖 4.32 (a)p-type 矽基板條件下,以溫度 500℃做燒結的 Zn1-xMgxO 奈米柱之I-V 曲線(暗電流) ......................... 58 圖 4.32 (b)p-type 矽基板條件下,以溫度 500℃做燒結的 Zn1-xMgxO 奈米柱之I-V 曲線(光電流) ......................... 58 圖 4.33 (a)p-type 矽基板條件下,以溫度 600℃做燒結的 Zn1-xMgxO 奈米柱之I-V 曲線(暗電流) ......................... 59 圖 4.33 (b)p-type 矽基板條件下,以溫度 600℃做燒結的 Zn1-xMgxO 奈米柱之I-V 曲線(暗電流) ......................... 59 圖 4.34 (a)p-type 矽基板條件下,以溫度 700℃做燒結的 Zn1-xMgxO 奈米柱之I-V 曲線(暗電流) ......................... 60 圖 4.34 (b)p-type 矽基板條件下,以溫度 700℃做燒結的 Zn1-xMgxO 奈米柱之I-V 曲線(光電流) ......................... 60 圖 4.35 (a)n-type 矽基板條件下,以溫度 500℃做燒結的 Zn1-xMgxO 奈米柱之I-V 曲線(暗電流) ......................... 61 圖 4.35 (b)n-type 矽基板條件下,以溫度 500℃做燒結的 Zn1-xMgxO 奈米柱之I-V 曲線(光電流) ......................... 61 圖 4.36 (a)n-type 矽基板條件下,以溫度 600℃做燒結的 Zn1-xMgxO 奈米柱之I-V 曲線(暗電流) ......................... 62 圖 4.36 (b)n-type 矽基板條件下,以溫度 600℃做燒結的 Zn1-xMgxO 奈米柱之I-V 曲線(光電流) ......................... 62 圖 4.37 (a)n-type 矽基板條件下,以溫度 700℃做燒結的 Zn1-xMgxO 奈米柱之I-V 曲線(暗電流) ......................... 63 圖 4.37 (b)n-type 矽基板條件下,以溫度 700℃做燒結的 Zn1-xMgxO 奈米柱之I-V 曲線(光電流) ......................... 63zh_TW
dc.language.isozh_TWzh_TW
dc.rights不同意授權瀏覽/列印電子全文服務zh_TW
dc.subjectnoen_US
dc.subject醋酸鎂zh_TW
dc.subject水熱法zh_TW
dc.subject電流變化百分比zh_TW
dc.title摻雜鎂氧化鋅薄膜與奈米柱陣列的特性與可見光感測器的應用zh_TW
dc.titleCharacteristiecs of Mg-doped ZnO thin Films and nanorods and application on visible sensorsen_US
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2018-05-11zh_TW
dc.date.openaccess10000-01-01-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextrestricted-
Appears in Collections:電機工程學系所
Files in This Item:
File SizeFormat Existing users please Login
nchu-103-5101064020-1.pdf2.63 MBAdobe PDFThis file is only available in the university internal network   
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.